Polysaccharide-Based Superabsorbents: Synthesis, Properties, and Applications

  • Leyre Pérez-ÁlvarezEmail author
  • Leire Ruiz-Rubio
  • Erlantz Lizundia
  • José Luis Vilas-Vilela
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)


Traditional absorbent hydrogels are based on the copolymerization of petroleum-based synthetic vinyl monomers such as acrylic acid, methacrylic acid, and acrylamide derivatives. Nevertheless, these materials are usually expensive, poorly degradable, and non-environmentally friendly. On the contrary, natural polysaccharides display significant advantages such as availability, low production cost, nontoxicity, biocompatibility, and biodegradability. Accordingly, polysaccharides emerge as an interesting sustainable alternative to traditionally employed polymers. In addition, polysaccharides can easily form hydrogels by chemical or physical crosslinking (including hydrogen bonding and ionic interactions) or a combination of both, which makes the crosslinking of natural polysaccharides a versatile and promising approach for superabsorbent hydrogel (SAH) production. Therefore, in the last years, numerous polysaccharides including starch, cellulose, alginate, chitosan, and guar gum, among others, have been employed in SAH fabrication. Polysaccharide-based SAHs have been used in agriculture, hygiene products, waste treatment, crack mitigation in building applications, tissue engineering, and controlled release, for biomedical and soil conditioning applications. Despite of the evident commercial and environmental advantages of polysaccharide-based SAHs, they also display some drawbacks that make them continue appearing as a challenge research field. In this sense, although the biodegradability of polysaccharide-based hydrogels is a key characteristic for some applications because it avoids pollution-related issues and enables enhanced controlled release, at the same time, it could delay the development of longtime sustained release systems. Moreover, polysaccharide crosslinking leads to hydrogels with poor mechanical stability which is another associated disadvantage of these types of materials that needs to be overcome. Therefore an increasing amount of investigations about new synthetic approaches to improve the properties of polysaccharide-based hydrogels have been reported in the last years. In this chapter, the recent progress of this type of hydrogels is reviewed. The synthetic methods employed to obtain SAHs from the most common polysaccharides and the main properties of these materials with a special emphasis on swelling and mechanical properties are studied. Furthermore, the applications of SAHs have been summarized highlighting the most outstanding and promising uses.


Polysaccharides Hydrogels Biodegradation Water treatment Chitosan 


  1. 1.
    Chen J, Park H, Park K (1998) Synthesis of superporous hydrogels: hydrogels with fast swelling and superabsorbent properties. J Biomed Mater Res 44:53–62CrossRefGoogle Scholar
  2. 2.
    Zohuriaan-Mehr MJ, Omidian H, Doroudiani S, Kabiri K (2010) Advances in non-hygienic applications of superabsorbent hydrogel materials. J Mater Sci 45:5711–5735CrossRefGoogle Scholar
  3. 3.
    Friedrich S (2012) Superabsorbent polymers (SAP). In: Application of Super Absorbent Polymers (SAP) in concrete construction. Springer, Dordrecht, pp 13–19CrossRefGoogle Scholar
  4. 4.
    He G, Ke W, Chen X, Kong Y, Zheng H, Yin Y, Cai W (2017) Preparation and properties of quaternary ammonium chitosan-g-poly(acrylic acid-co-acrylamide) superabsorbent hydrogels. React Funct Polym 111:14–21CrossRefGoogle Scholar
  5. 5.
    Pourjavadi A, Barzegar S (2009) Synthesis and evaluation of pH and thermosensitive pectin-based superabsorbent hydrogel for oral drug delivery systems. Starch/Staerke 61:161–172CrossRefGoogle Scholar
  6. 6.
    Guilherme MR, Aouada FA, Fajardo AR, Martins AF, Paulino AT, Davi MFT, Rubira AF, Muniz EC (2015) Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: a review. Eur Polym J 72:365–385CrossRefGoogle Scholar
  7. 7.
    Hua S, Wang A (2009) Synthesis, characterization and swelling behaviors of sodium alginate-g-poly(acrylic acid)/sodium humate superabsorbent. Carbohydr Polym 75:79–84CrossRefGoogle Scholar
  8. 8.
    Zhong K, Lin ZT, Zheng XL, Jiang GB, Fang YS, Mao XY, Liao ZW (2013) Starch derivative-based superabsorbent with integration of water-retaining and controlled-release fertilizers. Carbohydr Polym 92:1367–1376PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Sannino A, Esposito A, De Rosa A, Cozzolino A, Ambrosio L, Nicolais L (2003) Biomedical application of a superabsorbent hydrogel for body water elimination in the treatment of edemas. J Biomed Mater Res A 67:1016–1024PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Chen J, Blevins WE, Park H, Park K (2000) Gastric retention properties of superporous hydrogel composites. J Control Release 64:39–51PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Yang S, Fu Y, Jeong SH, Park K (2004) Application of poly(acrylic acid) superporous hydrogel microparticles as a super-disintegrant in fast-disintegrating tablets. J Pharm Pharmacol 56:429–436PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Zhang J, Wang A (2015) Polysaccharide-based composite hydrogels for removal of pollutants from water. In: Dragan ES (ed) Adv. Sep. by Spec. sorbents. CRC Press, Boca Raton, pp 89–126CrossRefGoogle Scholar
  13. 13.
