Advertisement

Blended Gels of Sodium Carboxymethyl Cellulose Incorporating Antimicrobials for Absorbance and Wound Healing Applications

  • Renata Nunes Oliveira
  • Garrett Brian McGuinness
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)

Abstract

Wound healing is frequently enhanced by the application of dressings which maintain a moist environment and provide for absorption of exudates. In many cases, dressings with antibacterial properties are considered beneficial, while barrier properties and mechanical integrity are also important. This chapter initially reviews the role of natural and herbal antimicrobial products including propolis, honey, and Punica granatum (pomegranate) as potential constituents for wound care biohydrogels. The applicability of a wide variety of polysaccharides, including carboxymethyl celluloses, in wound care biomaterials is then considered. Sodium carboxymethyl cellulose (NaCMC) is able to form hydrogels by chemical crosslinking. Where a combination of properties is desired, blending with other polymers may be advantageous. The chapter concludes by examining recent progress with systems that incorporate a natural antimicrobial (propolis) within blended cryogels of NaCMC and poly (vinyl alcohol). PVA and its blends can form strong and relatively stiff hydrogels by a physical crosslinking process which occurs during freeze-thawing cycles. Crystallites are formed which anchor the polymer chains, creating a polymer network that can swell in the presence of fluids or exudates. Such composite gels retain acceptable mechanical properties even when loaded with up to 30% propolis. Dressings containing 15% propolis or more were effective against S. aureus and also exhibited high fluid uptake. Hydrogels containing NaCMC therefore have significant potential to meet the requirements for an effective wound care dressing, particularly when blended with natural antimicrobials and embedded in robust hydrogel matrices such as those of PVA cryogels.

Keywords

PVA Cryogels Polysaccharides Carboxymethyl cellulose Hydrogels Wound care 

Notes

Acknowledgments

The authors would like to thank CAPES, CNPq, FAPERJ, and DCU.

References

  1. 1.
    Murphree RW (2017) Impairments in skin integrity. Nurs Clin N Am 52(1):405–417CrossRefGoogle Scholar
  2. 2.
    Campos AC, Borges-Branco A, Groth AKA (2007) Cicatrização De Feridas. Arq Bras Cir Dig 20(1):51–58CrossRefGoogle Scholar
  3. 3.
    Sorg H, Tilkorn DJ, Hager S, Hauser J, Mirastschijski U (2017) Skin wound healing: an update on the current knowledge and concepts. Eur Surg Res 58(1–2):81–94PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Guo SA, DiPietro LA (2010) Factors affecting wound healing. J Dent Res 89(3):219–229PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Li J, Chen J, Kirsner R (2007) Pathophysiology of acute wound healing. Clin Dermatol 25(1):9–18PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Schreml S, Szeimies RM, Prantl L, Karrer S, Landthaler M, Babilas P (2010) Oxygen in acute and chronic wound healing. Br J Dermatol 163(2):257–268PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Morton LM, Phillips TJ (2016) Wound healing and treating wounds – differential diagnosis and evaluation of chronic wounds. J Am Acad Dermatol 74(4):589–605PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Wichterlen O, Lim D (1960) Hydrophilic gels for biological use. Nature 185(4706):117–118CrossRefGoogle Scholar
  9. 9.
    Vowden K, Vowden P (2017) Wound dressings: principles and practice. Surgery 32(9):462–467Google Scholar
  10. 10.
    Mishra A, Chaudhary N (2010) Study of Povidone iodine loaded hydrogels as wound dressing material. Trends Biomater Artif Organs 23(3):122–128Google Scholar
  11. 11.
    Madaghiele M, Demitri C, Sannino A, Ambrosio L (2014) Polymeric hydrogels for burn wound care: advanced skin wound dressings and regenerative templates. Burns Trauma 2(4):153–161PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Sharma P, Toppo F, Pawar R (2015) Comparative studies on pure curcumin ointment and curcumin loaded transferosomes for wound healing potential. Asian J Biomater Res 1(1):23–26Google Scholar
  13. 13.
    Nagar H, Srivastava A, Srivastava R, Kurmi M, Chandel H, Ranawat M (2016) Pharmacological investigation of the wound healing activity of Cestrum nocturnum (L.) ointment in Wistar albino rats. J Pharm 2016:1–8Google Scholar
  14. 14.
    Baba J, Inabo H, Umoh V, Olayinka A (2015) Antibiotic resistance patterns of methicillin-resistant Staphylococcus aureus (MRSA) isolated from chronic skin ulcer of patients in Kaduna state, Nigeria. IOSR J Pharm 5:7–12Google Scholar
  15. 15.
    Sivamani R, Ma B, Wehrli L, Maverakis E (2012) Phytochemicals and naturally derived substances for wound healing. Adv Wound Care 1(5):213–217CrossRefGoogle Scholar
  16. 16.
    Hashemi SA, Madani SA, Abediankenari S (2015) The review on properties of Aloe vera in healing of cutaneous wounds. Biomed Res Int 2015:1–7CrossRefGoogle Scholar
  17. 17.
    Choi S, Chung MH (2003) A review on the relationship between Aloe vera components and their biologic effects. Sem Int Med 1(1):53–62CrossRefGoogle Scholar
  18. 18.
