Characterization Techniques of Hydrogel and Its Applications

  • M. Azeera
  • S. Vaidevi
  • K. RuckmaniEmail author
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)


Over the past few decades, advances in hydrogel technologies have spurred development in the personal care products and medical, pharmaceutical, and agricultural field aspects due to their unique biocompatibility, flexible methods of synthesis, range of constituents, and desirable physical characteristics. Hydrogels are hydrophilic, three-dimensional hydrophilic polymeric networks, capable of absorbing large quantities of water, biological fluids and simulating biological tissue when they get swollen due to chemical or physical cross-linking of individual polymer chains. Hydrogels are characterized by the nature of their constituent polymers, making them synthetic, natural, or hybrid. The use of natural polymers in hydrogel synthesis is advantageous in biomedical applications due to their biodegradability and nontoxicity, whereas synthetic polymers are hydrophobic, possessing strong covalent bonds within their matrix, which allow for more durability and mechanical strength. In order to design hydrogels with the desired performance and structure, characterization of hydrogel requires different tools and techniques that includes swelling, sol-gel analysis, differential scanning calorimetry, thermal gravimetric analysis, X-ray diffraction analysis, gel permeation chromatography, atomic force microscopy, and scanning electron microscopy. In this chapter, we focused and discussed about the properties, preparation methods, characterization techniques, and their most significant and current biomedical applications of hydrogels with the patents.


Hydrogel Polymeric cross-linking Biocompatibility Swelling Sol-gel 



The authors wish to acknowledge the DST-sponsored National Facility for Drug Development (VI-D&P/349/10-11/TDT/1), Nanomission program of the Department of Science and Technology (DST), Ministry of Science and Technology of India (DST/SR/NM/NS-19/2009), and Technical Education Quality Improvement Programme (TEQIP-PHASE II) for their support in this work.


  1. 1.
    Nilimanka D (2013) Preparation methods and properties of hydrogel: a review. Int J Pharm Pharm Sci 5:112–117Google Scholar
  2. 2.
    Buwalda S, Boere JK, Dijksra P, Fiejen J, Vermoden T, Hennink W (2014) Hydrogels in an Historial perspective: from simple networks to smart materials. J Control Release 190:254–273CrossRefPubMedGoogle Scholar
  3. 3.
    Wang T, Chen L, Shen T, Wu D (2016) Preparation and properties of a novel thermosensitive hydrogel based on chitosan/hydroxypropylmethylcellulose/glycerol. Int J Biol Macromol 93:775–782CrossRefPubMedGoogle Scholar
  4. 4.
    Haque MDA, Kurokawa T, Gong JP (2012) Super tough double network hydrogels and their application as biomaterials. Polymer 53(9):1805–1822CrossRefGoogle Scholar
  5. 5.
    Langer R, Peppas NA (2003) Advances in biomaterials, drug delivery, and bionanotechnology. AICHE J 49:2990CrossRefGoogle Scholar
  6. 6.
    Kopecek J (2007) Hydrogel biomaterials: a smart future? Biomaterials 8:5185CrossRefGoogle Scholar
  7. 7.
    Li X, Zhu L, Hanabusa K, Yang YG (2009) Helical transfer through nonlocal interactions. J Am Chem Soc 131:5986–5993CrossRefPubMedGoogle Scholar
  8. 8.
    Tamesue S, Takashima Y, Yamaguchi H, Shinkai S, Angew AH (2011) Photochemically controlled supramolecular curdlan/single-walled carbon nanotube composite gel: preparation of molecular distaff by cyclodextrin modified curdlan and phase transition control. Chem Int Ed 49:7461CrossRefGoogle Scholar
  9. 9.
    Takigami M, Amada H, Nagasawa N, Yagi T, Kasahara T, Takigami S, Tamada M (2007) Preparation and properties of CMC gel. Trans Mater Res Soc Jpn 32:713–716Google Scholar
  10. 10.
    Hennink WE, Van-Nostrum CF (2002) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 54:13–36CrossRefPubMedGoogle Scholar
  11. 11.
