Advertisement

Effect of Irradiation for Producing the Conductive and Smart Hydrogels

  • Sheila Shahidi
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)

Abstract

This review presents the past and current efforts with a brief description on the featured properties of conductive and smart hydrogel fabricated from biopolymers and natural ones for different applications. Many endeavors have been exerted during the past 10 years for developing new smart hydrogels. This review mainly focuses on the effect of different irradiation methods for improving the properties of smart hydrogels. As the hydrogels with single component have low mechanical strength, recent trends have offered composite or hybrid hydrogel membranes to achieve the best properties. So this chapter provides the reader good information about the irradiation effects on producing the smart conductive hydrogels and perspective on further potential developments.

Keywords

Hydrogel Conductive Smart Irradiation Cellulose 

References

  1. 1.
    Calo E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267CrossRefGoogle Scholar
  2. 2.
    Cha R, He Z, Ni Y (2012) Preparation and characterization of thermal/pH-sensitive hydrogel from carboxylated nanocrystalline cellulose. Carbohydr Polym 88:713–718CrossRefGoogle Scholar
  3. 3.
    Ullah F, Bisyrul Hafi Othman M, Javed F, Ahmad Z, Aki H (2015) Classification, processing and application of hydrogels: a review. Mater Sci Eng C 57:414–433CrossRefGoogle Scholar
  4. 4.
    Onofrei MD, Filimon A (2016) Cellulose-based hydrogels: designing concepts, properties, and perspectives for biomedical and environmental applications. In: Mendez-Vilas A, Solano-Martin A (eds) Polymer science: research advances, practical applications and educational aspects. Formatex Research Center, Spain pp 108–120Google Scholar
  5. 5.
    Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2:353–373CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Zhang W, Zhu S, Bai Y, Xi N, Wang S, Bian Y, Li X, Zhan Y (2015) Glow discharge electrolysis plasma initiated preparation of temperature/pH dual sensitivity reed hemicellulose-based hydrogels. Carbohydr Polym 12:11–17CrossRefGoogle Scholar
  7. 7.
    Mohammadi-Khoo S, Najafi Moghadam P, Fareghi AR, Movagharnezhad N (2016) Synthesis of a cellulose-based hydrogel network: characterization and study of urea fertilizer slow release. J Appl Polym Sci 42935:1–9Google Scholar
  8. 8.
    Alesa Gyles D, Diniz Castro L, Otávio Carréra Silva J Jr, Maria Ribeiro-Costa R (2017) The designs and prominent biomedical advances of natural and synthetic hydrogel formulations. Eur Polym J 88:373–392CrossRefGoogle Scholar
  9. 9.
    Nechyporchuk O, Naceur Belgacem M, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crop Prod 93:2–25CrossRefGoogle Scholar
  10. 10.
    Tang J, Sisler J, Grishkewich N, Chiu Tam K (2017) Functionalization of cellulose nanocrystals for advanced applications. J Colloid Interface Sci 494:397–409CrossRefPubMedGoogle Scholar
  11. 11.
    Varaprasad K, Raghavendra GM, Jayaramudu T, Yallapu MM, Sadiku R (2017) A mini review on hydrogels classification and recent developments in miscellaneous applications. Mater Sci Eng C 79:958–971CrossRefGoogle Scholar
  12. 12.
