Advertisement

Multifunctional Hydrogels

  • Min Xu
  • Hailong Huang
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)

Abstract

Hydrogels are cross-linked three-dimensional polymeric networks which can absorb a great quantity of water and keep mechanically stable without dissolution. Due to the biocompatibility and biodegradability, biological hydrogels have been wildly investigated and used in various fields, such as adsorption materials, shape memory materials, self-healing materials, sensor units, super capacitor, drug carriers, and so on. In this chapter, we would focus on some of the upper aspects and give a brief introduction.

Keywords

Hydrogels Adsorption Stimuli-responsive Self-healing 

Notes

Acknowledgments

The authors acknowledge East China Normal University for providing research facilities and platform.

References

  1. 1.
    Aimetti AA, Machen AJ, Anseth KS (2009) Poly(ethylene glycol) hydrogels formed by thiol-ene photopolymerization for enzyme-responsive protein delivery. Biomaterials 30:6048–6054CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bencherif SA, Siegwart DJ, Srinivasan A, Horkay F, Hollinger JO, Washburn NR, Matyjaszewski K (2009) Nanostructured hybrid hydrogels prepared by a combination of atom transfer radical polymerization and free radical polymerization. Biomaterials 30:5270–5278CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Fekete T, Borsa J, Takács E, Wojnárovits L (2016) Synthesis of cellulose-based superabsorbent hydrogels by high-energy irradiation in the presence of crosslinking agent. Radiat Phys Chem 118:114–119CrossRefGoogle Scholar
  4. 4.
    Freudenberg U, Liang Y, Kiick KL, Werner C (2016) Glycosaminoglycan-based biohybrid hydrogels: a sweet and smart choice for multifunctional biomaterials. Adv Mater 28:8861–8891CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gong Y, Gao M, Wang D, Möhwald H (2005) Incorporating fluorescent CdTe nanocrystals into a hydrogel via hydrogen bonding: toward fluorescent microspheres with temperature-responsive properties. Chem Mater 17:2648–2653CrossRefGoogle Scholar
  6. 6.
    Xing B, Yu C, Chow K, Ho P, Fu D, Xu B (2002) Hydrophobic interaction and hydrogen bonding cooperatively confer a vancomycin hydrogel: a potential candidate for biomaterials. J Am Chem Soc 124:14846–14847CrossRefPubMedGoogle Scholar
  7. 7.
    Yu LHAY (2013) Directed self-assembly of microscale hydrogels by electrostatic interaction. Biofabrication 5:035004CrossRefGoogle Scholar
  8. 8.
    Osman SK, Brandl FP, Zayed GM, Teßmar JK, Göpferich AM (2011) Cyclodextrin based hydrogels: inclusion complex formation and micellization of adamantane and cholesterol grafted polymers. Polymer 52:4806–4812CrossRefGoogle Scholar
  9. 9.
    Maity I, Mukherjee TK, Das AK (2014) Photophysical study of a stacked-sheet nanofibril forming peptide Bolaamphiphile hydrogel. New J Chem 38:376–385CrossRefGoogle Scholar
  10. 10.
    Buwalda SJ, Amgoune A, Bourissou D (2016) PEG–PLGA copolymers bearing carboxylated side chains: novel hydrogels with enhanced crosslinking via ionic interactions. J Polym Sci A Polym Chem 54:1222–1227CrossRefGoogle Scholar
  11. 11.
    Ricciardi R, Auriemma F, Gaillet C, De Rosa C, Lauprêtre F (2004) Investigation of the crystallinity of freeze/thaw poly(vinyl alcohol) hydrogels by different techniques. Macromolecules 37:9510–9516CrossRefGoogle Scholar