    Wang W, Wang A (2010) Synthesis and swelling properties of pH-sensitive semi-IPN superabsorbent hydrogels based on sodium alginate-g-poly(sodium acrylate) and polyvinylpyrrolidone. Carbohydr Polym 80:1028–1036CrossRefGoogle Scholar
  14. 14.
    Pourjavadi A, Harzandi AM, Hosseinzadeh H (2004) Modified carrageenan 3. Synthesis of a novel polysaccharide-based superabsorbent hydrogel via graft copolymerization of acrylic acid onto kappa-carrageenan in air. Eur Polym J 40:1363–1370CrossRefGoogle Scholar
  15. 15.
    Mukerabigwi JF, Lei S, Fan L, Wanf H, Luo S, Ma X, Huang X, Cao Y (2016) Eco-friendly nano-hybrid superabsorbent composite from hydroxyethyl cellulose and diatomite. RSC Adv 6:31607–31618CrossRefGoogle Scholar
  16. 16.
    Buchholz FL, Peppas NA (1994) Superabsorbent polymers. ACS symposium series, vol 573. American Chemical Society, Washington, DCCrossRefGoogle Scholar
  17. 17.
    Li A, Zhang J, Wang A (2007) Utilization of starch and clay for the preparation of superabsorbent composite. Bioresour Technol 98:327–332PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Essawy HA, Ghazy MBM, El-Hai FA, Mohamed MF (2016) Superabsorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients. Int J Biol Macromol 89:144–151PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Wang WB, Wang AQ (2010) Preparation, swelling and water-retention properties of Crosslinked superabsorbent hydrogels based on guar gum. Adv Mater Res 96:177–182CrossRefGoogle Scholar
  20. 20.
    Yoshimura T, Sengoku K, Fujioka R (2005) Pectin-based superabsorbent hydrogels crosslinked by some chemicals: synthesis and characterization. Polym Bull 55:123–129CrossRefGoogle Scholar
  21. 21.
    Wang WB, Huang DJ, Kang YR, Wang AQ (2013) One-step in situ fabrication of a granular semi-IPN hydrogel based on chitosan and gelatin for fast and efficient adsorption of Cu2+ ion. Colloids Surf B Biointerfaces 106:51–59PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Cipriano BH, Banik SJ, Sharma R, Rumore D, Hwang W, Briber RM, Raghavan SR (2014) Superabsorbent hydrogels that are robust and highly stretchable. Macromolecules 47:4445–4452CrossRefGoogle Scholar
  23. 23.
    Pourjavadi A, Zeidabadi F, Barzegar S (2010) Alginate-based biodegradable superabsorbents as candidates for diclofenac sodium delivery systems. J Appl Polym Sci 118:2015–2023Google Scholar
  24. 24.
    Gjipalaj J, Alessandri I (2017) Easy recovery, mechanical stability, enhanced adsorption capacity and recyclability of alginate-based TiO2 macrobead photocatalysts for water treatment. J Environ Chem Eng 5:1763–1770CrossRefGoogle Scholar
  25. 25.
    Güçlü G, Al E, Emik S, Iyim TB, Ózgümüs S, Özyürek M (2010) Removal of Cu2+ and Pb2+ ions from aqueous solutions by starch-graft-acrylic acid/montmorillonite superabsorbent nanocomposite hydrogels. Polym Bull 65:333–346CrossRefGoogle Scholar
  26. 26.
    Shi XN, Wang WB, Wang AQ (2011) Effect of surfactant on porosity and swelling behaviors of guar gum-g-poly(sodium acrylate-co-styrene)/attapulgite superabsorbent hydrogels. Colloids Surf B Biointerfaces 88:279–286PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Lu S, Duan M, Lin S (2003) Synthesis of superabsorbent starch-graft-poly(potassium acrylate-co-acrylamide) and its properties. J Appl Polym Sci 88:1536–1542CrossRefGoogle Scholar
  28. 28.
    Zhang J, Yuan K, Wang YP, Gu SJ, Zhang ST (2007) Preparation and properties of polyacrylate/bentonite superabsorbent hybrid via intercalated polymerization. Mater Lett 61:316–320CrossRefGoogle Scholar
  29. 29.
    Aminabhavi TM, Deshmukh AS (2016) Polymeric hydrogels as smart biomaterials. Springer, DordrechtGoogle Scholar
  30. 30.
