Advertisement

Cotton Cellulose-Derived Hydrogels with Tunable Absorbability: Research Advances and Prospects

  • Yang Hu
  • Rohan S. Dassanayake
  • Sanjit Acharya
  • Noureddine Abidi
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)

Abstract

Cotton is an important, worldwide cash crop and is considered as a ubiquitous resource offering the purest form of cellulose in nature. By far, the most industrially exploited natural resources containing cellulose are wood and cotton. Cellulose derived from either wood or cotton has the same chemical structure. Hydrogels are jellylike materials consisting of substantially hydrophilic cross-linked network filled with water. Upon replacing water with air, hydrogels are able to form aerogels. Cellulose and its derivatives can be used to prepare hydrogels with tailored absorbability and adsorbability. In the first section of this review, we discuss recent progress in the dissolution of high molecular weight cotton-derived cellulose as the dissolution of cellulose is an important step in preparing cellulose-based hydrogels. In the second section, we focus on the preparation of various cotton cellulose-based hydrogels and their derivatives by physical, chemical, and photocatalytic processes and their current applications. The third section includes the preparation and application of cellulose-based aerogels, which are a specific dry form of hydrogels. Overall, this review covers recent research developments in cotton cellulose-based hydrogels and their broad spectrum of applications in agriculture, environment, energy, health, and medicine.

Keywords

Biopolymer Cellulose Hydrogel Aerogels Cotton 

References

  1. 1.
    The United States Department of Agriculture; Foreign Agricultural Service (August 2017) Cotton: world markets and trade. https://apps.fas.usda.gov/psdonline/circulars/cotton.pdf
  2. 2.
    Abidi N, Hequet E, Cabrales L (2010) Changes in sugar composition and cellulose content during the secondary cell wall biogenesis in cotton fibers. Cellulose 17(1):153–160CrossRefGoogle Scholar
  3. 3.
    Abidi N, Hequet E, Cabrales L, Gannaway J, Wilkins T, Wells LW (2008) Evaluating cell wall structure and composition of developing cotton fibers using Fourier transform infrared spectroscopy and thermogravimetric analysis. J Appl Polym Sci 107(1):476–486CrossRefGoogle Scholar
  4. 4.
    Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84(1):40–53CrossRefGoogle Scholar
  5. 5.
    Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6(2):105–121PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Hu Y, Li S, Jackson T, Moussa H, Abidi N (2016) Preparation, characterization, and cationic functionalization of cellulose-based aerogels for wastewater clarification. J Mater 2016:1.  https://doi.org/10.1155/2016/3186589CrossRefGoogle Scholar
  7. 7.
    Stergar J, Maver U (2016) Review of aerogel-based materials in biomedical applications. J Sol-Gel Sci Technol 77(3):738–752CrossRefGoogle Scholar
  8. 8.
    Korhonen JT, Kettunen M, Ras RH, Ikkala O (2011) Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl Mater Interfaces 3(6): 1813–1816PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 44(22):3358–3393PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Acharya S, Hu Y, Moussa H, Abidi N (2017) Preparation and characterization of transparent cellulose films using an improved cellulose dissolution process. J Appl Polym Sci 134(21).  https://doi.org/10.1002/app.44871
  11. 11.
    Hu Y, Catchmark JM (2010) Formation and characterization of spherelike bacterial cellulose particles produced by Acetobacter xylinum JCM 9730 strain. Biomacromolecules 11(7): 1727–1734PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Hu Y, Catchmark JM (2011) In vitro biodegradability and mechanical properties of bioabsorbable bacterial cellulose incorporating cellulases. Acta Biomater 7(7):2835–2845PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Hu Y, Catchmark JM, Vogler EA (2013) Factors impacting the formation of sphere-like bacterial cellulose particles and their biocompatibility for human osteoblast growth. Biomacromolecules 14(10):3444–3452PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Hu Y, Catchmark JM, Zhu Y, Abidi N, Zhou X, Wang J, Liang N (2014) Engineering of porous bacterial cellulose toward human fibroblasts ingrowth for tissue engineering. J Mater Res 29(22):2682–2693CrossRefGoogle Scholar
  15. 15.
    Hu Y, Zhu Y, Zhou X, Ruan C, Pan H, Catchmark JM (2016) Bioabsorbable cellulose composites prepared by an improved mineral-binding process for bone defect repair. J Mater Chem B 4(7):1235–1246CrossRefGoogle Scholar
  16. 16.