  12. 12.
    Garcia-Schwarz G, Santiago JG (2012) Integration of on-chip isotachophoresis and functionalized hydrogels for enhanced-sensitivity nucleic acid detection. Anal Chem 84: 6366–6369CrossRefPubMedGoogle Scholar
  13. 13.
    Guillon M, Bilton S, Bleshoy H, Guillon JP, Lydon DPM (1985) Limbal changes associated with hydrogelcontact lens wear. J Br Cont Lens Assoc 8:15–19CrossRefGoogle Scholar
  14. 14.
    Murakami K, Aoki H, Nakamura S, Nakamura S, Takikawa M, Hanzawa M, Kishimoto S, Hattori H, Tanaka Y, Kiyosawa T, Sato Y, Ishihara M (2010) Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials 31:83–90CrossRefPubMedGoogle Scholar
  15. 15.
    Peng N, Wang Y, Ye Q, Liang L, An Y, Li Q, Chang C (2016) Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity. Carbohydr Polym 137:59–64CrossRefPubMedGoogle Scholar
  16. 16.
    Shahbuddin M, Bullock A, Macneil S, Rimmer S (2014) Glucomannan-poly(N-vinyl Pyrrolidinone) bicomponent hydrogels for wound healing. J Mater Chem B 2(6):727–738CrossRefGoogle Scholar
  17. 17.
    Yun J, Jin D, Lee Y, Kim H (2010) Photocatalytic treatment of acidic waste water by electrospun composite nanofibers of pH-sensitive hydrogel and TiO2. Mater Lett 64(22):2431–2434CrossRefGoogle Scholar
  18. 18.
    Xiao M, Hu JC (2017) Cellulose/chitosan composites prepared in ethylene diamine/potassium thiocyanate for adsorption of heavy metal ions. Cellulose 24:2545–2557CrossRefGoogle Scholar
  19. 19.
    Wu SP, Dai XZ, Kan JR, Shilong FD, Zhu MY (2017) Fabrication of carboxymethyl chitosan–hemicellulose resin for adsorptive removal of heavy metals from wastewater. Chin Chem Lett 28:625–632CrossRefGoogle Scholar
  20. 20.
    Liu Z, Wang HS, Liu C, Jiang YJ, Yu G, Mu XD, Wang XY (2012) Magnetic cellulose-chitosan hydrogels prepared from ionic liquids as reusable adsorbent for removal of heavy metal ions. Chem Commun 48:7350–7352CrossRefGoogle Scholar
  21. 21.
    Ayoub A, Venditti RA, Pawlak JJ, Salam A, Hubbe MA (2013) Novel hemicellulose–chitosan biosorbent for water desalination and heavy metal removal. ACS Sustain Chem Eng 1: 1102–1109CrossRefGoogle Scholar
  22. 22.
    Wei W, Kim S, Song MH, Bediako JK, Yun YS (2015) Carboxymethyl cellulose fiber as a fast binding and biodegradable adsorbent of heavy metals. J Taiwan Inst Chem Eng 57:104–110CrossRefGoogle Scholar
  23. 23.
    Ge H, Huang HL, Xu M, Chen Q (2016) Cellulose/poly(ethylene imine) composites as efficient and reusable adsorbents for heavy metal ions. Cellulose 23:2527–2537CrossRefGoogle Scholar
  24. 24.
    Zhou YM, Fu SY, Zhang LL, Zhan HY, Mikhail VL (2014) Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb(II). Carbohydr Polym 101:75–82CrossRefPubMedGoogle Scholar
  25. 25.
    Luo XB, Guo B, Luo JM, Deng F, Zhang SY, Luo SL, John C (2015) Recovery of lithium from wastewater using development of li ion-imprinted polymers. ACS Sustain Chem Eng 3:460−467CrossRefGoogle Scholar
  26. 26.
    Chen PP, Liu XY, Jin RD, Nie WY, Zhou YF (2017) Dye adsorption and photo-induced recycling of hydroxypropyl cellulose/molybdenum disulfide composite hydrogels. Carbohydr Polym 167:36–43CrossRefPubMedGoogle Scholar
  27. 27.
    Rudzinski WE, Chipuk T, Dave AM, Kumbar SG, Aminabhavi TM (2003) pH-sensitive acrylic-based copolymeric hydrogels for the controlled release of a pesticide and a micronutrient. J Appl Polym Sci 87:394–403CrossRefGoogle Scholar
