Advertisement

Cellulose-Based Nanosupports for Enzyme Immobilization

  • Erienne Jackson
  • Sonali Correa
  • Lorena Betancor
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)

Abstract

Integration of biocatalysts and nanoscale materials offer multiple advantages over micro-scaled heterogeneous biocatalysts. Apart from providing reusability and sustainability of the enzyme, the use of nanosupports is aimed at increasing the surface area available for biocatalyst immobilization and improving the yields in bioconversions through better biocatalyst mobility and less diffusional problems. Among many nanomaterials for enzyme immobilization, cellulose stands out as biocompatible, biodegradable, and environmentally-friendly regarding its biological source. In this chapter, we discuss the steady advancement in utilizing different nanostructured cellulosic materials for enzyme immobilization. We address the use of hybrid materials that include cellulose and improve the properties of the heterogeneous biocatalyst. The methodologies for functionalization and integration of enzymes on nanocellulose hydrogels are discussed including covalent linkage through chemical modification, entrapment, and cross-linking. We consider its applications to biomedicine, food industry, and environmental science with a special emphasis on the impact of the enzymatic properties caused after immobilization on cellulosic supports.

Keywords

Enzyme immobilization Cellulose Nanosupports Biocatalysis Nanobiotechnology 

Notes

Acknowledgments

The authors acknowledge ANII, PEDECIBA, and Universidad ORT Uruguay for providing financial support.