    Lin SP, Calvar IL, Catchmark JM, Liu JR, Demirci A, Cheng KC (2013) Biosynthesis, production and applications of bacterial cellulose. Cellulose 20(5):2191–2219CrossRefGoogle Scholar
  17. 17.
    Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3(1):1–10.  https://doi.org/10.1186/1754-6834-3-10CrossRefGoogle Scholar
  18. 18.
    Ruan C, Zhu Y, Zhou X, Abidi N, Hu Y, Catchmark JM (2016) Effect of cellulose crystallinity on bacterial cellulose assembly. Cellulose 23(6):3417–3427CrossRefGoogle Scholar
  19. 19.
    George J, Sabapathi S (2015) Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl 8:45–54PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Zhang YHP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88(7):797–824PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Acharya S, Abidi N, Rajbhandari R, Meulewaeter F (2014) Chemical cationization of cotton fabric for improved dye uptake. Cellulose 21:4693–4706CrossRefGoogle Scholar
  22. 22.
    Zhao Y, Liu X, Wang J, Zhang S (2013) Insight into the cosolvent effect of cellulose dissolution in imidazolium-based ionic liquid systems. J Phys Chem B 117(30):9042–9049PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Woodings C (2001) Regenerated cellulose fibres, vol 18. Woodhead Publishing, Cambridge, pp 27–86CrossRefGoogle Scholar
  24. 24.
    Brooks JA (2004) Disposable wash cloth and method of using. US Patent No. 6806213 B2Google Scholar
  25. 25.
    Fu F, Yang Q, Zhou J, Hu H, Jia B, Zhang L, Wang Y, Tan Q (2014) Structure and properties of regenerated cellulose filaments prepared from cellulose carbamate–NaOH/ZnO aqueous solution. ACS Sustain Chem Eng 2:2604–2612CrossRefGoogle Scholar
  26. 26.
    Medronho B, Lindman B (2015) Brief overview on cellulose dissolution/regeneration interactions and mechanisms. Adv Colloid Interface Sci 222:502–508PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494CrossRefGoogle Scholar
  28. 28.
    Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5(6):539–548PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Yang Q, Fukuzumi H, Saito T, Isogai A, Zhang L (2011) Transparent cellulose films with high gas barrier properties fabricated from aqueous alkali/urea solutions. Biomacromolecules 12(7):2766–2771PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Fu F, Guo Y, Wang Y, Tan Q, Zhou J, Zhang L (2014) Structure and properties of the regenerated cellulose membranes prepared from cellulose carbamate in NaOH/ZnO aqueous solution. Cellulose 21:2819–2830CrossRefGoogle Scholar
  31. 31.
    Morgado DL, Frollini E, Castellan A, Rosa DS, Coma V (2011) Biobased films prepared from NaOH/thiourea aqueous solution of chitosan and linter cellulose. Cellulose 18(3):699–712CrossRefGoogle Scholar
  32. 32.
    Sunday EA, Joseph JO (2017) Production of regenerated cellulose polymeric films from plantain pseudostem. World News Nat Sci 7:26–29Google Scholar
  33. 33.
    Muhammad N, Man Z, Bustam MA, Mutalib MIA, Wilfred CD, Rafiq S (2011) Dissolution and delignification of bamboo biomass using amino acid-based ionic liquid. Appl Biochem Biotechnol 165(3–4):998–1009PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Majumdar A, Mukhopadhyay S, Yadav R (2010) Thermal properties of knitted fabrics made from cotton and regenerated bamboo cellulosic fibres. Int J Therm Sci 49(10):2042–2048CrossRefGoogle Scholar
  35. 35.
    Erdumlu N, Ozipek B (2008) Investigation of regenerated bamboo fibre and yarn characteristics. Fibres Text East Eur 16(4):43–47Google Scholar
  36. 36.
    Hooshmand S, Aitomäki Y, Norberg N, Mathew AP, Oksman K (2015) Dry-spun single-filament fibers comprising solely cellulose nanofibers from bioresidue. ACS Appl Mater Interfaces 7(23):13022–13028PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Guo C, Zhou L, Lv J (2013) Effects of expandable graphite and modified ammonium polyphosphate on the flame-retardant and mechanical properties of wood flour-polypropylene composites. Polym Polym Compos 21(7):449–456CrossRefGoogle Scholar
  38. 38.
    Reddy N, Yang Y (2007) Preparation and characterization of long natural cellulose fibers from wheat straw. J Agric Food Chem 55(21):8570–8575PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Chen HZ, Wang N, Liu LY (2012) Regenerated cellulose membrane prepared with ionic liquid 1-butyl-3-methylimidazolium chloride as solvent using wheat straw. J Chem Technol Biotechnol 87(12):1634–1640CrossRefGoogle Scholar
  40. 40.
