Cellulose-Based Absorbents for Oil Contaminant Removal

  • Wang LiaoEmail author
  • Yu-Zhong Wang
Living reference work entry

Later version available View entry history

Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)


With the rapidly increasing exploitation, transportation, and utilization of fossil oils, oil spillage accidents occur frequently worldwide. Oil pollution can lead to a serious loss of valuable resources on coastal and marine ecosystems during a long period. Besides, industrial waste oil may have a broad impact on city ecological environments and human health. It is thus urgently required to solve oil pollution efficiently. Generally, current strategies are classified into three groups: (1) burning the oil spill in situ, (2) dispersing the oil in water by adding dispersants to facilitate nature degradation, and (3) extracting the oil from the water. The last method seems the “greenest” because both the absorbent and the oil can be recycled. Among the absorbents, cellulose-based absorbents are the first choices due to their environmental friendliness of renewability and biodegradability, good mechanical properties, low density, high porosity, high absorption capacity, and cost-effectiveness. In this chapter, we intend to demonstrate the following aspects of cellulose-based absorbents, including (1) raw materials: properties and pretreatments, (2) fabrication of the various absorbents, (3) characterization of the structure and properties, (4) cellulose-related absorbents and other applications, and (5) discussions and future scope. This work aims to draw a full outline of the cellulose absorbents to date and to promote the understanding and developing of these materials in the future.


Cellulose Aerogel Absorbent Absorption Oil Hydrophobic 



The authors appreciate the financial support from the National Natural Science Foundation of China (Grants 51603130); the Key Science Project of Department of Education, Sichuan Province (No. 16ZA0004); and the International Clean Energy Talent 2017 of China Scholarship Council.


  1. 1.
    Sabir S (2015) Approach of cost-effective adsorbents for oil removal from oily water. Crit Rev Environ Sci Tech 45:1916–1945CrossRefGoogle Scholar
  2. 2.
    Dalton T, Jin D (2010) Extent and frequency of vessel oil spills in US marine protected areas. Mar Pollut Bull 60:1939–1945PubMedCrossRefGoogle Scholar
  3. 3.
    Peterson CH, Rice SD, Short JW, Esler D, Bodkin JL, Ballachey BE, Irons DB (2003) Long-term ecosystem response to the Exxon Valdez oil spill. Science 302:2082–2086PubMedCrossRefGoogle Scholar
  4. 4.
    Syed S, Alhazzaa MI, Asif M (2011) Treatment of oily water using hydrophobic nano-silica. Chem Eng J 167:99–103CrossRefGoogle Scholar
  5. 5.
    Santander M, Rodrigues RT, Rubio J (2011) Modified jet flotation in oil (petroleum) emulsion/water separations. Colloid Surf A 375:237–244CrossRefGoogle Scholar
  6. 6.
    Cambiella A, Ortea E, Rios G, Benito JM, Pazos C, Coca J (2006) Treatment of oil-in-water emulsions: performance of a sawdust bed filter. J Hazard Mater 131:195–199PubMedCrossRefGoogle Scholar
  7. 7.
    Angelova D, Uzunov I, Uzunova S, Gigova A, Minchev L (2011) Kinetics of oil and oil products adsorption by carbonized rice husks. Chem Eng J 172:306–311CrossRefGoogle Scholar
  8. 8.
    Bayat A, Aghamiri SF, Moheb A, Vakili-Nezhaad GR (2005) Oil spill cleanup from sea water by sorbent materials. Chem Eng Technol 28:1525–1528CrossRefGoogle Scholar
  9. 9.
    Dong X, Chen J, Ma Y, Wang J, Chan-Park MB, Liu X, Wang L, Huang W, Chen P (2012) Superhydrophobic and superoleophilic hybrid foam of graphene and carbon nanotube for selective removal of oils or organic solvents from the surface of water. Chem Commun 48:10660–10662CrossRefGoogle Scholar
  10. 10.
    Bi H, Xie X, Yin K, Zhou Y, Wan S, He L, Xu F, Banhart F, Sun L, Ruoff RS (2012) Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv Funct Mater 22:4421–4425CrossRefGoogle Scholar
  11. 11.