    Ma L, Liu M, Chen J, Liu H, Cui D, Gao C (2009) Synthesis, characterization and drug release behavior of pH-responsive o-carboxymethyl chitosan-graft-poly(N-vinylpyrrolidone) hydrogel beads. Adv Eng Mater 11(12):B267–B274CrossRefGoogle Scholar
  31. 31.
    Mahdavinia GR, Zohuriaan-Mehr MJ, Pourjavadi A (2004) Modified chitosan III, superabsorbency, salt- and pH-sensitivity of smart ampholytic hydrogels from chitosan-g-PAN. Polym Adv Technol 15:173–180CrossRefGoogle Scholar
  32. 32.
    Kabiri K, Omidian H, Hashemi SA, Zohuriaan-Mehr MJ (2003) Synthesis of fast-swelling superabsorbent hydrogels: effect of crosslinker type and concentration on porosity and absorption rate. Eur Polym J 39:1341–1348CrossRefGoogle Scholar
  33. 33.
    Chen Y, Liu YF, Tan HM, Jiang JX (2009) Synthesis and characterization of a novel superabsorbent polymer of N,O-carboxymethyl chitosan graft copolymerized with vinyl monomers. Carbohydr Polym 75:287–292CrossRefGoogle Scholar
  34. 34.
    Guilherme MR, Campese GM, Radovanovic E, Radovanic E, Rubira AF, Feitosa PA, Muniz EC (2005) Morphology and water affinity of superabsorbent hydrogels composed of methacrylated cashew gum and acrylamide with good mechanical properties. Polymer 46:7867–7873CrossRefGoogle Scholar
  35. 35.
    Mignon A, Devisscher D, Vermeulen J, Vagenende M, Martins J, Dubruel P, De Belie N, Van Vlierberghe S (2017) Characterization of methacrylated polysaccharides in combination with amine-based monomers for application in mortar. Carbohydr Polym 168:173–181PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Pourjavadi A, Mahdavinia GR, Zohuriaan-Mehr MJ, Omidian H (2003) Modified chitosan. I. Optimized cerium ammonium nitrate-induced synthesis of chitosan-graft-polyacrylonitrile. J Appl Polym Sci 88:2048–2054CrossRefGoogle Scholar
  37. 37.
    Cao LQ, Xu SM, Feng S, Wang JD (2005) Swelling and thermal behaviors of a starch-based superabsorbent hydrogel with quaternary ammonium and carboxyl groups. J Appl Polym Sci 96:2392–2398CrossRefGoogle Scholar
  38. 38.
    Elvira C, Mano JF, San Román J, Reis RL (2002) Starch-based biodegradable hydrogels with potential biomedical applications as drug delivery systems. Biomaterials 23:1955–1966PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Saber-Samandari S, Gazi M, Yilmaz E (2012) UV-induced synthesis of chitosan-g-polyacrylamide semi-IPN superabsorbent hydrogels. Polym Bull 68:1623–1639CrossRefGoogle Scholar
  40. 40.
    Chandrika KSVP, Singh A, Jyoti Sarkar D, Rathore A, Kumar A (2014) pH-sensitive crosslinked guar gum-based superabsorbent hydrogels: swelling response in simulated environments and water retention behavior in plant growth media. J Appl Polym Sci 41060:1–12Google Scholar
  41. 41.
    Yoshimura T, Yoshimura R, Seki C, Fujioka R (2006) Synthesis and characterization of biodegradable hydrogels based on starch and succinic anhydride. Carbohydr Polym 64:345–349CrossRefGoogle Scholar
  42. 42.
    Fujioka R, Tanaka Y, Yoshimura T (2009) Synthesis and properties of superabsorbent hydrogels based on guar gum and succinic anhydride. J Appl Polym Sci 114:612–616CrossRefGoogle Scholar
  43. 43.
    Li A, Liu R, Wang A (2005) Preparation of starch-graft-poly(acrylamide)/attapulgite superabsorbent composite. J Appl Polym Sci 98:1351–1357CrossRefGoogle Scholar
  44. 44.
    Doo-Won L, Whang HS, Yoon KJ, Sohk-Won K (2001) Synthesis and absorbency of a superabsorbent from sodium starch sulfate-g-polyacrylonitrile. J Appl Polym Sci 79: 1423–1430CrossRefGoogle Scholar
  45. 45.
    Zhang L, Chen D (2001) Grafting of 2-(Dimethylamino) ethyl Methacrylate onto Potato Starch Using Potassium Permanganate/Sulfuric Acid Initiation. Starch 53:311–316Google Scholar
  46. 46.
    Peng G, Xu S, Peng Y, Wang J, Zheng L (2008) A new amphoteric superabsorbent hydrogel based on sodium starch sulfate. Bioresour Technol 99:444–447PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Spagnol C, Rodrigues FHA, Pereira AGB, Fajardo AR, Rubira AF, Muniz EC (2012) Superabsorbent hydrogel nanocomposites based on starch-g-poly(sodium acrylate) matrix filled with cellulose nanowhiskers. Cellulose 19:1225–1237CrossRefGoogle Scholar
  48. 48.
    Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Pourjavadi A, Amini-Fazl MS, Hosseinzadeh H (2005) Partially hydrolyzed crosslinked alginate-graft-polymethacrylamide as a novel biopolymer-based superabsorbent hydrogel having pH-responsive properties. Macromol Res 13:45–53CrossRefGoogle Scholar
  50. 50.
    Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31: 603–632CrossRefGoogle Scholar
  51. 51.
    Harish Prashanth KV, Tharanathan RN (2007) Chitin/chitosan: modifications and their unlimited application potential-an overview. Trends Food Sci Technol 18:117–131CrossRefGoogle Scholar
  52. 52.
    Pujana MA, Pérez-Álvarez L, Iturbe LCC, Katime I (2012) Water dispersible pH-responsive chitosan nanogels modified with biocompatible crosslinking-agents. Polymer 53:3107–3116CrossRefGoogle Scholar
  53. 53.
    Ferfera-Harrar H, Aouaz N, Dairi N (2016) Environmental-sensitive chitosan-g-polyacrylamide/carboxymethylcellulose superabsorbent composites for wastewater purification I: synthesis and properties. Polym Bull 73:815–840CrossRefGoogle Scholar
  54. 54.
    Zargar V, Asghari M, Dashti A (2015) A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. Chem Bio Eng Rev 2:204–226Google Scholar
  55. 55.
    Sadeghi M (2011) Pectin-based biodegradable hydrogels with potential biomedical applications as drug delivery systems. J Biomater Nanobiotechnol 2:36–40CrossRefGoogle Scholar
  56. 56.
    Razalee S, Koon PB, Noor IM (2012) Relationship between body composition, smoking and physical fitness of Malaysian armed forces naval trainees. Open Access Sci Rep Bergqvist 1:548Google Scholar
  57. 57.
    Siew CK, Williams PA, Young NWG (2005) New insights into the mechanism of gelation of alginate and pectin: charge annihilation and reversal mechanism. Biomacromolecules 6:963–969PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Wang W, Wang A (2009) Preparation, characterization and properties of superabsorbent nanocomposites based on natural guar gum and modified rectorite. Carbohydr Polym 77:891–897CrossRefGoogle Scholar
  59. 59.
    Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–121PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Liu J, Wang W, Wang A (2011) Synthesis, characterization, and swelling behaviors of chitosan-g-poly(acrylic acid)/poly(vinyl alcohol) semi-IPN superabsorbent hydrogels. Polym Adv Technol 22:627–634CrossRefGoogle Scholar
  61. 61.
    Cui D, Liu M, Liang R, Bi Y (2007) Synthesis and optimization of the reaction conditions of starch sulfates in aqueous solution. Starch/Stake 59:91–98CrossRefGoogle Scholar
  62. 62.
    Guilherme MR, Reis AV, Takahashi SH, Rubira AF, Feitosa JPA, Muniz EC (2005) Synthesis of a novel superabsorbent hydrogel by copolymerization of acrylamide and cashew gum modified with glycidyl methacrylate. Carbohydr Polym 61:464–471CrossRefGoogle Scholar
  63. 63.
    Cusson D, Mechtcherine V, Lura P (2012) Application of super absorbent polymers (SAP) in concrete construction. Springer, DordrechtGoogle Scholar
  64. 64.
    Qin Y (2008) Development of a robust hydrogel system based on agar and sodium alginate blend. Polym Int 57:329–336CrossRefGoogle Scholar
  65. 65.
    Rashidzadeh A, Olad A, Salari D, Reyhanitabar A (2014) On the preparation and swelling properties of hydrogel nanocomposite based on Sodium alginate-g-Poly (acrylic acid-co-acrylamide)/Clinoptilolite and its application as slow release fertilizer. J Polym Res 21:344CrossRefGoogle Scholar
  66. 66.
    Pourjavadi A, Ghasemzadeh H, Hosseinzadeh H (2004) Preparation and swelling behaviour of a novel anti-salt superabsorbent hydrogel based on kappa-carrageenan and sodium alginate grafted with polyacrylamide. E-Polymers 4:275–287Google Scholar
  67. 67.
    Mahdavinia GR, Pourjavadi A, Hosseinzadeh H, Zohuriaan MJ (2004) Modified chitosan 4. Superabsorbent hydrogels from poly(acrylic acid-co-acrylamide) grafted chitosan with salt- and pH-responsiveness properties. Eur Polym J 40:1399–1407CrossRefGoogle Scholar
  68. 68.
    Pourjavadi A, Mahdavinia GR, Zohuriaan-Mehr MJ (2003) Modified chitosan. II. H-chitoPAN, a novel pH-responsive superabsorbent hydrogel. J Appl Polym Sci 90:3115CrossRefGoogle Scholar
  69. 69.