    Lim SK, Son TW, Lee DW, Park BK, Cho KM (2001) Novel regenerated cellulose fibers from rice straw. J Appl Polym Sci 82(7):1705–1708CrossRefGoogle Scholar
  41. 41.
    Reddy MM, Vivekanandhan S, Misra M, Bhatia SK, Mohanty AK (2013) Biobased plastics and bionanocomposites: current status and future opportunities. Prog Polym Sci 38(10–11): 1653–1689CrossRefGoogle Scholar
  42. 42.
    Medronho B, Lindman B (2014) Competing forces during cellulose dissolution: from solvents to mechanisms. Curr Opin Colloid Interface Sci 19(1):32–40CrossRefGoogle Scholar
  43. 43.
    Holmberg K, Jonsson B, Kronberg B, Lindman B (2003) Surfactants and polymers in aqueous solution, 2nd edn. Wiley, ChichesterGoogle Scholar
  44. 44.
    Cai BJ, Zhang L, Zhou J, Qi H, Chen H, Kondo T, Chen X, Chu B (2007) Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties. Adv Mater 19:821–825CrossRefGoogle Scholar
  45. 45.
    Sixta H, Michud A, Hauru L, Asaadi S, Ma Y, King AWT, Kilpeläinen I, Hummel M (2015) Ioncell-F: a high-strength regenerated cellulose fibre. Nord Pulp Pap Res J 30(1):43–57CrossRefGoogle Scholar
  46. 46.
    Lindman B, Medronho B (2015) The subtleties of dissolution and regeneration of cellulose: breaking and making hydrogen bonds. BioResources 10(3):3811–3814CrossRefGoogle Scholar
  47. 47.
    Budtova T, Navard P (2016) Cellulose in NaOH–water based solvents: a review. Cellulose 23(1):5–55CrossRefGoogle Scholar
  48. 48.
    Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) General considerations on structure and reactivity of cellulose. In: Comprehensive cellulose chemistry: fundamentals and analytical methods, vol 1. Wiley-VCH, Weinheim, p 331.  https://doi.org/10.1002/3527601929.ch2aCrossRefGoogle Scholar
  49. 49.
    Huber T, Müssig J, Curnow O, Pang S, Bickerton S, Staiger MPA (2011) Critical review of all-cellulose composites. J Mater Sci 47(3):1171–1186CrossRefGoogle Scholar
  50. 50.
    Chen C, Duan C, Li J, Liu Y, Ma X, Zheng L, Stavik J, Ni Y (2016) Cellulose (dissolving pulp) manufacturing processes and properties: a mini-review. BioResources 11(2):5553–5564Google Scholar
  51. 51.
    Kauffman GB (1993) Rayon: the first semi-synthetic fiber product. J Chem Educ 70(11): 887–893.  https://doi.org/10.1021/ed070p887CrossRefGoogle Scholar
  52. 52.
    Fink HP, Ganster J, Lehmann A (2014) Progress in cellulose shaping: 20 years industrial case studies at Fraunhofer IAP. Cellulose 21(1):31–51CrossRefGoogle Scholar
  53. 53.
    Kvarnlöf N, Germgård U, Jönsson LJ, Söderlund CA (2007) Optimization of the enzymatic activation of a dissolving pulp before viscose manufacture. TAPPI J 6(6):14–19Google Scholar
  54. 54.
    Engström AC, Ek M, Henriksson G (2006) Improved accessibility and reactivity of dissolving pulp for the viscose process: pretreatment with monocomponent endoglucanase. Biomacromolecules 7(6):2027–2031PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Tian C, Zheng L, Miao Q, Cao C, Ni Y (2014) Improving the reactivity of Kraft-based dissolving pulp for viscose rayon production by mechanical treatments. Cellulose 21(5): 3647–3654CrossRefGoogle Scholar
  56. 56.
    Fu F, Zhou J, Zhou X, Zhang L, Li D, Kondo T (2014) Green method for production of cellulose multifilament from cellulose carbamate on a pilot scale. ACS Sustain Chem Eng 2:2363–2370CrossRefGoogle Scholar
  57. 57.
    Yin C, Li J, Xu Q, Peng Q, Liu Y, Shen X (2007) Chemical modification of cotton cellulose in supercritical carbon dioxide: synthesis and characterization of cellulose carbamate. Carbohydr Polym 67(2):147–154CrossRefGoogle Scholar
  58. 58.