    Siddhanta SK, Gangopadhyay R (2005) Conducting polymer gel: formation of a novel semi-IPN from polyaniline and crosslinked poly (2-acrylamido-2-methylpropanesulfonic acid). Polymer (Guildf) 46:2993–3000CrossRefGoogle Scholar
  13. 13.
    Tang Q, Wu J, Sun H, Fan S, Hu D, Lin J (2008) Superabsorbent conducting hydrogel from poly (acrylamide-aniline) with thermo-sensitivity and release properties. Carbohydr Polym 73:473–481CrossRefGoogle Scholar
  14. 14.
    Mohd Amin MCI, Ahmad M, Halib N, Ahmad I (2012) Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydr Polym 88:465–473CrossRefGoogle Scholar
  15. 15.
    Rui-Hong X, Peng-Gang R, Jian H, Fang R, Lian-Zhen R, Zhen-Feng S (2016) Preparation and properties of graphene oxide-regenerated cellulose/polyvinyl alcohol hydrogel with pH-sensitive behavior. Carbohydr Polym 138:222–228CrossRefPubMedGoogle Scholar
  16. 16.
    Liang X, Qu B, Li J, Xiao H, He B, Qian L (2015) Preparation of cellulose-based conductive hydrogels with ionic liquid. React Funct Polym 86:1–6CrossRefGoogle Scholar
  17. 17.
    Xiong C, Zhong W, Zou Y, Luo J, Yang W (2016) Electroactive biopolymer/graphene hydrogels prepared for high-performance supercapacitor electrodes. Electrochim Acta 211:941–949CrossRefGoogle Scholar
  18. 18.
    Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46:92–100CrossRefGoogle Scholar
  19. 19.
    Hebeish A, Farag S, Sharaf S, Shaheen TI (2015) Radically new cellulose nanocomposite hydrogels: temperature and pH responsive characters. Int J Biol Macromol 81:356–361CrossRefPubMedGoogle Scholar
  20. 20.
    Zhao W, Glavas L, Odelius K, Edlund U, Albertsson AC (2014) A robust pathway to electrically conductive hemicellulose hydrogels with high and controllable swelling behavior. Polymer 55:2967–2976CrossRefGoogle Scholar
  21. 21.
    Shi Z, Gao X, Wajid Ullah M, Li S, Wang Q, Yang G (2016) Electroconductive natural polymer-based hydrogels. Biomaterials 11:40–54CrossRefGoogle Scholar
  22. 22.
    Chen C, Yang C, Li S, Li D (2015) A three-dimensionally chitin nanofiber/carbon nanotube hydrogel network for foldable conductive paper. Carbohydr Polym 134:309–313CrossRefPubMedGoogle Scholar
  23. 23.
    Tian J, Peng D, Wu X, Li W, Deng H, Liu S (2017) Electrodeposition of Ag nanoparticles on conductive polyaniline/cellulose aerogels with increased synergistic effect for energy storage. Carbohydr Polym 156:19–25CrossRefPubMedGoogle Scholar
  24. 24.
    Cirillo G, Curcio M, Gianfranco Spizzirri U, Vittori O, Tucci P, Picci N, Iemma F, Hampel S, Pasquale Nicoletta F (2017) Carbon nanotubes hybrid hydrogels for electrically tunable release of Curcumin. Eur Polym J 90:1–12CrossRefGoogle Scholar
  25. 25.
    Bogaerts A, Chen Z, Gijbels R (2003) Glow discharge modelling: from basic understanding towards applications. Surf Interface Anal 35(7):593–603CrossRefGoogle Scholar
  26. 26.
    Monteiro WA (2016) Radiation effects in materials. Intech, Rijeka, pp 309–330CrossRefGoogle Scholar
  27. 27.
    Zhang W, Sha Z, Huang Y, Bai Y, Xi N, Zhang Y (2015) Glow discharge electrolysis plasma induced synthesis of cellulose-based ionic hydrogels and their multiple response behaviors. RSC Adv 5:6505–6511. The Royal Society of ChemistryCrossRefGoogle Scholar
  28. 28.
    Zhao L, Gwon HJ, Lim YM, Nho YC, Kim SY (2014) Hyaluronic acid/chondroitin sulfate-based hydrogel prepared by gamma irradiation technique. Carbohydr Polym 102:598–605CrossRefPubMedGoogle Scholar