    Sachdeva K, Garg P, Singhal M, Srivastava B (2011) Wound healing potential of extract of Jatropha curcas L. (stem bark) in rats. Pharm J 3(25):67–72Google Scholar
  19. 19.
    Nascimento ED, Cesaretti ML (2011) Estudo Do Efeito Da Arnica (Arnica Montana L.) Sobre A Cicatrização De Feridas Cutâneas Em Ratos. Revista Eletrônica de Biologia 4(3):1–27Google Scholar
  20. 20.
    Wagner S, Suter A, Merfort I (2004) Skin penetration studies of Arnica preparations and of their sesquiterpene lactones. Planta Med 70(10):897–903PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Cassu RN, Collares CM, Alegre BP, Ferreira RC, Stevanin H, Bernardi CÂ (2011) Analgesic and anti-inflammatory effects of Arnica montana 12CH in comparison with ketoprofen in dogs. Ciência Rural 41(10):1784–1789CrossRefGoogle Scholar
  22. 22.
    Krishnaveni B, Neeharika V, Venkatesh S, Padmavathy R, Reddy BM (2009) Wound healing activity of Carallia brachiata bark. Indian J Pharm Sci 71(5):576–578PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Akbik D, Ghadiri M, Chrzanowski W, Rohanizadeh R (2014) Curcumin as a wound healing agent. Life Sci 116(1):1–7PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Nicolaus C, Junghanns S, Hartmann A, Murillo R, Ganzera M, Merfort I (2017) In vitro studies to evaluate the wound healing properties of Calendula officinalis extracts. J Ethnopharmacol 196:94–103PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Djemaa F, Bellassoued K, Zouari S, El Feki A, Ammar E (2016) Antioxidant and wound healing activity of Lavandula aspic L. ointment. J Tissue Viability 25(4):193–200PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Zenão S, Aires A, Dias C, Saavedra MJ, Fernandes C (2017) Antibacterial potential of Urtica dioica and Lavandula angustifolia extracts against methicillin resistant Staphylococcus aureus isolated from diabetic foot ulcers. J Herb Med 2017:1–6Google Scholar
  27. 27.
    Ma KI, Du M, Liao M, Chen S, Yin G, Liu Q, Wei Q, Qin G (2015) Evaluation of wound healing effect of Punica granatum L peel extract on deep second-degree burns in rats. Trop J Pharm Res 14(1):73–78CrossRefGoogle Scholar
  28. 28.
    Mo J, Panichayupakaranant P, Kaewnopparat N, Nitiruangjaras A, Reanmongkol W (2014) Wound healing activities of standardized pomegranate rind extract and its major antioxidant ellagic acid in rat dermal wounds. J Nat Med 68(2):377–386PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Fleck A, Cabral PF, Vieira FF, Pinheiro DA, Pereira CR, Santos WC, Machado TB (2016) Punica granatum L. hydrogel for wound care treatment: from case study to Phytomedicine standardization. Molecules 21:1–13CrossRefGoogle Scholar
  30. 30.
    Adewumi AA, Ogunjinmi AA (2011) The healing potential of honey and propolis lotion on septic wounds. Asian Pac J Trop Biomed 1(1):S55–S57CrossRefGoogle Scholar
  31. 31.
    Zeighampour F, Shams E, Naghavi NS (2014) Antibacterial activity of Propolis ethanol extract against antibiotic resistance Bacteria isolated from burn wound infections. Zahedan J Res Med Sci 16(3):25–30Google Scholar
  32. 32.
    Wojtyczka RD, Kępa M, Idzik D, Kubina R, Kabała-Dzik A, Dziedzic A, Wąsik TJ (2013) In vitro antimicrobial activity of Ethanolic extract of polish Propolis against biofilm forming Staphylococcus epidermidis strains. Evid Based Complement Alternat Med 2013:1–12CrossRefGoogle Scholar
  33. 33.
    Meo SA, Al-Asiri SA, Mahesar AL, Ansari MJ (2017) Role of honey in modern medicine. Saudi J Biol Sci 24(5):975–978PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Pereira AD, de Andrade SF, de Oliveira Swerts MS, Maistro EL (2008) First in vivo evaluation of the mutagenic effect of Brazilian green propolis by comet assay and micronucleus test. Food Chem Toxicol 46(7):2580–2584PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Deb Mandal M, Mandal S (2011) Honey: its medicinal property and antibacterial activity. Asian Pac J Trop Biomed 1(2):154–160CrossRefGoogle Scholar
  36. 36.
    McLoone P, Warnock M, Fyfe L (2016) Honey: a realistic antimicrobial for disorders of the skin. J Microbiol Immunol Infect 49(2):161–167PubMedCrossRefGoogle Scholar
  37. 37.
    Alvarez-Suarez JM, Gasparrini M, Forbes-Hernández TY, Mazzoni L, Giampieri F (2014) The composition and biological activity of honey: a focus on Manuka honey. Foods 3(3):420–432PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Roberts A, Brown H, Jenkins R (2015) On the antibacterial effects of manuka honey: mechanistic insights. Res Rep Biol 6:215–224Google Scholar
  39. 39.