    Yang Y, Tong Z, Ngai T, Wang C (2014) Nitrogen-rich and fire-resistant carbon aerogels for the removal of oil contaminants from water. ACS Appl Mater Interfaces 6:6351–6360PubMedCrossRefGoogle Scholar
  12. 12.
    Wu ZY, Li C, Liang HW, Chen JF, Yu SH (2013) Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. Angew Chem Int Ed 52:2925–2929CrossRefGoogle Scholar
  13. 13.
    Gui X, Li H, Wang K, Wei J, Jia Y, Li Z, Fan L, Cao A, Zhu H, Wu D (2011) Recyclable carbon nanotube sponges for oil absorption. Acta Mater 59:4798–4804CrossRefGoogle Scholar
  14. 14.
    Liu H, Geng B, Chen Y, Wang H (2017) Review on the aerogel-type oil sorbents derived from Nanocellulose. ACS Sustain Chem Eng 5:49–66CrossRefGoogle Scholar
  15. 15.
    Liao CY, Chiou JY, Lin JJ (2015) Temperature-dependent oil absorption of poly(oxypropylene)amine-intercalated clays for environmental remediation. RSC Adv 5:100702–100708CrossRefGoogle Scholar
  16. 16.
    Carmody O, Frost R, Xi Y, Kokot S (2007) Adsorption of hydrocarbons on organo-clays – implications for oil spill remediation. J Colloid Interface Sci 305:17–24PubMedCrossRefGoogle Scholar
  17. 17.
    Zadaka-Amir D, Bleiman N, Mishael YG (2013) Sepiolite as an effective natural porous adsorbent for surface oil-spill. Microporous Mesoporous Mater 169:153–159CrossRefGoogle Scholar
  18. 18.
    Karakasi OK, Moutsatsou A (2010) Surface modification of high calcium fly ash for its application in oil spill clean up. Fuel 89:3966–3970CrossRefGoogle Scholar
  19. 19.
    Teas C, Kalligeros S, Zanikos F, Stournas S, Lois E, Anastopoulos G (2001) Investigation of the effectiveness of absorbent materials in oil spills clean up. Desalination 140:259–264CrossRefGoogle Scholar
  20. 20.
    Annunciado TR, Sydenstricker TH, Amico SC (2005) Experimental investigation of various vegetable fibers as sorbent materials for oil spills. Mar Pollut Bull 50:1340–1346PubMedCrossRefGoogle Scholar
  21. 21.
    Deschamps G, Caruel H, Borredon ME, Bonnin C, Vignoles C (2003) Oil removal from water by selective sorption on hydrophobic cotton fibers. 1. Study of sorption properties and comparison with other cotton fiber-based sorbents. Environ Sci Technol 37:1013–1015PubMedCrossRefGoogle Scholar
  22. 22.
    Sun XF, Sun RC, Sun JX (2002) Acetylation of rice straw with or without catalysts and its characterization as a natural sorbent in oil spill cleanup. J Agric Food Chem 50:6428–6433PubMedCrossRefGoogle Scholar
  23. 23.
    Yu S, Tan H, Wang J, Liu X, Zhou K (2015) High porosity Supermacroporous polystyrene materials with excellent oil-water separation and gas permeability properties. ACS Appl Mater Interfaces 7:6745–6753PubMedCrossRefGoogle Scholar
  24. 24.
    Lin J, Tian F, Shang Y, Wang F, Ding B, Yu J, Guo Z (2013) Co-axial electrospun polystyrene/polyurethane fibres for oil collection from water surface. Nanoscale 5:2745–2755PubMedCrossRefGoogle Scholar
  25. 25.
    Wu D, Wu W, Yu Z, Zhang C, Zhu H (2014) Facile preparation and characterization of modified polyurethane sponge for oil absorption. Ind Eng Chem Res 53:20139–20144CrossRefGoogle Scholar
  26. 26.
    Zhu Q, Chu Y, Wang Z, Chen N, Lin L, Liu F, Pan Q (2013) Robust superhydrophobic polyurethane sponge as a highly reusable oil-absorption material. J Mater Chem A 1:5386–5393CrossRefGoogle Scholar
  27. 27.