    Tan H, Defail AJ, Rubin JP, Chu CR, Marra KG (2010) Novel multiarm PEG-based hydrogels for tissue engineering. J Biomed Mater Res A 92A:979–998Google Scholar
  12. 12.
    Al-Assaf S, Dickson P, Phillips GO, Thompson C, Torres JC (2009) Compositions comprising polysaccharide gums. In: PCT (ed) World Intellectual Property Organization, vol WO2009/016362 A2. Phillips Hydrocolloid Research Limited (UK), Reckitt Benckiser (UK), United KingdomGoogle Scholar
  13. 13.
    Yoshii F, Zhao L, Wach RA, Nagasawa N, Mitomo H, Kume T (2003) Hydrogels of polysaccharide derivatives crosslinked with irradiation at paste like condition. Nucl Inst Methods Phys Res B 208:320–324CrossRefGoogle Scholar
  14. 14.
    Nagasawa N, Yagi T, Kume K, Yoshii F (2004) Radiation crosslinking of carboxymethyl starch. Carbohydr Polym 58:109–113CrossRefGoogle Scholar
  15. 15.
    Liu P, Peng J, Li J, Wu J (2005) Radiation crosslinking of CMC-Na at low dose and its application as substitute for hydrogel. Radiat Phys Chem 72:635 638CrossRefGoogle Scholar
  16. 16.
    Katayama T, Nakauma M, Todoriki S, Phillips GO, Tada M (2006) Radiation induced polymerization of gum arabic (Acacia senegal) in aqueous solution. Food Hydrocoll 20:983 989CrossRefGoogle Scholar
  17. 17.
    Liu P, Zhai M, Li J, Peng J, Wu J (2002) Radiation preparation and swelling behavior of sodium carboxymethyl cellulose hydrogels. Radiat Phys Chem 63:525–528CrossRefGoogle Scholar
  18. 18.
    Wach RA, Mitomo H, Nagasawa N, Yoshii F (2003) Radiation crosslinking of methylcellulose and hydroxyethylcellulose in concentrated aqueous solutions. Nucl Inst Methods Phys Res B 211:533 544CrossRefGoogle Scholar
  19. 19.
    Jones RA, Ward IM, Taylor DJR, Stepto RFT (1996) Reactions of amorphous PE radical pairs in vacuo and in acetylene: a comparison of gel fraction data with Flory Stockmayer and atomistic modelling analyses. Polymer 37:3643–3657CrossRefGoogle Scholar
  20. 20.
    Rosiak JM, Janik I, Kadlubowski S, Kozicki M, Kujawa P, Stasica P, Ulanski P (2003) Nano, micro and macroscopic hydrogels synthesized by radiation technique. Nucl Inst Methods Phys Res B 208:325–330CrossRefGoogle Scholar
  21. 21.
    Wasikiewicz JM, Yoshii F, Nagasawa N, Wach RA, Mitomo H (2005) Degradation of chitosan and sodium alginate by gamma radiation, sonochemical and ultraviolet methods. Radiat Phys Chem 73:287–295CrossRefGoogle Scholar
  22. 22.
    Omari A, Tabary R, Rousseau D, Calderon FL, Monteil J, Chauveteau G (2006) Soft water soluble microgel dispersions: structure and rheology. J Colloid Interface Sci 302:537–546CrossRefPubMedGoogle Scholar
  23. 23.
    Kempe S, Metz H, Bastrop M, Hvilsom A, Contri RV, Mäder K (2008) Characterization of thermosensitive chitosan based hydrogels by rheology and electron paramagnetic resonance spectroscopy. Eur J Pharm Biopharm 68:26–33CrossRefPubMedGoogle Scholar
  24. 24.
    Hammouda B, Worcester DL (2006) The denaturation transition of DNA in mixed solvents. Biophys J 91:2237–2242CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Chalmers JM, Griffi PR (2002) Handbook of vibrational spectroscopy. Wiley, ChichesterGoogle Scholar
  26. 26.
    Brandl F, Kastner F, Gschwind RM, Blunk T, Tessmar J, Gopferich A (2010) Hydrogel-based drug delivery systems: comparison of drug diffusivity and release kinetics. J Control Release 142:221–228CrossRefPubMedGoogle Scholar
  27. 27.