    Guilherme MR, Reis AV, Paulino AT, Moia TA, Mattoso LHC, Tambourgi EB (2010) Pectin-based polymer hydrogel as a carrier for release of agricultural nutrients and removal of heavy metals from wastewater. J Appl Polym Sci 117:3146–3154Google Scholar
  70. 70.
    Ma G, Ran F, Yang Q, Feng E, Lei Z (2015) Eco-friendly superabsorbent composite based on sodium alginate and organo-loess with high swelling properties. RSC Adv 5:53819–53828CrossRefGoogle Scholar
  71. 71.
    Zhai N, Wang W, Wang A (2011) Synthesis and swelling characteristics of a pH-responsive guar gum-g-poly(sodium acrylate)/medicinal stone superabsorbent composite. Polym Compos 32:210–218CrossRefGoogle Scholar
  72. 72.
    Mignon A, Snoeck D, Schaubroeck D, Luickx N, Dubruel P, Van Vlierberghe S, De Belie N (2015) pH-responsive superabsorbent polymers: a pathway to self-healing of mortar. React Funct Polym 93:68–76CrossRefGoogle Scholar
  73. 73.
    Mignon A, Graulus G-J, Snoeck D, Martins J, De Belie N, Dubruel P, Van Vlierberghe S (2015) pH-sensitive superabsorbent polymers: a potential candidate material for self-healing concrete. J Mater Sci 50:970–979CrossRefGoogle Scholar
  74. 74.
    Jin S, Yue G, Feng L, Han Y, Yu X, Zhang Z (2011) Preparation and properties of a coated slow-release and water-retention biuret Phosphoramide fertilizer with superabsorbent. J Agric Food Chem 59:322–327. Scholar
  75. 75.
    Wang Y, Wang W, Shi X, Wang A (2013) Enhanced swelling and responsive properties of an alginate-based superabsorbent hydrogel by sodium p-styrenesulfonate and attapulgite nanorods. Polym Bull 70:1181–1193CrossRefGoogle Scholar
  76. 76.
    Gharekhani H, Olad A, Mirmohseni A, Bybordi A (2017) Superabsorbent hydrogel made of NaAlg-g-poly(AA-co-AAm) and rice husk ash: synthesis, characterization, and swelling kinetic studies. Carbohydr Polym 168:1–13PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Spagnol C, Rodrigues FHA, Pereira AGB, Fajardo AR, Rubira AF, Muniz EC (2012) Superabsorbent hydrogel composite made of cellulose nanofibrils and chitosan-graft-poly(acrylic acid). Carbohydr Polym 87:2038–2045CrossRefGoogle Scholar
  78. 78.
    Hosseinzadeh H, Pourjavavdi A, Zohuriaan-Mehr MJ (2004) Modified carrageenan. 2. Hydrolyzed crosslinked kappa-carrageenan-g-PAAm as a novel smart superabsorbent hydrogel with low salt sensitivity. J Biomater Sci Polym Ed 15:1499–1511PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Sadeghi M, Hosseinzadeh H (2008) Synthesis of starch – poly(sodium acrylate-co-acrylamide) superabsorbent hydrogel with salt and pH-responsiveness properties as a drug delivery system. J Bioact Compat Polym 23:381–404CrossRefGoogle Scholar
  80. 80.
    Zeng M, Feng Z, Huang Y, Liu J, Ren J, Xu Q, Fan L (2017) Chemical structure and remarkably enhanced mechanical properties of chitosan-graft-poly(acrylic acid)/polyacrylamide double-network hydrogels. Polym Bull 74:55–74CrossRefGoogle Scholar
  81. 81.
    Thakur S, Pandey S, Arotiba OA (2016) Development of a sodium alginate-based organic/inorganic superabsorbent composite hydrogel for adsorption of methylene blue. Carbohydr Polym 153:34–46PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Dhanapal V, Subramanian K (2014) Recycling of textile dye using double network polymer from sodium alginate and superabsorbent polymer. Carbohydr Polym 108:65–74PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Şen M, Hayrabolulu H (2012) Radiation synthesis and characterisation of the network structure of natural/synthetic double-network superabsorbent polymers. Radiat Phys Chem 81:1378–1382CrossRefGoogle Scholar
  84. 84.
    Lanthong P, Nuisin R, Kiatkamjornwong S (2006) Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents. Carbohydr Polym 66:229–245CrossRefGoogle Scholar
  85. 85.
    Bao Y, Ma J, Li N (2011) Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydr Polym 84:76–82CrossRefGoogle Scholar
  86. 86.
    Guo C, Zhou L, Lv J (2013) Effects of expandable graphite and modified ammonium polyphosphate on the flame-retardant and mechanical properties of wood flour-polypropylene composites. Polym Polym Compos 21:449–456CrossRefGoogle Scholar
  87. 87.
