Advertisement

The Adsorption Mechanism of Cellulose Hydrogel by Computational Simulation

  • Ali Jebali
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)

Abstract

In this chapter, different adsorption mechanisms of cellulose hydrogel will be investigated. For this aim, computational simulation will be used. On an atomistic scale, cellulose hydrogel has different hydrogen bond properties. The OH groups can only act as hydrogen bond acceptors, but due to the negative charge density, there are still more water molecules assembled around adsorbents. Besides intermolecular hydrogen bonding, it has some hydrophobic properties. It means that some hydrophobic materials can be adsorbed on the surface of cellulose hydrogel at specific conditions. Most force fields for this simulation are empirical and consist of a summation of bonded forces associated with chemical bonds, bond angles, and bond dihedrals and nonbonded forces associated with van der Waals forces and electrostatic charge. Empirical potentials represent quantum mechanical effects in a limited way through ad hoc functional approximations.

Keywords

Cellulose Hydrogel Adsorption Computational simulation 

References

  1. 1.
    Marhöfer RJ, Reiling S, Brickmann J (1996) Computer simulations of crystal structures and elastic properties of cellulose. Ber Bunsenges Phys Chem 100(8):1350–1354CrossRefGoogle Scholar
  2. 2.
    Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Brady JW (2006) Computer simulation studies of microcrystalline cellulose Iβ. Carbohydr Res 341(1):138–152CrossRefPubMedGoogle Scholar
  3. 3.
    O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4(3):173–207CrossRefGoogle Scholar
  4. 4.
    Rizwan S, Dong Y-D, Boyd B, Rades T, Hook S (2007) Characterisation of bicontinuous cubic liquid crystalline systems of phytantriol and water using cryo field emission scanning electron microscopy (cryo FESEM). Micron 38(5):478–485CrossRefPubMedGoogle Scholar
  5. 5.
    Wang Q, Johnson JK (1999) Computer simulations of hydrogen adsorption on graphite nanofibers. J Phys Chem B 103(2):277–281CrossRefGoogle Scholar
  6. 6.
    Dislich H (1983) Glassy and crystalline systems from gels: chemical basis and technical application. J Non-Cryst Solids 57(3):371–388CrossRefGoogle Scholar
  7. 7.
    Wang J, Somasundaran P (2005) Adsorption and conformation of carboxymethyl cellulose at solid–liquid interfaces using spectroscopic, AFM and allied techniques. J Colloid Interface Sci 291(1):75–83CrossRefPubMedGoogle Scholar
  8. 8.
    Mohanambe L, Vasudevan S (2005) Structure of a cyclodextrin functionalized anionic clay: XRD analysis, spectroscopy, and computer simulations. Langmuir 21(23):10735–10742CrossRefPubMedGoogle Scholar
  9. 9.
    Van der Klis J, Van Voorst A, Van Cruyningen C (1993) Effect of a soluble polysaccharide (carboxy methyl cellulose) on the physico-chemical conditions in the gastrointestinal tract of broilers. Br Poult Sci 34(5):971–983CrossRefPubMedGoogle Scholar
  10. 10.
    Wellham E, Elber L, Yan D (1992) The role of carboxy methyl cellulose in the flotation of a nickel sulphide transition ore. Miner Eng 5(3):381–395CrossRefGoogle Scholar
  11. 11.
    Biswal D, Singh R (2004) Characterisation of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohydr Polym 57(4):379–387CrossRefGoogle Scholar
  12. 12.
    Paavilainen S, Róg T, Vattulainen I (2011) Analysis of twisting of cellulose nanofibrils in atomistic molecular dynamics simulations. J Phys Chem B 115(14):3747–3755CrossRefGoogle Scholar
  13. 13.
    Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16(6):220–227CrossRefGoogle Scholar
  14. 14.
    Korhonen JT, Kettunen M, Ras RH, Ikkala O (2011) Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl Mater Interfaces 3(6):1813–1816CrossRefPubMedGoogle Scholar
  15. 15.
    Simon D, Kadiri Y, Picard G (2008) Nano cellulose crystallites: optical, photonic and electro-magnetic properties. In: NSTI NANOTECH 2008, technical proceedings, vol 1, pp 840–843Google Scholar
  16. 16.
    Shew C-Y, Yethiraj A (1999) Computer simulations and integral equation theory for the structure of salt-free rigid rod polyelectrolyte solutions: explicit incorporation of counterions. J Chem Phys 110(23):11599–11607CrossRefGoogle Scholar
  17. 17.
    Oosawa F (1971) Polyelectrolytes. Marcel Dekker, New YorkGoogle Scholar
  18. 18.
    Christos GA, Carnie SL (1990) Computer simulations of polyelectrolyte chains in salt solution. J Chem Phys 92(12):7661–7677CrossRefGoogle Scholar
  19. 19.
    Shiratori SS, Rubner MF (2000) pH-dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes. Macromolecules 33(11):4213–4219CrossRefGoogle Scholar
  20. 20.
    Wallin T, Linse P (1996) Monte Carlo simulations of polyelectrolytes at charged micelles. 1. Effects of chain flexibility. Langmuir 12(2):305–314CrossRefGoogle Scholar
  21. 21.
    Bergenstråhle M, Wohlert J, Larsson PT, Mazeau K, Berglund LA (2008) Dynamics of cellulose-water interfaces: NMR spin-lattice relaxation times calculated from atomistic computer simulations. J Phys Chem B 112(9):2590–2595CrossRefPubMedGoogle Scholar
  22. 22.
    Liu H, Sale KL, Holmes BM, Simmons BA, Singh S (2010) Understanding the interactions of cellulose with ionic liquids: a molecular dynamics study. J Phys Chem B 114(12):4293–4301CrossRefPubMedGoogle Scholar
  23. 23.
    Kremer F, Huwe A, Schönhals A, Rózanski S (2012) Molecular dynamics in confining space. UK: SpringerGoogle Scholar
  24. 24.
    Ermakov SV, Jacobson SC, Ramsey JM (2000) Computer simulations of electrokinetic injection techniques in microfluidic devices. Anal Chem 72(15):3512–3517CrossRefPubMedGoogle Scholar
  25. 25.
    Zhigilei LV, Leveugle E, Garrison BJ, Yingling YG, Zeifman MI (2003) Computer simulations of laser ablation of molecular substrates. Chem Rev 103(2):321–348CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Laboratory Sciences, School of ParamedicineShahid Sadoughi University of Medical SciencesYazdIran
  2. 2.Medical Biotechnology Research Center, Ashkezar BranchIslamic Azad UniversityAshkezarIran

Personalised recommendations