  29. 29.
    Plungpongpan K, Koyanukkul K, Kaewvilai A, Nootsuwan N, Kewsuwan P, Laobuthee A (2013) Preparation of PVP/MHEC blended hydrogels via gamma irradiation and their calcium ion uptaking and releasing ability. Energy Procedia 34:775–781CrossRefGoogle Scholar
  30. 30.
    Hong T, Okabe H, Hidaka Y, Hara K (2017) Removal of metal ions from aqueous solutions using carboxymethyl cellulose/sodium styrene sulfonate gels prepared by radiation grafting. Carbohydr Polym 157:335–343CrossRefGoogle Scholar
  31. 31.
    Spasojevic J, Radosavljević A, Krstić J, Jovanović D, Spasojević V, Kalagasidis-Krušić M, Kačarević-Popović Z (2015) Dual responsive antibacterial Ag-poly(N-isopropylacrylamide/itaconic acid) hydrogel nanocomposites synthesized by gamma irradiation. Eur Polym J 69:168–185CrossRefGoogle Scholar
  32. 32.
    Yang J, Dong X, Gao Y, Zhang W (2015) One-step synthesis of methacrylated POSS cross-linked poly(N-isopropylacrylamide) hydrogels by γ-irradiation. Mater Lett 157:81–84CrossRefGoogle Scholar
  33. 33.
    Swaroop K, Francis S, Somashekarappa HM (2016) Gamma irradiation synthesis of Ag/PVA hydrogels and its antibacterial activity. Mater Today Proc 3:1792–1798CrossRefGoogle Scholar
  34. 34.
    Leyva-Gómez G, Santillan-Reyes E, Lima E, Madrid-Martínez A, Krötzsch E, Quintanar-Guerrero D, Garciadiego-Cázares D, Martínez-Jiménez A, Hernández Morales M, Ortega-Peña S, Contreras-Figueroa ME, Cortina-Ramírez GE, Fernando Abarca-Buis R (2017) A novel hydrogel of poloxamer 407 and chitosan obtained by gamma irradiation exhibits physicochemical properties for wound management. Mater Sci Eng C 74:36–46CrossRefGoogle Scholar
  35. 35.
    Ajji Z, Othman I, Rosiak JM (2005) Production of hydrogel wound dressings using gamma radiation. Nucl Instrum Methods Phys Res B 229:375–380CrossRefGoogle Scholar
  36. 36.
    Magda J, Cho SH, Streitmatter S, Jevremovic T (2014) Effects of gamma rays and neutron irradiation on the glucose response of boronic acid-containing “smart” hydrogels. Polym Degrad Stab 99:219–222CrossRefGoogle Scholar
  37. 37.
    Sharma K, Kaith BS, Kumar V, Kalia S, Kumar V, Swart HC (2014) Synthesis and biodegradation studies of gamma irradiated electrically conductive hydrogel. Polym Degrad Stab 107:166–177CrossRefGoogle Scholar
  38. 38.
    Mohamady Ghobashy M, Elhady MA (2017) pH-sensitive wax emulsion copolymerization with acrylamide hydrogel using gamma irradiation for dye removal. Radiat Phys Chem 134:47–55CrossRefGoogle Scholar
  39. 39.
    Mohamad N, Mohd Amin MCI, Pandey M, Ahmad N, Fadilah Rajab N (2014) Bacterial cellulose/acrylic acid hydrogel synthesized via electron beam irradiation: accelerated burn wound healing in an animal model. Carbohydr Polym 114:312–320CrossRefPubMedGoogle Scholar
  40. 40.
    Bhunia T, Goswami L, Chattopadhyay D, Bandyopadhyay A (2011) Sustained transdermal release of diltiazem hydrochloride through electron beam irradiated different PVA hydrogel membranes. Nucl Instrum Methods Phys Res B 269:1822–1828CrossRefGoogle Scholar
  41. 41.
    Moslem Tavakol M, Saeedeh Dehshiri S, Ebrahim Vasheghani-Farahani E (2016) Electron beam irradiation crosslinked hydrogels based on tyramine conjugated gum tragacanth. Carbohydr Polym 152:504–509CrossRefPubMedGoogle Scholar
  42. 42.