    Guo Y, Zhou J, Song Y, Zhang L (2009) An efficient and environmentally friendly method for the synthesis of cellulose carbamate by microwave heating. Macromol Rapid Commun 30(17):1504–1508PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Sobue H, Kiessig H, Hess K (1939) The cellulose-sodium hydroxide-water system as a function of the temperature. Z Phys Chem 43:309–328CrossRefGoogle Scholar
  60. 60.
    Cuissinat C, Navard P (2006) Swelling and dissolution of cellulose part II: free floating cotton and wood fibres in NaOH–water–additives systems. Macromol Symp 244(1):19–30CrossRefGoogle Scholar
  61. 61.
    Egal M, Budtova T, Navard P (2007) Structure of aqueous solutions of microcrystalline cellulose/sodium hydroxide below 0°C and the limit of cellulose dissolution. Biomacromolecules 8(7):2282–2287PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Gavillon R, Budtova T (2008) Aerocellulose: new highly porous cellulose prepared from cellulose-NaOH aqueous solutions. Biomacromolecules 9(1):269–277PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Qi H, Chang C, Zhang L (2008) Effects of temperature and molecular weight on dissolution of cellulose in NaOH/urea aqueous solution. Cellulose 15(6):779–787CrossRefGoogle Scholar
  64. 64.
    Kamide K, Okajima K, Kowsaka K (1992) Dissolution of natural cellulose into aqueous alkali solution: role of super-molecular structure of cellulose. Polym J 24(1):71–86CrossRefGoogle Scholar
  65. 65.
    Cai J, Zhang L, Liu S, Liu Y, Xu X, Chen X, Chu B, Guo X, Xu J, Cheng H, Han CC, Kuga S (2008) Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules 41(23):9345–9351CrossRefGoogle Scholar
  66. 66.
    Yamashiki T, Matsui T, Saitoh M, Okajima K, Kamide K, Sawada T (1990) Characterisation of cellulose treated by the steam explosion method. Part 1: influence of cellulose resources on changes in morphology, degree of polymerisation, solubility and solid structure. Br Polym J 22(1):73–83CrossRefGoogle Scholar
  67. 67.
    Wang Y, Zhao Y, Deng Y (2008) Effect of enzymatic treatment on cotton fiber dissolution in NaOH/urea solution at cold temperature. Carbohydr Polym 72(1):178–184CrossRefGoogle Scholar
  68. 68.
    Zhang L, Ruan D, Gao S (2002) Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution. J Polym Sci Part B Polym Phys 40(14):1521–1529CrossRefGoogle Scholar
  69. 69.
    Han D, Yan L (2010) Preparation of all-cellulose composite by selective dissolving of cellulose surface in PEG/NaOH aqueous solution. Carbohydr Polym 79(3):614–619CrossRefGoogle Scholar
  70. 70.
    Yan L, Gao Z (2008) Dissolving of cellulose in PEG/NaOH aqueous solution. Cellulose 15(6):789–796CrossRefGoogle Scholar
  71. 71.
    Yamashiki T, Kamide K, Okajima K, Kowsaka K, Matsui T, Fukase H (1988) Some characteristic features of dilute aqueous alkali solutions of specific alkali concentration (2.5 mol/L) which possess maximum solubility power against cellulose. Polym J 20:447–457CrossRefGoogle Scholar
  72. 72.
    Bock LH (1937) Water-soluble cellulose ethers: a new method of preparation and theory of solubility. Ind Eng Chem 29(9):985–987CrossRefGoogle Scholar
  73. 73.
    Hudson SM, Cuculo JA (1980) The solubility of unmodified cellulose: a critique of the literature. J Macromol Sci C 18(1):1–82CrossRefGoogle Scholar
  74. 74.
    Mccormick CL, Callais PA, Hutchinson BH (1985) Solution studies of cellulose in lithium chloride and N,N-dimethylacetamide. Macromolecules 18(12):2394–2401CrossRefGoogle Scholar
  75. 75.
    McCormick CL, Callais PA (1987) Derivatization of cellulose in lithium chloride and N-N-dimethylacetamide solutions. Polymer 28(13):2317–2323CrossRefGoogle Scholar
  76. 76.
    Patkar SN, Panzade PD, Silva AA, Laver ML, Marcus BF, Chistopher AH, Art JR, Moore JC, Leaca AA, O’Shea P, Timpa JD, Turbak AF, McCormick CL, Callais PA, Hutchinson BH, Dawsey TR, McCormick CL, Leena P, Andre MS, Sjöholm E, Gustafsson K, Eriksson B, Brown W, Colmsjö A (2016) Fast and efficient method for molecular weight analysis of cellulose pulp, in-process and finished product. Anal Methods 8(15):3210–3215CrossRefGoogle Scholar
  77. 77.