    Hayase G, Kanamori K, Fukuchi M, Kaji H, Nakanishi K (2013) Facile synthesis of marshmallow-like macroporous gels usable under harsh conditions for the separation of oil and water. Angew Chem Int Ed 52:1986–1989CrossRefGoogle Scholar
  28. 28.
    Choi SJ, Kwon TH, Im H, Moon DI, Baek DJ, Seol ML, Duarte JP, Choi YK (2011) A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water. ACS Appl Mater Interfaces 3:4552–4556PubMedCrossRefGoogle Scholar
  29. 29.
    Ruan C, Ai K, Li X, Lu L (2014) A Superhydrophobic sponge with excellent absorbency and flame Retardancy. Angew Chem Int Ed 53:5556–5560CrossRefGoogle Scholar
  30. 30.
    Gao Y, Zhou YS, Xiong W, Wang M, Fan L, Rabiee-Golgir H, Jiang L, Hou W, Huang X, Jiang L, Silvain JF, Lu YF (2014) Highly efficient and recyclable carbon soot sponge for oil cleanup. ACS Appl Mater Interfaces 6:5924–5929PubMedCrossRefGoogle Scholar
  31. 31.
    Wei QF, Mather RR, Fotheringham AF, Yang RD (2003) Evaluation of nonwoven polypropylene oil sorbents in marine oil-spill recovery. Mar Pollut Bull 46:780–783PubMedCrossRefGoogle Scholar
  32. 32.
    Karakutuk I, Okay O (2010) Macroporous rubber gels as reusable sorbents for the removal of oil from surface waters. React Funct Polym 70:585–595CrossRefGoogle Scholar
  33. 33.
    Liang HW, Guan QF, Chen LF, Zhu Z, Zhang WJ, Yu SH (2012) Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications. Angew Chem Int Ed 51:5101–5105CrossRefGoogle Scholar
  34. 34.
    Wu T, Chen M, Zhang L, Xu X, Liu Y, Yan J, Wang W, Gao J (2013) Three-dimensional graphene-based aerogels prepared by a self-assembly process and its excellent catalytic and absorbing performance. J Mater Chem A 1:7612–7621CrossRefGoogle Scholar
  35. 35.
    Duc Dung N, Tai NH, Lee SB, Kuo WS (2012) Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method. Energy Environ Sci 5:7908–7912CrossRefGoogle Scholar
  36. 36.
    Zhao Y, Hu C, Hu Y, Cheng H, Shi G, Qu L (2012) A versatile, ultralight, nitrogen-doped graphene framework. Angew Chem Int Ed 51:11371–11375CrossRefGoogle Scholar
  37. 37.
    Wang Y, Yadav S, Heinlein T, Konjik V, Breitzke H, Buntkowsky G, Schneider JJ, Zhang K (2014) Ultra-light nanocomposite aerogels of bacterial cellulose and reduced graphene oxide for specific absorption and separation of organic liquids. RSC Adv 4:21553–21558CrossRefGoogle Scholar
  38. 38.
    Gui X, Wei J, Wang K, Cao A, Zhu H, Jia Y, Shu Q, Wu D (2010) Carbon nanotube sponges. Adv Mater 22:617PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Zheng Q, Cai Z, Gong S (2014) Green synthesis of polyvinyl alcohol (PVA)-cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents. J Mater Chem A 2:3110–3118CrossRefGoogle Scholar
  40. 40.
    Korhonen JT, Kettunen M, Ras RH, Ikkala O (2011) Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl Mater Interfaces 3:1813–1816PubMedCrossRefGoogle Scholar
  41. 41.
    Sai H, Fu R, Xing L, Xiang J, Li Z, Li F, Zhang T (2015) Surface modification of bacterial cellulose Aerogels' web-like skeleton for oil/water separation. ACS Appl Mater Interfaces 7:7373–7381PubMedCrossRefGoogle Scholar
  42. 42.
    Zhang Z, Sebe G, Rentsch D, Zimmermann T, Tingaut P (2014) Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem Mater 26:2659–2668CrossRefGoogle Scholar
  43. 43.
    Jiang F, Hsieh YL (2014) Amphiphilic superabsorbent cellulose nanofibril aerogels. J Mater Chem A 2:6337–6342CrossRefGoogle Scholar
  44. 44.