    Choi J, Pant B, Lee C, Park M, Park SJ, Kim HY (2017) Preparation and characterization of eggshell membrane/PVA hydrogel via electron beam irradiation technique. J Ind Eng Chem 47:41–45CrossRefGoogle Scholar
  43. 43.
    El-Naggar AWM, Abd Alla SG, Said HM (2006) Temperature and pH responsive behaviours of CMC/AAc hydrogels prepared by electron beam irradiation. Mater Chem Phys 95:158–163CrossRefGoogle Scholar
  44. 44.
    Park M, Kim BS, Shin HK, Park SJ, Kim HY (2013) Preparation and characterization of keratin-based biocomposite hydrogels prepared by electron beam irradiation. Mater Sci Eng C 33:5051–5057CrossRefGoogle Scholar
  45. 45.
    Senna MM, Mostafa AB, Mahdy SR, El-Naggar AM (2016) Characterization of blend hydrogels based on plasticized starch/cellulose acetate/carboxymethyl cellulose synthesized by electron beam irradiation. Nucl Instrum Methods Phys Res B 386:22–29CrossRefGoogle Scholar
  46. 46.
    Tanan W, Saengsuwan S (2014) Microwave assisted synthesis of poly (acrylamide-co-2-hydroxyethyl methacrylate)/poly(vinyl alcohol) semi-IPN hydrogel. Energy Procedia 56:386–393CrossRefGoogle Scholar
  47. 47.
    Omprakash GS, Anant LC, Rao BS, Mirajkar SP (2003) Enhancement of crystallization rate by microwave radiation: synthesis of ZSM-5. Mater Chem Phys 82(3):538–545CrossRefGoogle Scholar
  48. 48.
    Zhao Z, Li Z, Xia Q, Xi H, Lin Y (2008) Fast synthesis of temperature-sensitive PNIPAAm hydrogels by microwave irradiation. Eur Polym J 44:1217–1224CrossRefGoogle Scholar
  49. 49.
    Rivero RE, Molina MA, Rivarola CR, Barbero CA (2014) Pressure and microwave sensors/actuators based on smart hydrogel/conductive polymer nanocomposite. Sens Actuators B Chem 190:270–278CrossRefGoogle Scholar
  50. 50.
    Zhao ZX, Li Z, Xia QB, Bajalis E, Xi HX, Lin YS (2008) Swelling/deswelling kinetics of PNIPAAm hydrogels synthesized by microwave irradiation. Chem Eng J 142:263–270CrossRefGoogle Scholar
  51. 51.
    Zhang L, Zheng GJ, Guo YT, Zhou L, Du J, He H (2014) Preparation of novel biodegradable pHEMA hydrogel for a tissue engineering scaffold by microwave-assisted polymerization. Asian Pac J Trop Med 7(2):136–140CrossRefPubMedGoogle Scholar
  52. 52.
    Wang Y, Zhang X, Qiu D, Li Y, Yao L, Duan J (2018) Ultrasonic assisted microwave synthesis of poly (chitosan-co-gelatin)/polyvinyl pyrrolidone IPN hydrogel. Ultrason Sonochem 40:714–719CrossRefPubMedGoogle Scholar
  53. 53.
    Wang X, Wang Y, He S, Hou H, Hao C (2018) Ultrasonic-assisted synthesis of superabsorbent hydrogels based on sodium lignosulfonate and their adsorption properties for Ni2+. Ultrason Sonochem 40:221–229CrossRefPubMedGoogle Scholar
  54. 54.
    Wang Y, Xiong Y, Wang J, Zhang X (2017) Ultrasonic-assisted fabrication of montmorillonite-lignin hybrid hydrogel: highly efficient swelling behaviors and super-sorbent for dye removal from wastewater. Colloids Surf A Physicochem Eng Asp 520:903–913CrossRefGoogle Scholar
  55. 55.
    Koshani R, Aminlari M (2017) Physicochemical and functional properties of ultrasonic-treated tragacanth hydrogels cross-linked to lysozyme. Int J Biol Macromol 103:948–956CrossRefPubMedGoogle Scholar
  56. 56.
    Cass P, Knower W, Pereeia E, Holmes NP, Hughes T (2010) Preparation of hydrogels via ultrasonic polymerization. Ultrason Sonochem 17:326–332CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Textile, Arak BranchIslamic Azad UniversityArakIran

Personalised recommendations