    AlAssaf S, Dickson P, Phillips GO, Thompson C, Torres JC (2009) Compositions comprising polysaccharide gums. IWO Patent Application: WO2009/016362 A2Google Scholar
  28. 28.
    Gupta S, Webster TJ, Sinha A (2011) Evolution of PVA gels prepared without crosslinking agents as a cell adhesive surface. J Mater Sci Mater Med 22:1763–1772CrossRefPubMedGoogle Scholar
  29. 29.
    Laslo K, Guillermo A, Fluerasu A, Maussaid A, Geissler E (2010) Microphase structure of poly(N-isopropylacrylamide) hydrogels as seen by small- and wide-angle X-ray scattering and pulsed field gradient NMR. Langmuir 26:4415–4420CrossRefGoogle Scholar
  30. 30.
    Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS (2012) Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy. Int J Nanomedicine 7:4077–4088PubMedPubMedCentralGoogle Scholar
  31. 31.
    Guvendiren M, Lu HD, Burdick JA (2012) Shear-thinning hydrogels for biomedical applications. Soft Matter 8:260–272CrossRefGoogle Scholar
  32. 32.
    Aouada FA, de Moura MR, Fernandes PRG, Rubira AF, Muniz EC (2005) Optical and morphological characterization of polyacrylamide hydrogel and liquid crystal systems. Eur Polym J 41:2134–2141CrossRefGoogle Scholar
  33. 33.
    El Fray M, Pilaszkiewicz A, Swieszkowski W, Kurzydlowski KJ (2007) Morphology assessment of chemically modified cryostructured poly(vinyl alcohol). Eur Polym J 43:2035–2040CrossRefGoogle Scholar
  34. 34.
    Pourjavadi A, Kurdtabar M (2007) Collagen based highly porous hydrogel without any porogen : synthesis and characteristics. Eur Polym J 43:877–889CrossRefGoogle Scholar
  35. 35.
    Caldorera-Moore M, Kang MK, Moore Z, Singh V, Sreenivasan SV, Shi L, Huang R, Roy K (2011) Swelling behavior of nanoscale, shape- and size-specific, hydrogel particles fabricated using imprint lithography. Soft Matter 7:2879–2887CrossRefGoogle Scholar
  36. 36.
    Nge TT, Hori N, Takemura A, Ono H (2004) Swelling behavior of chitosan/poly(acrylic acid) complex. J Appl Polym Sci 92:2930CrossRefGoogle Scholar
  37. 37.
    Pawley JB (2006) Handbook of biological confocal microscopy, 3rd edn. Springer, BerlinCrossRefGoogle Scholar
  38. 38.
    Ho D, Hammouda B, Kline S, Chen WR (2006) Unusual phase behavior in mixtures of poly(ethylene oxide) and ethyl alcohol. J Polym Sci Polym Phys Ed 44:557–564CrossRefGoogle Scholar
  39. 39.
    Kim SJ, Shin SR, Lee YM, Kim SI (2003) Swelling characterizations of chitosan and polyacrylonitrile semi-interpenetrating polymer network hydrogels. J Appl Polym Sci 87:2011CrossRefGoogle Scholar
  40. 40.
    Switala-Zeliazkow M (2006) Thermal degradation of copolymers of styrene with dicarboxylic acids – II: copolymers obtained by radical copolymerization of styrene with maleic acid or fumaric acid. Polym Degrad Stab 91:1233–1239CrossRefGoogle Scholar
  41. 41.
    Bullock AJ, Pickavance P, Haddow DB, Rimmer S, MacNeil S (2010) Development of calcium-chelating hydrogel for treatment of superficial burns and scalds. Regen Med 5:55–64CrossRefPubMedGoogle Scholar
  42. 42.
    Kumar M, Mishra RK, Banthia AK (2010) Development of pectin based hydrogel membranes for biomedical applications. Int J Plast Technol 14(2):213–223CrossRefGoogle Scholar
  43. 43.
    Nguyen DH, Tran NQ, Nguyen CK (2013) Tetronic-grafted chitosan hydrogel as an injectable and biocompatible scaffold for biomedical applications. J Biomater Sci Polym Ed 24:1636–1648CrossRefPubMedGoogle Scholar
  44. 44.