    Mirzoeva OK, Grishanin RN, Calder PC (1997) Antimicrobial action of propolis and some of its components: the effects on growth, membrane potential and motility of bacteria. Microbiol Res 152(3):239–246PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Berretta AA, de Castro PA, Cavalheiro AH, Fortes VS, Bom VP, Nascimento AP, Marquele-Oliveira F, Pedrazzi V, Ramalho LN, Goldman GH (2013) Evaluation of Mucoadhesive gels with Propolis (EPP-AF) in preclinical treatment of candidiasis vulvovaginal infection. Evid Based Complement Alternat Med 2013:1–18CrossRefGoogle Scholar
  41. 41.
    Wieczynska A, Wezgowiec J, Wieckiewicz W, Czarny A, Kulbacka J, Nowakowska D, Gancarz R, Wilk K (2017) Antimicrobial activity, cytotoxicity and total phenolic content of different extracts of Propolis from the west Pomeranian region in Poland. Acta Pol Pharm 74(2):715–722PubMedPubMedCentralGoogle Scholar
  42. 42.
    Martinotti S, Ranzato E (2015) Propolis: a new frontier for wound healing? Burns Trauma 3(1):9PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Oliveira RN, Mancini MC, Oliveira FC, Passos TM, Quilty B, Thiré RM, McGuinness GB (2016) FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing. Matéria 21(3):767–779Google Scholar
  44. 44.
    Silva AJ, Silva JR, de Souza NC, Souto PC (2014) Membranes from latex with propolis for biomedical applications. Mater Lett 116:235–238CrossRefGoogle Scholar
  45. 45.
    Barud HD, de Araújo Júnior AM, Saska S, Mestieri LB, Campos JA, De Freitas RM, Ferreira NU, Nascimento AP, Miguel FG, Vaz MM, Barizon EA (2013) Antimicrobial Brazilian Propolis (EPP-AF) containing biocellulose membranes as promising biomaterial for skin wound healing. Evid Based Complement Alternat Med 2013:1–10CrossRefGoogle Scholar
  46. 46.
    Praiboon J, Chirapart A, Akakabe Y, Bhumibhamon O, Kajiwara T (2006) Physical and chemical characterization of agar polysaccharides extracted from the Thai and Japanese species of Gracilaria. Sci Asia 32(1):11–17CrossRefGoogle Scholar
  47. 47.
    Lyons JG, Geever LM, Nugent MJ, Kennedy JE, Higginbotham CL (2009) Development and characterisation of an agar – polyvinyl alcohol blend hydrogel. J Mech Behav Biomed Mater 2(5):485–493PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Araki C, Hirase S (1953) Studies on the chemical constitution of agar-agar. Exhaustive mercaptolyses of agar-agar. Bull Chem Soc Jpn 26(8):463–467CrossRefGoogle Scholar
  49. 49.
    Rinaudo M (2014) Biomaterials based on a natural polysaccharide: alginate. Rev Esp Cienc Quim Biol 17(1):92–96Google Scholar
  50. 50.
    Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Rop O, Mlcek J, Jurikova T (2009) Beta-glucans in higher fungi and their health effects. Nutr Rev 67(11):624–631PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Webber V, Carvalho SM, Ogliari PJ, Hayashi L, Barreto PL (2012) Optimization of the extraction of carrageenan from Kappaphycus alvarezii using response surface methodology. Cienc Tecnol Aliment 32(4):812–818CrossRefGoogle Scholar
  53. 53.
    Patil RT, Speaker TJ (1998) Carrageenan as an anionic polymer for aqueous microencapsulation. Drug Deliv 5(3):179–182PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Zargar V, Asghari M, Dashti A (2015) A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. Chem Bio Eng Rev 2(3):204–226Google Scholar
  55. 55.
    Novak K, Cupp MJ, Tracy TS (2003) Chitosan. In: Dietary supplements. Toxicology and Clinical Pharmacology. Humana Press, Totowa, pp 33–39Google Scholar
  56. 56.
    Martin Del Valle E (2003) Cyclodextrins and their uses: a review. Process Biochem 39(9):1033–1046CrossRefGoogle Scholar
  57. 57.
    Koepsell HJ, Tsuchiya HM, Hellman NN, Kazenko A, Hoffman CA, Sharpe ES, Jackson RW (1953) Enzymatic synthesis of dextran acceptor specificity and chain initiation. J Biol Chem 200(2):793–801PubMedPubMedCentralGoogle Scholar
  58. 58.
    Juby KA, Dwivedi C, Kumar M, Kota S, Misra HS, Bajaj PN (2012) Silver nanoparticle-loaded PVA/gum acacia hydrogel: synthesis, characterization and antibacterial study. Carbohydr Polym 89(3):906–913PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Singh B, Pal L (2011) Radiation crosslinking polymerization of sterculia polysaccharide–PVA–PVP for making hydrogel wound dressings. Int J Biol Macromol 48(3):501–510PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Liu J, Willfor S, Xu C (2015) A review of bioactive plant polysaccharides: biological activities, functionalization, and biomedical applications. Bioact Carbohydr Diet Fibre 5(1):31–61CrossRefGoogle Scholar
  61. 61.