References

  1. 1.
    Sulaiman S, Mokhtar MN, Naim MN, Baharuddin AS, Sulaiman A (2014) A review: potential usage of cellulose nanofibers (CNF) for enzyme immobilization via covalent interactions. Appl Biochem Biotechnol 175:1817–1842.  https://doi.org/10.1007/s12010-014-1417-xCrossRefPubMedGoogle Scholar
  2. 2.
    Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzym Microb Technol 40:1451–1463.  https://doi.org/10.1016/j.enzmictec.2007.01.018CrossRefGoogle Scholar
  3. 3.
    Misson M, Zhang H, Jin B (2015) Nanobiocatalyst advancements and bioprocessing applications. J R Soc Interf 12:20140891CrossRefGoogle Scholar
  4. 4.
    Esmaeili C, Abdi MM, Mathew AP, Jonoobi M, Oksman K, Rezayi M (2015) Synergy effect of nanocrystalline cellulose for the biosensing detection of glucose. Sensors (Switzerland) 15:24681–24697.  https://doi.org/10.3390/s151024681CrossRefGoogle Scholar
  5. 5.
    Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose – its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764.  https://doi.org/10.1016/j.carbpol.2012.05.026CrossRefPubMedGoogle Scholar
  6. 6.
    Panatdasirisuk W, Vongsetskul T, Sucharitakul J, Chaiyen P, Tangboriboonrat P (2015) Functionalized electrospun regenerated cellulose fibers for immobilizing pyranose 2-oxidase. React Funct Polym 86:47–51.  https://doi.org/10.1016/j.reactfunctpolym.2014.11.008CrossRefGoogle Scholar
  7. 7.
    Sulaiman S, Mokhtar MN, Naim MN, Baharuddin AS, Salleh MAM, Sulaiman A (2015) Study on the preparation of cellulose nanofibre (CNF) from Kenaf Bast fibre for enzyme immobilization application. Sains Malaysiana 44:1541–1550Google Scholar
  8. 8.
    Park S, Kim SH, Won K, Choi JW, Kim YH, Kim HJ, Yang YH, Lee SH (2015) Wood mimetic hydrogel beads for enzyme immobilization. Carbohydr Polym 115:223–229.  https://doi.org/10.1016/j.carbpol.2014.08.096CrossRefPubMedGoogle Scholar
  9. 9.
    Karimi S, Tahir PM, Karimi A, Dufresne A, Abdulkhani A (2014) Kenaf bast cellulosic fibers hierarchy: a comprehensive approach from micro to nano. Carbohydr Polym 101:878–885.  https://doi.org/10.1016/j.carbpol.2013.09.106CrossRefPubMedGoogle Scholar
  10. 10.
    Sulaiman S, Cieh NL, Mokhtar MN, Naim MN, Kamal SMM (2017) Covalent immobilization of cyclodextrin glucanotransferase on kenaf cellulose nanofiber and its application in ultrafiltration membrane system. Process Biochem 55:85–95.  https://doi.org/10.1016/j.procbio.2017.01.025CrossRefGoogle Scholar
  11. 11.
    Pandey JK, Takagi H, Nakagaito AN, Kim HJ (2015) Handbook of polymer nanocomposites. Processing, performance and application: volume C: polymer nanocomposites of cellulose nanoparticles. In: Handb Polym nanocomposites process perform Appl Vol C Polym nanocomposites Cellul nanoparticles C: 1–511.  https://doi.org/10.1007/978-3-642-45232-1CrossRefGoogle Scholar
  12. 12.
    Shahrousvand M, Tabar FA, Shahrousvand E, Babaei A, Hasani-Sadrabadi MM, Sadeghi GMM, Jafari H, Salimi A (2017) High aspect ratio phospho-calcified rock candy-like cellulose nanowhiskers of wastepaper applicable in osteogenic differentiation of hMSCs. Carbohydr Polym 175:293–302.  https://doi.org/10.1016/j.carbpol.2017.08.001CrossRefPubMedGoogle Scholar
  13. 13.
    Kim HJ, Park S, Kim SH, Kim JH, Yu H, Kim HJ, Yang YH, Kan E, Kim YH, Lee SH (2015) Biocompatible cellulose nanocrystals as supports to immobilize lipase. J Mol Catal B Enzym 122:170–178.  https://doi.org/10.1016/j.molcatb.2015.09.007CrossRefGoogle Scholar
  14. 14.
    Uth C, Zielonka S, Hörner S, Rasche N, Plog A, Orelma H, Avrutina O, Zhang K, Kolmar H (2014) A Chemoenzymatic approach to protein immobilization onto crystalline cellulose Nanoscaffolds. Angew Chemie Int Edgl 53(46):12618–12623.  https://doi.org/10.1002/anie.201404616CrossRefGoogle Scholar
  15. 15.
    Mahmoud KA, Lam E, Hrapovic S, Luong JHT (2013) Preparation of well-dispersed gold/magnetite nanoparticles embedded on cellulose nanocrystals for efficient immobilization of papain enzyme. ACS Appl Mater Interf 5:4978–4985.  https://doi.org/10.1021/am4007534CrossRefGoogle Scholar