    Peng H-H, Chen Y-M, Lee C-I, Lee M-W (2013) Synthesis of a disulfide cross-linked polygalacturonic acid hydrogel for biomedical applications. J Mater Sci Mater Med 24: 1375–1382CrossRefPubMedGoogle Scholar
  45. 45.
    Hasnat Kabir M, Hazama T, Watanabe Y, Gong J, Murase K, Sunada T, Furukawa H (2014) Smart hydrogel with shape memory for biomedical applications. J Taiwan Inst Chem Eng 45:3134–3138CrossRefGoogle Scholar
  46. 46.
    Pawde SM, Deshmukh K (2008) Characterization of polyvinyl alcohol/gelatin blend hydrogel films for biomedical applications. J Appl Polym Sci 109:3431–3437CrossRefGoogle Scholar
  47. 47.
    Li Y, Huang G, Zhang X, Li B, Chen Y, Lu T, Lu TJ, Xu F (2012) Magnetic hydrogels and their potential biomedical applications. Adv Funct Mater 23:660–672CrossRefGoogle Scholar
  48. 48.
    Ziv-Polat O, Topaz M, Brosh T, Margel SN (2010) Enhancement of incisional wound healing by thrombin conjugated iron oxide nanoparticles. Biomaterials 31:741–747CrossRefPubMedGoogle Scholar
  49. 49.
    Skaat H, Ziv-Polat O, Shahar A, Last Mardor DY, Margel S (2012) Magnetic scaffolds enriched with bioactive nanoparticles for tissue engineering. Adv Healthc Mater 1:168CrossRefPubMedGoogle Scholar
  50. 50.
    Tampieri A, Landi E, Valentini F, Sandri M, Alessandro TD, Dediu V, Marcacci M (2011) A conceptually new type of bio-hybrid scaffold for bone regeneration. Nanotechnology 22:015104CrossRefPubMedGoogle Scholar
  51. 51.
    Bock N, Riminucci A, Dionigi C, Russo A, Tampieri A, Landi E, Goranov VA, Marcacci M, Dediu M (2010) A novel route in bone tissue engineering: magnetic biomimetic scaffolds. Acta Biomater 6:786CrossRefPubMedGoogle Scholar
  52. 52.
    Burdick JA, Prestwich GD (2011) Hyaluronic acid hydrogels for biomedical applications. Adv Mater 23:H41–H56CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Jiang S, Liu S, Feng W (2011) PVA hydrogel properties for biomedical application. J Mech Behav Biomed Mater 4:1228–1233CrossRefPubMedGoogle Scholar
  54. 54.
    Pasqui D, Atrei A, Giani G, De Cagna M, Barbucci R (2011) Metal oxide nanoparticles as cross-linkers in polymeric hybrid hydrogels. Mater Lett 65(2):392–395CrossRefGoogle Scholar
  55. 55.
    Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185:117–118CrossRefGoogle Scholar
  56. 56.
    Turner DC, Steffen RB, Wildsmith C, Matiacio TA (2005) Silicone hydrogel contact lens. US patent No 6,861,123 B2Google Scholar
  57. 57.
    Wichterle O (1972) Method of forming color effects in hydrogel contact lenses and ophthalmic prostheses. US Patent No 3,679,504Google Scholar
  58. 58.
    Chromecek R, Bohdanecky M, Kliment K, Otoupalova J, Stoy V, Stol M (1971) US Patent No 3,575,946Google Scholar
  59. 59.
    Neefe CW (1984) Method of making hydrogel cosmetic contact lenses. US Patent No 4,472,327Google Scholar
  60. 60.
    Gaylord NG (1974) Oxygen-permeable contact lens composition, methods and article of manufacture. US Patent No 3,808,178Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pharmaceutical Technology, Centre for Excellence in Nanobio Translational Research (CENTRE)Anna UniversityTiruchirappalliIndia
  2. 2.National Facility for Drug Development for Academia, Pharmaceutical and Allied Industries (NFDD)Anna UniversityTiruchirappalliIndia

Personalised recommendations