    Bagheri Marandi G, Mahdavinia GR, Ghafary S (2011) Swelling behavior of novel protein-based superabsorbent nanocomposite. J Appl Polym Sci 120:1170–1179CrossRefGoogle Scholar
  88. 88.
    Hatakeyama T, Hatakeyama H (2017) Heat capacity and nuclear magnetic relaxation times of non-freezing water restrained by polysaccharides, revisited. J Biomater Sci Polym Ed 28:1215–1230PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Hatakeyama T, Nakamura K, Hatakeyama H (1988) Determination of bound water content in polymers by DTA, DSC and TG. Thermochim Acta 123:153–161CrossRefGoogle Scholar
  90. 90.
    Hatakeyama T, Hatakeyama H, Nakamura K (1995) Non-freezing water content of mono- and divalent cation salts of polyelectrolyte-water systems studied by DSC. Thermochim Acta 253:137–148CrossRefGoogle Scholar
  91. 91.
    Aijaz MO, Haider S, Al-Mubaddel FS, Khan R, Haider A, Alghyamah AA, Almasry WA, Khan MSJ, Javid M, Rehmanet WU (2017) Thermal, swelling and stability kinetics of chitosan based semi-interpenetrating network hydrogels. Fibers Polym 18:611–618CrossRefGoogle Scholar
  92. 92.
    dos Santos J-FR, Couceiro R, Concheiro A, Torres-Labandeira JJ, Álvarez-Lorenzo C (2008) Poly(hydroxyethyl methacrylate-co-methacrylated-β-cyclodextrin) hydrogels: synthesis, cytocompatibility, mechanical properties and drug loading/release properties. Acta Biomater 4:745–755PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Ostrowska-Czubenko J (2011) State of water in noncrosslinked and crosslinked hydrogel chitosan membranes–DSC studies. PCACD 16:147–156Google Scholar
  94. 94.
    Zahoranová A, Kroneková Z, Zahoran M, Chorvát D, Janigová I, Kronek J (2016) Poly(2-oxazoline) hydrogels crosslinked with aliphatic bis(2-oxazoline)s: properties, cytotoxicity, and cell cultivation. J Polym Sci A Polym Chem 54:1548–1559CrossRefGoogle Scholar
  95. 95.
    Kono H, Fujita S (2012) Biodegradable superabsorbent hydrogels derived from cellulose by esterification crosslinking with 1,2,3,4-butanetetracarboxylic dianhydride. Carbohydr Polym 87:2582–2588CrossRefGoogle Scholar
  96. 96.
    Kuang J, Yuk KY, Huh KM (2011) Polysaccharide-based superporous hydrogels with fast swelling and superabsorbent properties. Carbohydr Polym 83:284–290CrossRefGoogle Scholar
  97. 97.
    Yoshimura T, Uchikoshi I, Yoshiura Y, Fujioka R (2005) Synthesis and characterization of novel biodegradable superabsorbent hydrogels based on chitin and succinic anhydride. Carbohydr Polym 61:322–326CrossRefGoogle Scholar
  98. 98.
    Mogoşanu GD, Grumezescu AM (2014) Natural and synthetic polymers for wounds and burns dressing. Int J Pharm 463:127–136PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Xu R, Luo G, Xia H, He W, Zhao J, Liu B, Tan J, Zhou J, Liu D, Wang Y, Yao Z, Zhan R, Yang S, Wu J (2015) Novel bilayer wound dressing composed of silicone rubber with particular micropores enhanced wound re-epithelialization and contraction. Biomaterials 40:1–11PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Harkins AL, Duri S, Kloth LC, Tran CD (2014) Chitosan-cellulose composite for wound dressing material. Part 2. Antimicrobial activity, blood absorption ability, and biocompatibility. J Biomed Mater Res B Appl Biomater 102:1199–1206PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Hassan MM (2015) Binding of a quaternary ammonium polymer-grafted-chitosan onto a chemically modified wool fabric surface: assessment of mechanical, antibacterial and antifungal properties. RSC Adv 5:35497–35505CrossRefGoogle Scholar
  102. 102.
    Fan L, Yang J, Wu H, Hu Z, Jiayan Y, Tong J, Zhu X (2015) Preparation and characterization of quaternary ammonium chitosan hydrogel with significant antibacterial activity. Int J Biol Macromol 79:830–836PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Wahid F, Yin JJ, Xue DD, Lu YS, Zhong C, Chu LQ (2016) Synthesis and characterization of antibacterial carboxymethyl chitosan/ZnO nanocomposite hydrogels. Int J Biol Macromol 88:273–279PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Ghasemzadeh H, Ghanaat F (2014) Antimicrobial alginate/PVA silver nanocomposite hydrogel, synthesis and characterization. J Polym Res 21:355CrossRefGoogle Scholar
  105. 105.