    Xiao S, Gao R, Lu Y, Li J, Sun Q (2015) Fabrication and characterization of nanofibrillated cellulose and its aerogels from natural pine needles. Carbohydr Polym 119:202–209PubMedCrossRefGoogle Scholar
  45. 45.
    Wang S, Peng X, Zhong L, Tan J, Jing S, Cao X, Chen W, Liu C, Sun R (2015) An ultralight, elastic, cost-effective, and highly recyclable superabsorbent from microfibrillated cellulose fibers for oil spillage cleanup. J Mater Chem A 3:8772–8781CrossRefGoogle Scholar
  46. 46.
    Duan B, Gao H, He M, Zhang L (2014) Hydrophobic modification on surface of chitin sponges for highly effective separation of oil. ACS Appl Mater Interfaces 6:19933–19942PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Toyoda M, Aizawa J, Inagaki M (1998) Sorption and recovery of heavy oil by using exfoliated graphite. Desalination 115:199–201CrossRefGoogle Scholar
  48. 48.
    Mikhalchan A, Fan Z, Tran TQ, Liu P, Tan VB, Tay TE, Duong HM (2016) Continuous and scalable fabrication and multifunctional properties of carbon nanotube aerogels from the floating catalyst method. Carbon 102:409–418CrossRefGoogle Scholar
  49. 49.
    Singh V, Jinka S, Hake K, Parameswaran S, Kendall RJ, Ramkumar S (2014) Novel natural sorbent for oil spill cleanup. Ind Eng Chem Res 53:11954–11961CrossRefGoogle Scholar
  50. 50.
    Wang J, Zheng Y, Wang A (2012) Effect of kapok fiber treated with various solvents on oil absorbency. Ind Crop Prod 40:178–184CrossRefGoogle Scholar
  51. 51.
    Ali N, El-Harbawi M, Jabal AA, Yin CY (2012) Characteristics and oil sorption effectiveness of kapok fibre, sugarcane bagasse and rice husks: oil removal suitability matrix. Environ Technol 33:481–486PubMedCrossRefGoogle Scholar
  52. 52.
    Ibrahim S, Ang HM, Wang S (2009) Removal of emulsified food and mineral oils from wastewater using surfactant modified barley straw. Bioresour Technol 100:5744–5749PubMedCrossRefGoogle Scholar
  53. 53.
    Khan E, Virojnagud W, Ratpukdi T (2004) Use of biomass sorbents for oil removal from gas station runoff. Chemosphere 57:681–689PubMedCrossRefGoogle Scholar
  54. 54.
    Lim TT, Huang X (2006) In situ oil/water separation using hydrophobic-oleophilic fibrous wall: a lab-scale feasibility study for groundwater cleanup. J Hazard Mater 137:820–826PubMedCrossRefGoogle Scholar
  55. 55.
    Tansel B, Sevimoglu O (2006) Coalescence and size distribution characteristics of oil droplets attached on flocs after coagulation. Water Air Soil Pollut 169:293–302CrossRefGoogle Scholar
  56. 56.
    Pasila A (2004) A biological oil adsorption filter. Mar Pollut Bull 49:1006–1012PubMedCrossRefGoogle Scholar
  57. 57.
    Rengasamy RS, Das D, Karan CP (2011) Study of oil sorption behavior of filled and structured fiber assemblies made from polypropylene, kapok and milkweed fibers. J Hazard Mater 186:526–532PubMedCrossRefGoogle Scholar
  58. 58.
    Wahi R, Chuah LA, Choong TS, Ngaini Z, Nourouzi MM (2013) Oil removal from aqueous state by natural fibrous sorbent: an overview. Sep Purif Technol 113:51–63CrossRefGoogle Scholar
  59. 59.
    Nakagaito AN, Kondo H, Takagi H (2013) Cellulose nanofiber aerogel production and applications. J Reinf Plast Compos 32:1547–1552CrossRefGoogle Scholar
  60. 60.
    Innerlohinger J, Weber HK, Kraft G (2006) Aerocellulose: aerogels and aerogel-like materials made from cellulose. Macromol Symp 244:126–135CrossRefGoogle Scholar
  61. 61.
    Cai J, Kimura S, Wada M, Kuga S, Zhang L (2008) Cellulose aerogels from aqueous alkali hydroxide-urea solution. Chem Sus Chem 1:149–154CrossRefGoogle Scholar
  62. 62.