    Mudgil D, Barak S, Khatkar BS (2014) Guar gum: processing, properties and food applications – a review. J Food Sci Technol 51(3):409–418PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Aduba DC, Yang H (2017) Polysaccharide fabrication platforms and biocompatibility assessment as candidate wound dressing materials. Bioengineering 4(1):1PubMedCentralCrossRefGoogle Scholar
  63. 63.
    Desplanques S, Renou F, Grisel M, Malhiac C (2012) Impact of chemical composition of xanthan and acacia gums on the emulsification and stability of oil-in-water emulsions. Food Hydrocoll 27(2):401–410CrossRefGoogle Scholar
  64. 64.
    Elkhalifa WA, Hassan EFA (2010) Characterization of Sterculia setigera gum (gum karaya ) in Sudan. Univ Afr J Sci 1(1):18–26Google Scholar
  65. 65.
    Alonso-Sande M, Teijeiro-Osorio D, Remuñán-López C, Alonso MJ (2009) Glucomannan, a promising polysaccharide for biopharmaceutical purposes. Eur J Pharm Biopharm 72(2):453–462PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    BeMiller JN (1986) An introduction to Pectins: structure and properties, chemistry and function of Pectins. ACS Symp Ser Am Chem Soc 310:1–11Google Scholar
  67. 67.
    Rekha MR, Sharma CP (2007) Pullulan as a promising biomaterial for biomedical applications: a perspective. Trends Biomater Artif Organs 20(2):116–121Google Scholar
  68. 68.
    Wang LZ, White PJ (1994) Structure and properties of amylose, amylopectin, and intermediate materials of oat starches. Cereal Chem 71(3):263–268Google Scholar
  69. 69.
    Copeland L, Blazek J, Salman H, Tang MC (2009) Form and functionality of starch. Food Hydrocoll 23(6):1527–1534CrossRefGoogle Scholar
  70. 70.
    Bankeeree W, Prasongsuk S, Imai T, Lotrakul P, Punnapayak H (2016) A novel xylan-polyvinyl alcohol hydrogel bead with laccase entrapment for decolorization of reactive black 5. Bioresources 11(3):6984–7000CrossRefGoogle Scholar
  71. 71.
    da Silva AE, Marcelino HR, Gomes MC, Oliveira EE, Nagashima T Jr, Egito ES (2012) Xylan, a promising hemicellulose for pharmaceutical use. In: Products and Applications of Biopolymers. InTech, Shanghai, pp 1–25Google Scholar
  72. 72.
    Chen H (2014) Chemical composition and structure of natural lignocellulose. In: Biotechnology of lignocellulose. Springer, Dordrecht, pp 25–71CrossRefGoogle Scholar
  73. 73.
    Granström M (2009) Cellulose derivatives: synthesis, properties and applications. Faculty of Science of the University of Helsinki, Helsinki, pp 1–120Google Scholar
  74. 74.
    Klemm D, Schmauder HP, Heinze T (2005) Cellulose. In: Biopolymers Online, vol 6. Wiley, Weinheim, pp 275–287Google Scholar
  75. 75.
    Saputra AH, Qadhayna L, Pitaloka AB (2014) Synthesis and characterization of carboxymethyl cellulose (CMC) from water hyacinth using ethanol-isobutyl alcohol mixture as the solvents. Int J Chem Eng Appl 5(1):36Google Scholar
  76. 76.
    Lopez CG, Rogers SE, Colby RH, Graham P, Cabral JT (2015) Structure of sodium Carboxymethyl cellulose aqueous solutions: a SANS and rheology study. J Polym Sci B 53(7):492–501CrossRefGoogle Scholar
  77. 77.
    Czaja W, Krystynowicz A, Bielecki S, Brown RM (2006) Microbial cellulose—the natural power to heal wounds. Biomaterials 27(2):145–151PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    El-Hoseny SM, Basmaji P, de Olyveira GM, Costa LM, Alwahedi AM, da C, Oliveira JD, Francozo GB (2015) Natural ECM-bacterial cellulose wound healing—Dubai study. J Biomater Nanobiotechnol 6(04):237CrossRefGoogle Scholar
  79. 79.
    Tongdeesoontorn W, Mauer LJ, Wongruong S, Sriburi P, Rachtanapun P (2011) Effect of carboxymethyl cellulose concentration on physical properties of biodegradable cassava starch-based films. Chem Cent J 5(1):1–8CrossRefGoogle Scholar
  80. 80.
    Song JK, Lee K, Park HY, Hyon JY, Oh SW, Bae WK, Han JS, Jung SY, Um YJ, Lee GH, Yang JH (2017) Efficacy of carboxymethylcellulose and hyaluronate in dry eye disease: a systematic review and meta-analysis. Korean J Fam Med 38(1):2–7PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Yeasmin MS, Mondal MI (2015) Synthesis of highly substituted carboxymethyl cellulose depending on cellulose particle size. Int J Biol Macromol 80:725–731PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Ogawa A, Nakayama S, Uehara M, Mori Y, Takahashi M, Aiba T, Kurosaki Y (2014) Pharmaceutical properties of a low-substituted hydroxypropyl cellulose (L-HPC) hydrogel as a novel external dressing. Int J Pharm 477(1):546–552PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Reeves R, Ribeiro A, Lombardo L, Boyer R, Leach JB (2010) Synthesis and characterization of carboxymethylcellulose-methacrylate hydrogel cell scaffolds. Polymers (Basel) 2(3):252–264PubMedCentralCrossRefGoogle Scholar
  84. 84.