    Li H, Yang J, Hu X, Liang J, Fan Y, Zhang X (2011) Superabsorbent polysaccharide hydrogels based on pullulan derivate as antibacterial release wound dressing. J Biomed Mater Res A 98(A):31–39PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    UNICEF, WHO (2017) Progress on drinking water, sanitation and hygiene: 2017 update and SDG baselines. Annual report. World Health Organization (WHO) and the United Nations Children’s Fund (UNICEF), Geneva. Licence: CC BY-NC-SA 3.0 IGOGoogle Scholar
  107. 107.
    Chen H, Zhao Y, Wang A (2007) Removal of Cu(II) from aqueous solution by adsorption onto acid-activated palygorskite. J Hazard Mater 149:346–354PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Zheng Y, Wang A (2009) Evaluation of ammonium removal using a chitosan-g-poly (acrylic acid)/rectorite hydrogel composite. J Hazard Mater 171:671–677. Scholar
  109. 109.
    Wang X, Wang A (2010) Adsorption characteristics of chitosan-g-poly(acrylic acid)/Attapulgite hydrogel composite for Hg(II) ions from aqueous solution. Sep Sci Technol 45:2086–2094CrossRefGoogle Scholar
  110. 110.
    Wang X, Wang A (2010) Removal of Cd(II) from aqueous solution by a composite hydrogel based on attapulgite. Environ Technol 31:745–753PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Wang X, Zheng Y, Wang A (2009) Fast removal of copper ions from aqueous solution by chitosan-g-poly(acrylic acid)/attapulgite composites. J Hazard Mater 168:970–977PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Agnihotri S, Singhal R (2017) Synthesis and characterization of Novel Poly (Acrylic Acid/Sodium Alginate/Sodium Humate) superabsorbent hydrogels. Part II: the effect of SH variation on Cu2+, Pb2+, Fe2+ Metal Ions, MB, CV Dye Adsorption Study. J Polym Environ, (in press)CrossRefGoogle Scholar
  113. 113.
    Calza P, Hadjicostas C, Sakkas VA, Sarro M, Minero C, Medana C, Albanis TA (2016) Photocatalytic transformation of the antipsychotic drug risperidone in aqueous media on reduced graphene oxide – TiO2 composites. Appl Catal B Environ 183:96–106CrossRefGoogle Scholar
  114. 114.
    Muñoz-Batista MJ, Gómez-Cerezo MN, Kubacka A, Tudela D, Fernández-García M (2014) Role of interface contact in CeO2–TiO2 Photocatalytic composite materials. ACS Catal 4:63–72CrossRefGoogle Scholar
  115. 115.
    Liu H, Sun X, Yin C, Hu C (2008) Removal of phosphate by mesoporous ZrO2. J Hazard Mater 151:616–622PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Borggaard OK, Raben-Lange B, Gimsing AL, Strobel BW (2005) Influence of humic substances on phosphate adsorption by aluminium and iron oxides. Geoderma 127:270–279CrossRefGoogle Scholar
  117. 117.
    Nishihama S, Sakaguchi N, Hirai T, Komasawa I (2002) Extraction and separation of rare earth metals using microcapsules containing bis(2-ethylhexyl)phosphinic acid. Hydrometallurgy 64:35–42CrossRefGoogle Scholar
  118. 118.
    Xu S, Wang Z, Gao Y, Zhang S, Wu K (2015) Adsorption of rare earths(III) using an efficient sodium alginate hydrogel cross-linked with poly-γ-glutamate. PLoS One 10:e0124826PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Liu S, Li K, Yao F, Xu l FG (2017) Lanthanide ions-induced formation of hierarchical and transparent polysaccharide hybrid films. Carbohydr Polym 163:28–33PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Zhu Y, Zheng Y, Wang A (2015) A simple approach to fabricate granular adsorbent for adsorption of rare elements. Int J Biol Macromol 72:410–420PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Nowack B, Krug HF, Height M (2011) 120 years of nanosilver history: implications for policy makers. Environ Sci Technol 45:1177–1183PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer (Guildf) 49:1993–2007CrossRefGoogle Scholar
  123. 123.
    Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267CrossRefGoogle Scholar
  124. 124.
    Jones V (2006) Wound dressings. BMJ 332:777–780PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Hunt JA, Chen R, van Veen T, Bryan N (2014) Hydrogels for tissue engineering and regenerative medicine. J Mater Chem B 2:5319–5338CrossRefGoogle Scholar
  127. 127.