    Gavillon R, Budtova T (2008) Aerocellulose: new highly porous cellulose prepared from cellulose-NaOH aqueous solutions. Biomacromolecules 9:269–277PubMedCrossRefGoogle Scholar
  63. 63.
    Pinnow M, Fink HP, Fanter C, Kinize J (2008) Characterization of highly porous materials from cellulose carbamate. Macromol Symp 262:129–139CrossRefGoogle Scholar
  64. 64.
    Osullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207CrossRefGoogle Scholar
  65. 65.
    Samir M, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626CrossRefGoogle Scholar
  66. 66.
    Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55:241–249CrossRefGoogle Scholar
  67. 67.
    Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Postek MT, Vladar A, Dagata J, Farkas N, Ming B, Wagner R, Raman A, Moon RJ, Sabo R, Wegner TH, Beecher J (2011) Development of the metrology and imaging of cellulose nanocrystals. Meas Sci Technol 22:024005CrossRefGoogle Scholar
  70. 70.
    Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRefGoogle Scholar
  71. 71.
    Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466CrossRefGoogle Scholar
  72. 72.
    Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227CrossRefGoogle Scholar
  73. 73.
    Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85PubMedCrossRefGoogle Scholar
  74. 74.
    Hudson SM, Cuculo JA (1980) The solubility of cellulose in liquid ammonia-salt solutions. J Polym Sci Part A 18:3469–3481Google Scholar
  75. 75.
    Hattori K, Cuculo JA, Hudson SM (2002) New solvents for cellulose: hydrazine/thiocyanate salt system. J Polym Sci Part A 40:601–611CrossRefGoogle Scholar
  76. 76.
    Dawsey TR, McCormick CL (1990) The lithium chloride/dimethylacetamide solvent for cellulose – a literature-review. J Macromol Sci Rev Macromol Chem Phys C30:405–440CrossRefGoogle Scholar
  77. 77.
    McCormick CL, Shen TC (1981) A new cellulose solvent for preparing derivatives under homogeneous conditions. Abstr Pap Am Chem Soc 182:63Google Scholar
  78. 78.
    Chanzy H, Paillet M, Peguy A (1986) Spinning of exploded wood from amine oxide solutions. Polym Comm 27:171–172Google Scholar
  79. 79.
    Jin H, Nishiyama Y, Wada M, Kuga S (2004) Nanofibrillar cellulose aerogels. Colloid Surf A 240:63–67CrossRefGoogle Scholar
  80. 80.
    Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindstrom T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941PubMedCrossRefGoogle Scholar
  81. 81.
    Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278PubMedCrossRefGoogle Scholar
  82. 82.
    Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491PubMedCrossRefGoogle Scholar
  83. 83.
    Paakko M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindstrom T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4:2492–2499CrossRefGoogle Scholar
  84. 84.
    Korhonen JT, Hiekkataipale P, Malm J, Karppinen M, Ikkala O, Ras RH (2011) Inorganic hollow nanotube aerogels by atomic layer deposition onto native Nanocellulose templates. ACS Nano 5:1967–1974PubMedCrossRefGoogle Scholar
  85. 85.
    Okita Y, Saito T, Isogai A (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules 11:1696–1700PubMedCrossRefGoogle Scholar
  86. 86.
    Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84:975–983CrossRefGoogle Scholar
  87. 87.
    Heath L, Thielemans W (2010) Cellulose nanowhisker aerogels. Green Chem 12:1448–1453CrossRefGoogle Scholar
  88. 88.
    Stamm AJ, Tarkow H (1950) Penetration of cellulose fibers. J Phys Colloid Chem 54:745–753PubMedCrossRefGoogle Scholar
  89. 89.
    Tan CB, Fung BM, Newman JK, Vu C (2001) Organic aerogels with very high impact strength. Adv Mater 13:644–646CrossRefGoogle Scholar
  90. 90.
    Fischer F, Rigacci A, Pirard R, Berthon-Fabry S, Achard P (2006) Cellulose-based aerogels. Polymer 47:7636–7645CrossRefGoogle Scholar
  91. 91.