    Laçin NT (2014) Development of biodegradable antibacterial cellulose based hydrogel membranes for wound healing. Int J Biol Macromol 67:22–27PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Liu P, Zhai M, Li J, Peng J, Wu J (2002) Radiation preparation and swelling behavior of sodium carboxymethyl cellulose hydrogels. Radiat Phys Chem 63(3):525–528CrossRefGoogle Scholar
  86. 86.
    Lee SY, Bang S, Kim S, Jo SY, Kim BC, Hwang Y, Noh I (2015) Synthesis and in vitro characterizations of porous carboxymethyl cellulose-poly(ethylene oxide) hydrogel film. Biomater Res 19(1):12PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Wang M, Xu L, Hu H, Zhai M, Peng J, Nho Y, Li J, Wei G (2007) Radiation synthesis of PVP/CMC hydrogels as wound dressing. Nucl Instr Meth Phys Res B 265(1):385–389CrossRefGoogle Scholar
  88. 88.
    Mohamad N, Buang F, Mat Lazim A, Ahmad N, Martin C, MCI A (2016) Characterization and biocompatibility evaluation of bacterial cellulose-based wound dressing hydrogel: effect of electron beam irradiation doses and concentration of acrylic acid. J Biomed Mater Res B 2016:1–12Google Scholar
  89. 89.
    Bang S, Ko YG, Kim WI, Cho D, Park WH, Kwon OH (2017) Preventing postoperative tissue adhesion using injectable carboxymethyl cellulose-pullulan hydrogels. Int J Biol Macromol 105:886–893PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Kim HJ, Jin JN, Kan E, Kim KJ, Lee SH (2017) Bacterial cellulose-chitosan composite hydrogel beads for enzyme immobilization. Biotechnol Bioprocess Eng 22(1):89–94CrossRefGoogle Scholar
  91. 91.
    Gelse K, Poschl E, Aigner T (2003) Collagens-structure, function, and biosynthesis. Adv Drug Deliv Rev 55(12):1531–1546PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Moraes PR, Saska S, Barud H, Lima LR, Martins VD, Plepis AM, Ribeiro SJ, Gaspar AM (2016) Bacterial cellulose/collagen hydrogel for wound healing. Mater Res 19(1):106–116CrossRefGoogle Scholar
  93. 93.
    Nho YC, Park JS, Lim YM (2014) Preparation of hydrogel by radiation for the healing of diabetic ulcer. Radiat Phys Chem 94:176–180CrossRefGoogle Scholar
  94. 94.
    Park JS, An SJ, Jeong SI, Gwon HJ, Lim YM, Nho YC (2017) Chestnut honey impregnated carboxymethyl cellulose hydrogel for diabetic ulcer healing. Polymers 9(7):248CrossRefGoogle Scholar
  95. 95.
    Hassan CM, Peppas NA (2000) Structure and morphology of freeze-thawed PVA hydrogels. Macromolecules 33(7):2472–2479CrossRefGoogle Scholar
  96. 96.
    Oliveira RN, Barreto L, Soares GDA (2010) Tratamento E Caracterização De Atapulgita Visando Seu Uso Em Máscaras Faciais E Para Reforço Em Compósitos Com Pva. COPPE/UFRJ, Rio de JaneiroGoogle Scholar
  97. 97.
    Kamoun EA, Chen X, Eldin MS, Kenawy ER (2015) Crosslinked poly(vinyl alcohol) hydrogels for wound dressing applications: a review of remarkably blended polymers. Arab J Chem 8(1):1–4CrossRefGoogle Scholar
  98. 98.
    Ricciardi R, Gaillet C, Ducouret G, Lafuma F, Lauprêtre F (2003) Investigation of the relationships between the chain organization and rheological properties of atactic poly(vinyl alcohol) hydrogels. Polymer 44(11):3375–3380CrossRefGoogle Scholar
  99. 99.
    Kim JO, Park JK, Kim JH, Jin SG, Yong CS, Li DX, Choi JY, Woo JS, Yoo BK, Lyoo WS, Kim JA (2008) Development of polyvinyl alcohol–sodium alginate gel-matrix-based wound dressing system containing nitrofurazone. Int J Pharm 359(1):79–86PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Pająk J, Ziemski M, Nowak B (2010) Poly(vinyl alcohol) – biodegradable vinyl material. CHEMIK 64:523–530Google Scholar
  101. 101.
    Hassan C, Peppas N (2000) Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Adv Polym Sci 153:37–65CrossRefGoogle Scholar
  102. 102.
    Mallapragada SK, Peppas NA (1996) Dissolution mechanism of semicrystalline poly(vinyl alcohol) in water. J Polym Sci B 34(7):1339–1346CrossRefGoogle Scholar
  103. 103.