  16. 16.
    Pacheco G, Nogueira CR, Meneguin AB, Trovatti E, Silva MCC, Machado RTA, Ribeiro SJL, da Silva Filho EC, da S, Barud H (2017) Development and characterization of bacterial cellulose produced by cashew tree residues as alternative carbon source. Ind Crop Prod 107:13–19.  https://doi.org/10.1016/j.indcrop.2017.05.026CrossRefGoogle Scholar
  17. 17.
    Keshk SM (2014) Bacterial cellulose production and its industrial applications. J Bioprocess Biotech 4:150–160.  https://doi.org/10.4172/2155-9821.1000150CrossRefGoogle Scholar
  18. 18.
    Iris SL, Calvar L, Liu JMCJ, Cheng ADK (2013) Biosynthesis, production and applications of bacterial cellulose. Cellulose 20:2191–2219.  https://doi.org/10.1007/s10570-013-9994-3CrossRefGoogle Scholar
  19. 19.
    Sampaio LMP, Padrão J, Faria J, Silva JP, Silva CJ, Dourado F, Zille A (2016) Laccase immobilization on bacterial nanocellulose membranes: antimicrobial, kinetic and stability properties. Carbohydr Polym 145:1–12.  https://doi.org/10.1016/j.carbpol.2016.03.009CrossRefPubMedGoogle Scholar
  20. 20.
    Yan H, Chen X, Song H, Li J, Feng Y, Shi Z, Wang X, Lin Q (2017) Food hydrocolloids synthesis of bacterial cellulose and bacterial cellulose nanocrystals for their applications in the stabilization of olive oil Pickering emulsion. Food Hydrocoll 72:127–135.  https://doi.org/10.1016/j.foodhyd.2017.05.044CrossRefGoogle Scholar
  21. 21.
    Huang W, Zhan Y, Shi X, Chen J, Deng H, Du Y (2017) Controllable immobilization of naringinase on electrospun cellulose acetate nanofibers and their application to juice debittering. Int J Biol Macromol 98:630–636.  https://doi.org/10.1016/j.ijbiomac.2017.02.018CrossRefPubMedGoogle Scholar
  22. 22.
    Kang Y, Ahn Y, Lee SH, Hong JH, Ku MK, Kim H (2013) Lignocellulosic nanofiber prepared by alkali treatment and electrospinning using ionic liquid. Fibers Polym 14:530–536.  https://doi.org/10.1007/s12221-013-0530-8CrossRefGoogle Scholar
  23. 23.
    Cao S, Xu P, Ma Y, Yao X, Yao Y, Zong M, Li X, Lou W (2016) Recent advances in immobilized enzymes on nanocarriers. Cuihua Xuebao/Chinese J Catal 37:1814–1823.  https://doi.org/10.1016/S1872-2067(16)62528-7CrossRefGoogle Scholar
  24. 24.
    Sulaiman S, Mokhtar MN, Naim MN, Baharuddin AS, Sulaiman A (2015) A review: potential usage of cellulose nanofibers (CNF) for enzyme immobilization via covalent interactions. Appl Biochem Biotechnol 175:1817–1842.  https://doi.org/10.1007/s12010-014-1417-xCrossRefPubMedGoogle Scholar
  25. 25.
    Ayissi Eyebe G, Bideau B, Boubekeur N, Loranger É, Domingue F (2017) Environmentally-friendly cellulose nanofibre sheets for humidity sensing in microwave frequencies. Sensors Actuators B Chem 245:484–492.  https://doi.org/10.1016/j.snb.2017.01.130CrossRefGoogle Scholar
  26. 26.
    Barbosa O, Ortiz C, Berenguer-Murcia Á, Torres R, Rodrigues RC, Fernandez-Lafuente R (2014) Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Adv 4:1583–1600.  https://doi.org/10.1039/c3ra45991hCrossRefGoogle Scholar
  27. 27.
    Cao SL, Xu H, Li XH, Lou WY, Zong MH (2015) Papain@magnetic Nanocrystalline cellulose Nanobiocatalyst: a highly efficient biocatalyst for dipeptide biosynthesis in deep eutectic solvents. ACS Sustain Chem Eng 3:1589–1599.  https://doi.org/10.1021/acssuschemeng.5b00290CrossRefGoogle Scholar
  28. 28.
    Liu Y, Chen JY (2016) Enzyme immobilization on cellulose matrixes. J Bioact Compat Polym 31:553–567.  https://doi.org/10.1177/0883911516637377CrossRefGoogle Scholar
  29. 29.
    Karra-Châabouni M, Bouaziz I, Boufi S, Botelho Do Rego AM, Gargouri Y (2008) Physical immobilization of Rhizopus oryzae lipase onto cellulose substrate: activity and stability studies. Colloids Surfaces B Biointerfaces 66:168–177.  https://doi.org/10.1016/j.colsurfb.2008.06.010CrossRefPubMedGoogle Scholar
  30. 30.
    Huang X-J, Chen P-C, Huang F, Ou Y, Chen M-R, Xu Z-K (2011) Immobilization of Candida rugosa lipase on electrospun cellulose nanofiber membrane. J Mol Catal B Enzym 70:95–100.  https://doi.org/10.1016/j.molcatb.2011.02.010CrossRefGoogle Scholar