  28. 28.
    Aouada FA, de Moura MA, Orts WJ, Mattoso LHC (2010) Polyacrylamide and methylcellulose hydrogel as delivery vehicle for the controlled release of paraquat pesticide. J Mater Sci 45:4977–4985CrossRefGoogle Scholar
  29. 29.
    Abd El-Mohdy HL, Hegazy EA, El-Nesr EM, El-Wahab MA (2012) Removal of some pesticides from aqueous solutions using PVP/(AAc-co-Sty) hydrogels prepared by gamma radiation. J Macromol Sci Part A Pure Appl Chem 49:814–827CrossRefGoogle Scholar
  30. 30.
    Chen LY, Tian ZG, Du YM (2004) Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices. Biomaterials 25:3725–3732CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Hennink WE, Talsma H, Borchert JCH, De Smedt SC, Demeester J (1996) Controlled release of proteins from dextran hydrogels. J Control Release 39:47–55CrossRefGoogle Scholar
  32. 32.
    Vermonden T, Censi R, Hennink WE (2012) Hydrogels for protein delivery. Chem Rev 112:2853–2888CrossRefPubMedGoogle Scholar
  33. 33.
    Shao S, Cui EM, Xue HM, Huang HY, Liu GL (2015) Sustained knock down of PPARγ and bFGF presentation in collagen hydrogels promote MSC osteogenesis. Open Life Sci 10(1):479–489Google Scholar
  34. 34.
    Jiang YJ, Chen J, Deng C, Suuronen EJ, Zhong Z (2014) Click hydrogels, microgels and nanogels: emerging platforms for drug delivery and tissue engineering. Biomaterials 35:4969–4985CrossRefPubMedGoogle Scholar
  35. 35.
    Qiu Y, Park K (2012) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 64:49–60CrossRefGoogle Scholar
  36. 36.
    Bhattarai N, Gunn J, Zhang MQ (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62:83–99CrossRefPubMedGoogle Scholar
  37. 37.
    Abureesh MA, Oladipo AA, Gazi M (2016) Facile synthesis of glucose-sensitive chitosan–poly(vinyl alcohol) hydrogel: drug release optimization and swelling properties. Int J Biol Macromol 90:75–80CrossRefPubMedGoogle Scholar
  38. 38.
    Zhang XZ, Wu DQ, Chu CC (2004) Synthesis, characterization and controlled drug release of thermosensitive IPN–PNIPAAm hydrogels. Biomaterials 25:3793–3805CrossRefPubMedGoogle Scholar
  39. 39.
    Zhao CW, Zhuang XL, He P, Xiao CS, He CL, Sun JR, Chen XS, Jing XB (2009) Synthesis of biodegradable thermo- and pH-responsive hydrogels for controlled drug release. Polymer 50:4308–4316CrossRefGoogle Scholar
  40. 40.
    Huang HL, Wang XH, Ge H, Xu M (2016) Multifunctional magnetic cellulose surface-imprinted microspheres for highly selective adsorption of artesunate. ACS Sustain Chem Eng 4:3334–3343CrossRefGoogle Scholar
  41. 41.
    Manal F, Abou T, Abdel-Aal SE, El-Kelesh NA, Hegazy ESA (2007) Adsorption and controlled release of chlortetracycline HCl by using multifunctional polymeric hydrogels. Eur Polym J 43:468–477CrossRefGoogle Scholar
  42. 42.
    Lee YJ, Braun PV (2003) Tunable inverse opal hydrogel pH sensors. Adv Mater 15:563–566CrossRefGoogle Scholar
  43. 43.
    Richter A, Paschew G, Klatt S, Lienig J, Arndt K, Adler PH (2008) Review on hydrogel-based pH sensors and microsensors. Sensors-Basel 8(1):561–581CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Killer M, Keeley EM, Cruise GM, Schmitt A, McCoy MR (2011) MR imaging of hydrogel filament embolic devices loaded with superparamagnetic Iron oxide or gadolinium. Neuroradiology 53(6):449–456CrossRefPubMedGoogle Scholar