    Granstrom M, Paakko MK, Jin H, Kolehmainen E, Kilpelainen I, Ikkala O (2011) Highly water repellent aerogels based on cellulose stearoyl esters. Polym Chem 2:1789–1796CrossRefGoogle Scholar
  92. 92.
    Cai J, Liu S, Feng J, Kimura S, Wada M, Kuga S, Zhang L (2012) Cellulose-silica nanocomposite aerogels by in situ formation of silica in cellulose gel. Angew Chem Int Ed 51:2076–2079CrossRefGoogle Scholar
  93. 93.
    Zhang J, Cao Y, Feng J, Wu P (2012) Graphene-oxide-sheet-induced gelation of cellulose and promoted mechanical properties of composite aerogels. J Phys Chem C 116:8063–8068CrossRefGoogle Scholar
  94. 94.
    Sescousse R, Gavillon R, Budtova T (2011) Aerocellulose from cellulose-ionic liquid solutions: preparation, properties and comparison with cellulose-NaOH and cellulose-NMMO routes. Carbohydr Polym 83:1766–1774CrossRefGoogle Scholar
  95. 95.
    Aaltonen O, Jauhiainen O (2009) The preparation of lignocellulosic aerogels from ionic liquid solutions. Carbohydr Polym 75:125–129CrossRefGoogle Scholar
  96. 96.
    Hoepfner S, Ratke L, Milow B (2008) Synthesis and characterisation of nanofibrillar cellulose aerogels. Cellulose 15:121–129CrossRefGoogle Scholar
  97. 97.
    Duchemin BJ, Staiger MP, Tucker N, Newman RH (2010) Aerocellulose based on all-cellulose composites. J Appl Polym Sci 115:216–221CrossRefGoogle Scholar
  98. 98.
    Nguyen ST, Feng J, Ng SK, Wong JP, Tan VB, Duong HM (2014) Advanced thermal insulation and absorption properties of recycled cellulose aerogels. Colloid Surf A 445:128–134CrossRefGoogle Scholar
  99. 99.
    Wan C, Lu Y, Cao J, Sun Q, Li J (2015) Preparation, characterization and oil adsorption properties of cellulose aerogels from four kinds of plant materials via a NaOH/PEG aqueous solution. Fibers Polym 16:302–307CrossRefGoogle Scholar
  100. 100.
    Nguyen ST, Feng J, Le NT, Le AT, Nguyen H, Tan VB, Duong HM (2013) Cellulose aerogel from paper waste for crude oil spill cleaning. Ind Eng Chem Res 52:18386–18391CrossRefGoogle Scholar
  101. 101.
    Feng J, Nguyen ST, Fan Z, Duong HM (2015) Advanced fabrication and oil absorption properties of super-hydrophobic recycled cellulose aerogels. Chem Eng J 270:168–175CrossRefGoogle Scholar
  102. 102.
    Meng Y, Young TM, Liu P, Contescu CI, Huang B, Wang S (2015) Ultralight carbon aerogel from nanocellulose as a highly selective oil absorption material. Cellulose 22:435–447CrossRefGoogle Scholar
  103. 103.
    Kobayashi Y, Saito T, Isogai A (2014) Aerogels with 3D ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators. Angew Chem Int Ed 53:10394–10397CrossRefGoogle Scholar
  104. 104.
    Sehaqui H, Zhou Q, Berglund LA (2011) High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Compos Sci Technol 71:1593–1599CrossRefGoogle Scholar
  105. 105.
    Russler A, Wieland M, Bacher M, Henniges U, Miethe P, Liebner F, Potthast A, Rosenau T (2012) AKD-modification of bacterial cellulose aerogels in supercritical CO2. Cellulose 19:1337–1349CrossRefGoogle Scholar
  106. 106.
    Fumagalli M, Ouhab D, Boisseau SM, Heux L (2013) Versatile gas-phase reactions for surface to bulk esterification of cellulose microfibrils aerogels. Biomacromolecules 14:3246–3255PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Inoue T, Osatake H (1988) A new drying method of biological specimens for scanning electron-microscopy – the tert-butyl alcohol freeze-drying method. Arch Histol Cytol 51:53–59PubMedCrossRefGoogle Scholar
  108. 108.
    Ishida O, Kim DY, Kuga S, Nishiyama Y, Brown RM (2004) Microfibrillar carbon from native cellulose. Cellulose 11:475–480CrossRefGoogle Scholar
  109. 109.