  31. 31.
    Yang R, Tan H, Wei F, Wang S (2008) Peroxidase conjugate of cellulose nanocrystals for the removal of chlorinated phenolic compounds in aqueous solution. Biotechnology 7:233–241.  https://doi.org/10.3923/biotech.2008.233.241CrossRefGoogle Scholar
  32. 32.
    Edwards JV, Prevost NT, Condon B, French A, Wu Q (2012) Immobilization of lysozyme-cellulose amide-linked conjugates on cellulose I and II cotton nanocrystalline preparations. Cellulose 19:495–506.  https://doi.org/10.1007/s10570-011-9637-5CrossRefGoogle Scholar
  33. 33.
    Incani V, Danumah C, Boluk Y (2013) Nanocomposites of nanocrystalline cellulose for enzyme immobilization. Cellulose 20:191–200.  https://doi.org/10.1007/s10570-012-9805-2CrossRefGoogle Scholar
  34. 34.
    Je HH, Noh S, Hong SG, Ju Y, Kim J, Hwang DS (2017) Cellulose nanofibers for magnetically-separable and highly loaded enzyme immobilization. Chem Eng J 323:425–433.  https://doi.org/10.1016/j.cej.2017.04.110CrossRefGoogle Scholar
  35. 35.
    Badgujar KC, Bhanage BM (2015) Carbohydrate base co-polymers as an efficient immobilization matrix to enhance lipase activity for potential biocatalytic applications. Carbohydr Polym 134:709–717.  https://doi.org/10.1016/j.carbpol.2015.08.036CrossRefPubMedGoogle Scholar
  36. 36.
    Kim MH, An S, Won K, Kim HJ, Lee SH (2012) Entrapment of enzymes into cellulose-biopolymer composite hydrogel beads using biocompatible ionic liquid. J Mol Catal B Enzym 75:68–72.  https://doi.org/10.1016/j.molcatb.2011.11.011CrossRefGoogle Scholar
  37. 37.
    Huang R, Deng H, Cai T, Zhan Y, Wang X, Chen X, Ji A, Li X (2014) Layer-by-layer immobilized catalase on electrospun Nanofibrous Mats protects against oxidative stress induced by hydrogen peroxide. J Biomed Nanotechnol 10:1346–1358.  https://doi.org/10.1166/jbn.2014.1802CrossRefPubMedGoogle Scholar
  38. 38.
    Uddin KMA, Orelma H, Mohammadi P, Borghei M, Laine J, Linder M, Rojas OJ (2017) Retention of lysozyme activity by physical immobilization in nanocellulose aerogels and antibacterial effects. Cellulose 24:2837–2848.  https://doi.org/10.1007/s10570-017-1311-0CrossRefGoogle Scholar
  39. 39.
    Abouhmad A, Dishisha T, Amin MA, Hatti-Kaul R (2017) Immobilization to positively charged cellulose nanocrystals enhances the antibacterial activity and stability of hen egg white and T4 lysozyme. Biomacromolecules 18:1600–1608.  https://doi.org/10.1021/acs.biomac.7b00219CrossRefPubMedGoogle Scholar
  40. 40.
    Dai G, Hu J, Zhao X, Wang P (2017) Sensors and actuators B : chemical a colorimetric paper sensor for lactate assay using a cellulose-binding recombinant enzyme. Sensors Actuators B Chem 238:138–144.  https://doi.org/10.1016/j.snb.2016.07.008CrossRefGoogle Scholar
  41. 41.
    Pesaran M, Amoabediny G (2017) Study on the stability and reusability of glutamate dehydrogenase immobilized on bacterial cellulose nanofiber. Fibers Polym 18:240–245.  https://doi.org/10.1007/s12221-017-6864-xCrossRefGoogle Scholar
  42. 42.
    Talingtaisong S, Vongsetskul T (2017) Gauze-reinforced electrospun regenerated cellulose ultrafine fibers for immobilizing bromelain. Cellulose 24:2967–2975.  https://doi.org/10.1007/s10570-017-1307-9CrossRefGoogle Scholar
  43. 43.
    Sathishkumar P, Kamala-Kannan S, Cho M, Kim JS, Hadibarata T, Salim MR, Oh BT (2014) Laccase immobilization on cellulose nanofiber: the catalytic efficiency and recyclic application for simulated dye effluent treatment. J Mol Catal B Enzym 100:111–120.  https://doi.org/10.1016/j.molcatb.2013.12.008CrossRefGoogle Scholar
  44. 44.
    Karthikeyan S, Kurt Z, Pandey G, Spain JC (2016) Immobilized biocatalyst for detection and destruction of the insensitive explosive, 2,4-Dinitroanisole (DNAN). Environ Sci Technol 50:11193–11199.  https://doi.org/10.1021/acs.est.6b03044CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Erienne Jackson
    • 1
  • Sonali Correa
    • 1
  • Lorena Betancor
    • 1
  1. 1.Laboratorio de Biotecnología, Facultad de IngenieríaUniversidad ORT UruguayMontevideoUruguay

Personalised recommendations