    Pachekoski WM, Dalmolin C, Agnelli JA (2015) Miscibility study of PHB and PLA mixtures, using a PHB with high polydispersity. Polímeros 25(1):76–82CrossRefGoogle Scholar
  104. 104.
    Gupta A, Kumar R, Upadhyay NK, Surekha P, Roy PK (2009) Synthesis, characterization and efficacy of chemically crosslinked PVA hydrogels for dermal wound healing in experimental animals. J Appl Polym Sci 111(3):1400–1408CrossRefGoogle Scholar
  105. 105.
    Birck C, Degoutin S, Tabary N, Miri V, Bacquet M (2014) New crosslinked cast films based on poly(vinyl alcohol): preparation and physico-chemical properties. Express Polym Lett 8(12):941–952CrossRefGoogle Scholar
  106. 106.
    Nikolic VM, Krkljes A, Popovic ZK, Lausevic ZV, Miljanic SS (2007) On the use of gamma irradiation crosslinked PVA membranes in hydrogen fuel cells. Electrochem Commun 9(11):2661–2665CrossRefGoogle Scholar
  107. 107.
    Nghiep TD, Minh DTN, Cong NT (2010) Formation and characterization of a hydrophilic polymer hydrogel under gamma irradiation. J Radioanal Nucl Chem 285(3):719–721CrossRefGoogle Scholar
  108. 108.
    Mc Gann MJ, Higginbotham CL, Geever LM, Nugent MJ (2009) The synthesis of novel pH-sensitive poly(vinyl alcohol) composite hydrogels using a freeze/thaw process for biomedical applications. Int J Pharm 372(1):154–161PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Lozinsky VI, Damshkaln LG, Ezernitskaya MG, Glotova YK, Antonov YA (2012) Cryostructuring of polymer systems. Wide pore poly(vinyl alcohol) cryogels prepared using a combination of liquid–liquid phase separation and cryotropic gel-formation processes. Soft Matter 8(32):8493–8504CrossRefGoogle Scholar
  110. 110.
    Lian Z, Ye L (2013) Structure and properties of PVA/ PEO hydrogel prepared by freezing/thawing method. J Thermoplast Compos Mater 26(7):912–922CrossRefGoogle Scholar
  111. 111.
    Holloway JL, Spiller KL, Lowman AM, Palmese GR (2011) Analysis of the in vitro swelling behavior of poly(vinyl alcohol) hydrogels in osmotic pressure solution for soft tissue replacement. Acta Biomater 7(6):2477–2482PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Gonzalez JS, Alvarez VA (2011) The effect of the annealing on the poly(vinyl alcohol) obtained by freezing–thawing. Thermochim Acta 521(1):184–190CrossRefGoogle Scholar
  113. 113.
    Stauffer SR, Peppas NA (1992) Poly(vinyl alcohol) hydrogels prepared by freezing-thawing cyclic processing. Polymer 33(18):3932–3936CrossRefGoogle Scholar
  114. 114.
    Peppas NA, Scott JE (1992) Controlled release from poly(vinyl alcohol) gels prepared by freezing-thawing processes. J Control Release 18(2):95–100CrossRefGoogle Scholar
  115. 115.
    Nho YC, Lim YM, Gwon HJ, Choi EK (2009) Preparation and characterization of PVA/PVP/glycerin/antibacterial agent hydrogels using γ-irradiation followed by freeze-thawing. Korean J Chem Eng 26(6):1675–1678CrossRefGoogle Scholar
  116. 116.
    Dutta J (2012) Synthesis and characterization of γ-irradiated PVA/PEG/CaCl2 hydrogel for wound dressing. Am J Chem 2(2):6–11CrossRefGoogle Scholar
  117. 117.
    Jianqi F, Lixia G (2002) PVA/PAA thermo-crosslinking hydrogel fiber: preparation and pH-sensitive properties in electrolyte solution. Eur Polym J 38(8):1653–1658CrossRefGoogle Scholar
  118. 118.
    Yoshii F, Zhanshan Y, Isobe K, Shinozaki K, Makuuchi K (1999) Electron beam crosslinked PEO and PEO/PVA hydrogels for wound dressing. Radiat Phys Chem 55(2):133–138CrossRefGoogle Scholar
  119. 119.
    Fan L, Yang H, Yang J, Peng M, Hu J (2016) Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings. Carbohydr Polym 146:427–434PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Nunes MA, Vila-Real H, Fernandes PC, Ribeiro MH (2010) Immobilization of naringinase in PVA–alginate matrix using an innovative technique. Appl Biochem Biotechnol 160(7):2129–2147PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Kamoun EA, Kenawy ER, Tamer TM, El-Meligy MA, Eldin MS (2015) Poly (vinyl alcohol)-alginate physically crosslinked hydrogel membranes for wound dressing applications: characterization and bio-evaluation. Arab J Chem 8(1):38–47CrossRefGoogle Scholar
  122. 122.
    Huang MH, Yang MC (2008) Evaluation of glucan/poly(vinyl alcohol) blend wound dressing using rat models. Int J Pharm 346(1):38–46PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Zhang Y, Ye L, Cui M, Yang B, Li J, Sun H, Yao F (2015) Physically crosslinked poly(vinyl alcohol)–carrageenan composite hydrogels: pore structure stability and cell adhesive ability. RSC Adv 5(95):78180–78191CrossRefGoogle Scholar
  124. 124.