    Radhakrishnan J, Subramanian A, Krishnan UM, Sethuraman S (2017) Injectable and 3D bioprinted polysaccharide hydrogels: from cartilage to Osteochondral tissue engineering. Biomacromolecules 18:1–26PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Placone JK, Navarro J, Laslo GW, Lerman MJ, Gavard AR, Herendeen GJ, Falco EE, Tomblyn S, Burnett L, Fisher JP (2017) Development and characterization of a 3D printed, keratin-based hydrogel. Ann Biomed Eng 45:237–248PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Giammanco GE, Carrion B, Coleman RM, Ostrowski AD (2016) Photoresponsive polysaccharide-based hydrogels with Tunable mechanical properties for cartilage tissue engineering. ACS Appl Mater Interfaces 8:14423–14429PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    La Gatta A, Schiraldi C, D’Agostino A, Papa A, De Rosa M (2012) Properties of newly-synthesized cationic semi-interpenetrating hydrogels containing either hyaluronan or chondroitin sulfate in a methacrylic matrix. J Funct Biomater 3:225–238PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Thacharodi D, Panduranga R (1996) Rate-controlling biopolymer membranes as transdermal delivery systems for nifedipine: development and in vitro evaluations. Biomaterials 17: 1307–1311PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Willers C, Chen J, Wood D, Xu J, Zheng MH (2005) Autologous chondrocyte implantation with collagen bioscaffold for the treatment of Osteochondral defects in rabbits. Tissue Eng 11:1065–1076PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials (Basel) 2:353–373CrossRefGoogle Scholar
  134. 134.
    Zheng Y, Li P, Zhang J, Wang A (2007) Study on superabsorbent composite XVI. Synthesis, characterization and swelling behaviors of poly(sodium acrylate)/vermiculite superabsorbent composites. Eur Polym J 43:1691–1698CrossRefGoogle Scholar
  135. 135.
    Gil EC, Colarte AI, Bataille B, Caraballo I (2007) Estimation of the percolation thresholds in lobenzarit disodium native dextran matrix tablets. AAPS Pharm Sci Technol 8:281–288CrossRefGoogle Scholar
  136. 136.
    Martinez-Ruvalcaba A, Sanchez-Diaz JC, Becerra F, Cruz-Barba LE, González-Álvarez A (2009) Swelling characterization and drug delivery kinetics of polyacrylamide-co-itaconic acid/chitosan hydrogels. Express Polym Lett 3:25–32CrossRefGoogle Scholar
  137. 137.
    Demitri C, Scalera F, Madaghiele M, Sannino A, Maffezzoli A (2013) Potential of cellulose-based superabsorbent hydrogels as water reservoir in agriculture. Int J Polym Sci 2013:435073CrossRefGoogle Scholar
  138. 138.
    Parvathy PC, Jyothi AN (2012) Water sorption kinetics of superabsorbent hydrogels of saponified cassava starch-graft-poly(acrylamide). Starch/Staerke 64:803–812CrossRefGoogle Scholar
  139. 139.
    Kulkarni AR, Soppimath KS, Aminabhavi TM, Dave AM, Mehta MH (2000) Glutaraldehyde crosslinked sodium alginate beads containing liquid pesticide for soil application. J Control Release 63:97–105PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Davidson DW, Verma MS, Gu FX (2013) Controlled root targeted delivery of fertilizer using an ionically crosslinked carboxymethyl cellulose hydrogel matrix. SpringerPlus 2:318PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Ni B, Liu M, Lü S, Lihua X, Wang Y (2011) Environmentally friendly slow-release nitrogen fertilizer. J Agric Food Chem 59:10169–10175PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Mauricio MR, Da Costa PG, Haraguchi SK, Guilherme MR, Muniz EC, Rubira AF (2015) Synthesis of a microhydrogel composite from cellulose nanowhiskers and starch for drug delivery. Carbohydr Polym 115:715–722PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Bortolin A, Aouada FA, Mattoso LH, Ribeiro C (2013) Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: evidence of synergistic effects for the slow release of fertilizers. J Agric Food Chem 61:7431–7439PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Kanellopoulos A, Giannaros P, Palmer D, Kerr A, Al-Tabba A (2017) Polymeric microcapsules with switchable mechanical properties for self-healing concrete: synthesis, characterisation and proof of concept. Smart Mater Struct 26:45025CrossRefGoogle Scholar
  145. 145.
    Wang J, Mignon A, Snoeck D, Wiktor V, Van Vliergerghe S, Boon N, De Belie N (2015) Application of modified-alginate encapsulated carbonate producing bacteria in concrete: a promising strategy for crack self-healing. Front Microbiol 6:1088PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Leyre Pérez-Álvarez
    • 1
    Email author
  • Leire Ruiz-Rubio
    • 1
    • 3
  • Erlantz Lizundia
    • 2
    • 3
  • José Luis Vilas-Vilela
    • 1
    • 3
  1. 1.Macromolecular Chemistry Group, Department of Physical ChemistryUniversity of the Basque CountryLeioaSpain
  2. 2.Department of Graphic Design and Engineering Projects, Bilbao Faculty of EngineeringUniversity of the Basque Country (UPV/EHU)BilbaoSpain
  3. 3.BCMaterials, Basque Center for Materials, Applications and NanostructuresUPV/EHU Science ParkLeioaSpain

Personalised recommendations