  45. 45.
    Soto AM, Koivisto JT, Parraga JE, Silva-Correia J, Oliveira JM, Reis RL, Kellomäki M, Hyttinen J, Figueiras E (2016) Optical projection tomography technique for image texture and mass transport studies in hydrogels based on Gellan gum. Langmuir 32(20):5173–5182CrossRefPubMedGoogle Scholar
  46. 46.
    Takehara H, Nagaoka A, Noguchi J, Akagi T, Kasai H, Ichiki T (2016) Implantable microfluidic device with hydrogel permeable membrane for delivering chemical compounds and imaging neural cells in living mice. J Photopolym Sci Technol 29(4):513–518CrossRefGoogle Scholar
  47. 47.
    Emileh A, Vasheghani-Farahani E, Imani M (2007) Swelling behavior, mechanical properties and network parameters of pH- and temperature-sensitive hydrogels of poly((2-dimethyl amino) ethyl methacrylate-co-butyl methacrylate). Eur Polym J 43(5):1986–1995CrossRefGoogle Scholar
  48. 48.
    Luo RC, Cao Y, Shi P, Chen CH (2014) Near-infrared light responsive multi-compartmental hydrogel particles synthesized through droplets assembly induced by superhydrophobic surface. Small 10(23):4886–4894CrossRefPubMedGoogle Scholar
  49. 49.
    Chen J, Sheng KX, Luo PH, Li C, Shi GQ (2012) Graphene hydrogels deposited in nickel foams for high-rate electrochemical capacitors. Adv Mater 24:4569–4573CrossRefPubMedGoogle Scholar
  50. 50.
    Kim SJ, Lee CK, Lee YM, Kim IY, Kim SI (2003) Electrical/pH-sensitive swelling behavior of polyelectrolyte hydrogels prepared with hyaluronic acid–poly(vinyl alcohol) interpenetrating polymer networks. React Funct Polym 55(3):291–298CrossRefGoogle Scholar
  51. 51.
    Konieczynska MD, Grinstaff MW (2017) On-demand dissolution of chemically cross-linked hydrogels. Acc Chem Res 50:151–−160CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Le XX, Lu W, Xiao H, Wang L, Ma CX, Zhang JW, Huang YJ, Chen T (2017) Fe3+-, pH-, thermoresponsive supramolecular hydrogel with multishape memory effect. ACS Appl Mater Interfaces 9:9038–9044CrossRefPubMedGoogle Scholar
  53. 53.
    Xing YZ, Cheng EJ, Yang Y, Chen P, Zhang T, Sun YW, Yang ZQ, Liu DS (2011) Self-assembled DNA hydrogels with designable thermal and enzymatic responsiveness. Adv Mater 23:1117–1121CrossRefPubMedGoogle Scholar
  54. 54.
    João C, Nuria O, Mariana A, Song HS, Natalie A (2016) Self-assembled RNA-triple-helix hydrogel scafold for microRNA modulation in the tumour microenvironment. Nat Mater 15:353–363CrossRefGoogle Scholar
  55. 55.
    Zhang YL, Yang B, Zhang XY, Xu LX, Tao L, Li SX, Wei Y (2012) A magnetic self-healing hydrogel. Chem Commun 48:9305–9307CrossRefGoogle Scholar
  56. 56.
    Jia YG, Zhu XX (2015) Self-healing supramolecular hydrogel made of polymers bearing cholic acid and β-cyclodextrin pendants. Chem Mater 27:387–393CrossRefGoogle Scholar
  57. 57.
    Ye X, Li X, Shen YQ, Chang GJ, Yang JX, Gu ZW (2017) Self-healing pH-sensitive cytosine- and guanosine-modified hyaluronic acid hydrogels via hydrogen bonding. Polymer 108:348–360CrossRefGoogle Scholar
  58. 58.
    Deniz CT, Murat S, Wilhelm O, Oguz O (2011) Tough and self-healing hydrogels formed via hydrophobic interactions. Macromolecules 44:4997–5005CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physics and Materials Science & Shanghai Key Laboratory of Magnetic ResonanceEast China Normal UniversityShanghaiPeople’s Republic of China

Personalised recommendations