    Tariqul Islam M, Dafader N, Poddar P, Shahriar Khan N, Chowdhury A (2016) Studies on swelling and absorption properties of the γ-irradiated polyvinyl alcohol (PVA)/kappa-carrageenan blend hydrogels. J Adv Chem Eng 6:1–6CrossRefGoogle Scholar
  125. 125.
    El-Fawal GF, Yassin AM, El-Deeb NM (2017) The novelty in fabrication of poly vinyl alcohol/κ-carrageenan hydrogel with Lactobacillus bulgaricus extract as anti-inflammatory wound dressing agent. AAPS PharmSciTech 18(5):1605–1616PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    MHe M, ZWang Z, Cao Y, Zhao Y, Duan B, Chen Y, Xu M Zhang L (2014) Construction of chitin/PVA composite hydrogels with jellyfish gel-like structure and their biocompatibility. Biomacromolecules 15(9):3358–3365CrossRefGoogle Scholar
  127. 127.
    Yang JM, Su WY, Yang MC (2004) Evaluation of chitosan/PVA blended hydrogel membranes. J Membr Sci Technol 236(1):39–51CrossRefGoogle Scholar
  128. 128.
    Vrana NE, Liu Y, McGuinness GB, Cahill PA (2008) Characterization of poly(vinyl alcohol)/chitosan hydrogels as vascular tissue engineering scaffolds. Macromol Symp 269(1):106–110CrossRefGoogle Scholar
  129. 129.
    Das S, Subuddhi U (2014) Exploring poly(vinyl alcohol) hydrogels containing drug–cyclodextrin complexes as controlled drug delivery systems. J Appl Polym Sci 131(11):40318CrossRefGoogle Scholar
  130. 130.
    Pãduraru O-M, Vasile C, Papachia S, Grigora C, Oprea A-M (2010) Membranes based on poly(vinyl alcohol)/b-cyclodextrin blends. POLIMERY-W 55:473–478Google Scholar
  131. 131.
    Fathi E, Atyabi N, Imani M, Alinejad Z (2011) Physically crosslinked polyvinyl alcohol–dextran blend xerogels: morphology and thermal behavior. Carbohydr Polym 84(1):145–152CrossRefGoogle Scholar
  132. 132.
    Hwang MR, Kim JO, Lee JH, Kim YI, Kim JH, Chang SW, Jin SG, Kim JA, Lyoo WS, Han SS, Ku SK (2010) Gentamicin-loaded wound dressing with polyvinyl alcohol/dextran hydrogel: gel characterization and in vivo healing evaluation. AAPS PharmSciTech 11(3):1092–1103PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Fathollahiopur S, Maziarfar S, Tavakoli J (2013) Characterization and evaluation of acacia gum loaded PVA hybrid wound dressing. In: Proceedings of 20th Iranian conference on biomedical engineering, Tehran, Iran. IEEE, pp 149–154Google Scholar
  134. 134.
    Li Z, Su Y, Xie B, Liu X, Gao X, Wang D (2015) A novel biocompatible double network hydrogel consisting of konjac glucomannan with high mechanical strength and ability to be freely shaped. J Mater Chem B 3(9):1769–1778CrossRefGoogle Scholar
  135. 135.
    Coffin DR, Fishman ML, Ly TV (1996) Thermomechanical properties of blends of pectin and poly(viny alcohol). J Appl Polym Sci 61(1):71–79CrossRefGoogle Scholar
  136. 136.
    Gonzalez JS, Martínez YN, Castro GR, Alvarez VA (2016) Preparation and characterization of polyvinyl alcohol–pectin cryogels containing enrofloxacin and keratinase as potential transdermal delivery device. Adv Mater Lett 7(8):640–645CrossRefGoogle Scholar
  137. 137.
    Teramoto N, Saitoh M, Kuroiwa J, Shibata M, Yosomiya R (2001) Morphology and mechanical properties of pullulan/poly(vinyl alcohol) blends crosslinked with glyoxal. J Appl Polym Sci 82(9):2273–2280CrossRefGoogle Scholar
  138. 138.
    Parvin F, Rahman M, Islam JM, Khan MA, Saadat AH (2010) Preparation and characterization of starch/PVA blend for biodegradable packaging material. Adv Mater Res 123:351–354CrossRefGoogle Scholar
  139. 139.
    Zhai M, Yoshii F, Kume T, Hashim K (2002) Syntheses of PVA/starch grafted hydrogels by irradiation. Carbohydr Polym 50(3):295–303CrossRefGoogle Scholar
  140. 140.
    Tanodekaew S, Channasanon S, Uppanan P (2006) Xylan/polyvinyl alcohol blend and its performance as hydrogel. J Appl Polym Sci 100(3):1914–1918CrossRefGoogle Scholar
  141. 141.
    Hashim A, Husaien M, Ghazi JH, Hakim H (2013) Characterization of (polyvinyl alcohol-polyacrylamide -pomegranate peel ) Compositeso as biocomposites materials. Universal J Phys Appl 7(3):242–244Google Scholar
  142. 142.