    Nemoto J, Saito T, Isogai A (2015) Simple freeze-drying procedure for producing Nanocellulose aerogel-containing, high-performance air filters. ACS Appl Mater Interfaces 7:19809–19815PubMedCrossRefGoogle Scholar
  110. 110.
    Xue CH, Jia ST, Zhang J, Ma JZ (2010) Large-area fabrication of superhydrophobic surfaces for practical applications: an overview. Sci Technol Adv Mater 11(3):033002., 15 p. Scholar
  111. 111.
    Cervin NT, Aulin C, Larsson PT, Wagberg L (2012) Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 19:401–410CrossRefGoogle Scholar
  112. 112.
    Lindman B, Karlstrom G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81CrossRefGoogle Scholar
  113. 113.
    Rein DM, Khalfin R, Cohen Y (2012) Cellulose as a novel amphiphilic coating for oil-in-water and water-in-oil dispersions. J Colloid Interface Sci 386:456–463PubMedCrossRefGoogle Scholar
  114. 114.
    Wang J, Zheng Y, Wang A (2013) Coated kapok fiber for removal of spilled oil. Mar Pollut Bull 69:91–96PubMedCrossRefGoogle Scholar
  115. 115.
    Choi HM, Cloud RM (1992) Natural sorbents in oil-spill cleanup. Environ Sci Technol 26:772–776CrossRefGoogle Scholar
  116. 116.
    Wang J, Zhao D, Shang K, Wang YT, Ye DD, Kang AH, Liao W, Wang YZ (2016) Ultrasoft gelatin aerogels for oil contaminant removal. J Mater Chem A 4:9381–9389CrossRefGoogle Scholar
  117. 117.
    Sharma P, Saikia BK, Das MR (2014) Removal of methyl green dye molecule from aqueous system using reduced graphene oxide as an efficient adsorbent: kinetics, isotherm and thermodynamic parameters. Colloid Surf A 457:125–133CrossRefGoogle Scholar
  118. 118.
    Vargas AM, Cazetta AL, Kunita MH, Silva TL, Almeida VC (2011) Adsorption of methylene blue on activated carbon produced from flamboyant pods (Delonix regia): study of adsorption isotherms and kinetic models. Chem Eng J 168:722–730CrossRefGoogle Scholar
  119. 119.
    Chen Y, Zhang D (2014) Adsorption kinetics, isotherm and thermodynamics studies of flavones from Vaccinium Bracteatum Thunb leaves on NKA-2 resin. Chem Eng J 254:579–585CrossRefGoogle Scholar
  120. 120.
    Bastani D, Safekordi AA, Alihosseini A, Taghikhani V (2006) Study of oil sorption by expanded perlite at 298.15 K. Sep Purif Technol 52:295–300CrossRefGoogle Scholar
  121. 121.
    Sokker HH, El-Sawy NM, Hassan MA, El-Anadouli BE (2011) Adsorption of crude oil from aqueous solution by hydrogel of chitosan based polyacrylamide prepared by radiation induced graft polymerization. J Hazard Mater 190:359–365PubMedCrossRefGoogle Scholar
  122. 122.
    Wu D, Fu R (2008) Requirements of organic gels for a successful ambient pressure drying preparation of carbon aerogels. J Porous Mater 15:29–34CrossRefGoogle Scholar
  123. 123.
    Pekala RW (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24:3221–3227CrossRefGoogle Scholar
  124. 124.
    Wu DC, Fu RW, Zhang ST, Dresselhaus MS, Dresselhaus G (2004) Preparation of low-density carbon aerogels by ambient pressure drying. Carbon 42:2033–2039CrossRefGoogle Scholar
  125. 125.
    Fu RW, Zheng B, Liu J, Dresselhaus MS, Dresselhaus G, Satcher JH, Baumann TE (2003) The fabrication and characterization of carbon aerogels by gelation and supercritical drying in isopropanol. Adv Funct Mater 13:558–562CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Degradable and Flame-Retardant Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of ChemistrySichuan UniversityChengduChina
  2. 2.School of Science, Innovation and Entrepreneurship CollegeXihua UniversityChengduChina

Personalised recommendations