    Oliveira RN, Paranhos da Silva CM, Moreira AP, Mendonça RH, Thiré RM, McGuinness GB (2017) Comparative analysis of PVA hydrogels incorporating two natural antimicrobials: Punica granatum and Arnica montana tinctures. J Appl Polym Sci 134(41):45392CrossRefGoogle Scholar
  143. 143.
    Park KR, Nho YC (2004) Preparation and characterization by radiation of hydrogels of PVA and PVP containing Aloe vera. J Appl Polym Sci 91(3):1612–1618CrossRefGoogle Scholar
  144. 144.
    Ghafoor B, Ali MN, Ansari U, Bhatti MF, Mir M, Akhtar H, Darakhshan F (2016) New biofunctional loading of natural antimicrobial agent in biodegradable polymeric films for biomedical applications. Int J Biomater 2016:6964938 9 pagesPubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Kanatt SR, Rao MS, Chawla SP, Sharma A (2012) Active chitosan-polyvinyl alcohol films with natural extracts. Food Hydrocoll 29(2):290–297CrossRefGoogle Scholar
  146. 146.
    El-Nashar D, Rozik N, Soliman F, Helaly F (2016) Study the release kinetics of curcumin released from PVA/curcumin composites and its evaluation towards hepatocarcinoma. J Appl Pharm Sci 6(7):67–72CrossRefGoogle Scholar
  147. 147.
    Oliveira RN, McGuinness GB, Rouze R, Quilty B, Cahill P, Soares GD, Thiré RM (2015) PVA hydrogels loaded with a Brazilian propolis for burn wound healing applications. J Appl Polym Sci 132:42129Google Scholar
  148. 148.
    Oliveira RN, McGuinness GB, Ramos ME, Kajiyama CE, Thiré RM (2016) Properties of PVA hydrogel wound-care dressings containing UK Propolis. Macromol Symp 368(1):122–127CrossRefGoogle Scholar
  149. 149.
    Tavakoli J, Tang Y (2017) Honey/PVA hybrid wound dressings with controlled release of antibiotics: structural, physico-mechanical and in-vitro biomedical studies. Mater Sci Eng C 77:318–325CrossRefGoogle Scholar
  150. 150.
    Athira GK, Jyothi AN (2015) Cassava starch-poly(vinyl alcohol) nanocomposites for the controlled delivery of curcumin in cancer prevention and treatment. Starch – Stärke 67:549–558CrossRefGoogle Scholar
  151. 151.
    Afshari MJ, Sheikh N, Afarideh H (2015) PVA/CM-chitosan/honey hydrogels prepared by using the combined technique of irradiation followed by freeze-thawing. Radiat Phys Chem 113:28–35CrossRefGoogle Scholar
  152. 152.
    Indriyati YR, Karina M (2012) Development of Nanocomposites from bacterial cellulose and poly(vinyl alcohol) using casting-drying method. Procedia Chem 4:73–79CrossRefGoogle Scholar
  153. 153.
    Stroescu M, Stoica-Guzun A, Jipa IM (2013) Vanillin release from poly(vinyl alcohol)-bacterial cellulose mono and multilayer films. J Food Eng 114(2):153–157CrossRefGoogle Scholar
  154. 154.
    Tandi A, Kaur T, Ebinesan PR, Thirugnanama A, Mondal AK (2015) Drug loaded poly(vinyl alcohol) – cellulose composite hydrogels for wound dressings. In: 8th international conference on materials for advanced technologies of the Materials Research Society of Singapore & IUMRS & 16th international conference in Asia, Suntec, Singapore, 2015Google Scholar
  155. 155.
    Gupta B, Agarwal R, Alam M (2014) Antimicrobial and release study of drug loaded PVA/PEO/CMC wound dressings. J Mater Sci Mater Med 25(6):1613–1622PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Pereira P, Andrade C (2016) Preparing cellulose/poly(vinyl alcohol)/curcumin blends using an ionic liquid. In: XXV congresso Brasileiro de Ciência e Tecnologia de Alimentos (CBCTA) / 10° simpósio internacional de Alimentos da CIGR (Comissão Internacional de Engenharia Agrícola e de Alimentos), Gramado/RSGoogle Scholar
  157. 157.
    Saeed SM, Mirzadeh H, Zandi M, Barzin J (2017) Designing and fabrication of curcumin loaded PCL/PVA multi-layer nanofibrous electrospun structures as active wound dressing. Prog Biomater 6:39–48PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Oliveira RN, Moreira AP, Thiré RM, Quilty B, Passos TM, Simon P, Mancini MC, McGuinness GB (2017) Absorbent polyvinyl alcohol–sodium carboxymethyl cellulose hydrogels for propolis delivery in wound healing applications. Polym Eng Sci 57(11):1224–1233Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Renata Nunes Oliveira
    • 1
  • Garrett Brian McGuinness
    • 2
  1. 1.Chemical Engineering Post-Graduation Program – PPGEQFederal Rural University of Rio de Janeiro (UFRRJ)Rio de JaneiroBrazil
  2. 2.Centre for Medical Engineering Research, School of Mechanical and Manufacturing EngineeringDublin City UniversityDublinIreland

Personalised recommendations