    Dawsey TR, McCormick CL (1990) The lithium chloride/dimethylacetamide solvent for cellulose: a literature review. J Macromol Sci Part C 30(3–4):405–440CrossRefGoogle Scholar
  78. 78.
    McCormick CL, Shen TS (1982) Cellulose dissolution and derivatization in lithium chloride/N,N-dimethylacetamide solution. In: Seymour RB, Stahl GS (eds) Macromolecular solutions: solvent-property relationships in polymers. Pergamon Press, New York, pp 101–107CrossRefGoogle Scholar
  79. 79.
    Stryuk S, Eckelt J, Wolf BA (2005) Solutions of cellulose in DMAc + LiCl: migration of the solute in an electrical field. Cellulose 12:145–149CrossRefGoogle Scholar
  80. 80.
    El Seoud OA, Nawaz H, Arêas EPG (2013) Chemistry and applications of polysaccharide solutions in strong electrolytes/dipolar aprotic solvents: an overview. Molecules 18:1270–1313PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Rao CP, Balaram P, Rao CNR (1980) 13C nuclear magnetic resonance studies of the binding of alkali and alkaline earth metal salts to amides. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases 76:1008–1013Google Scholar
  82. 82.
    Balasubramanian D, Shaikh R (1973) On the interaction of lithium salts with model amides. Biopolymers 12(7):1639–1650CrossRefGoogle Scholar
  83. 83.
    Waghorne WE, Ward AJI, Clune TG, Cox BG (1980) Effect of different cations on the N–CO rotational barrier of N,N-dimethylacetamide. Variable temperature proton magnetic resonance study. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases 76:1131–1137Google Scholar
  84. 84.
    Spange S, Reuter A, Vilsmeier E, Heinze T, Keutel D, Linert W (1998) Determination of empirical polarity parameters of the cellulose solvent N, N-Dimethylacetamide/LiCl by means of the solvatochromic technique. J Polym Sci Part A Polym Chem 36:1945–1955CrossRefGoogle Scholar
  85. 85.
    Striegel AM (2003) Advances in the understanding of the dissolution mechanism of cellulose in DMAc/LiCl. J Chil Chem Soc 48(1):73–77CrossRefGoogle Scholar
  86. 86.
    Potthast A, Rosenau T, Sixta H, Kosma P (2002) Degradation of cellulosic materials by heating in DMAc/LiCl. Tetrahedron Lett 43(43):7757–7759CrossRefGoogle Scholar
  87. 87.
    Sen S, Martin JD, Argyropoulos DS (2013) Review of cellulose non-derivatizing solvent interactions with emphasis on activity in inorganic molten salt hydrates. ACS Sustain Chem Eng 1(8):858–870CrossRefGoogle Scholar
  88. 88.
    Rosenau T, Potthast A, Adorjan I, Hofinger A, Sixta H, Firgo H, Kosma P (2002) Cellulose solutions in N-methylmorpholine-N-oxide (NMMO) – degradation processes and stabilizers. Cellulose 9(3–4):283–291CrossRefGoogle Scholar
  89. 89.
    Perepelkin KE (2007) Lyocell fibers based on direct dissolution of cellulose in N-methylmorpholine N-oxide: development and prospects. Fibre Chem 39(2):163–172CrossRefGoogle Scholar
  90. 90.
    Feng L, Chen ZL (2008) Research progress on dissolution and functional modification of cellulose in ionic liquids. J Mol Liq 142(1):1–5CrossRefGoogle Scholar
  91. 91.
    Gericke M, Fardim P, Heinze T (2012) Ionic liquids – promising but challenging solvents for homogeneous derivatization of cellulose. Molecules 17:7458–7502PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Liu J, Lam JWY, Tang BZ (2009) Acetylenic polymers: syntheses, structures, and functions. Chem Rev 109:5799–5867PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124(18):4974–4975PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Cao Y, Zhang R, Cheng T, Guo J, Xian M, Liu H (2017) Imidazolium-based ionic liquids for cellulose pretreatment: recent progresses and future perspectives. Appl Microbiol Biotechnol 101(2):521–532PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109(12):6712–6728PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Chen J, Guan Y, Wang K, Zhang X, Xu F, Sun R (2015) Combined effects of raw materials and solvent systems on the preparation and properties of regenerated cellulose fibers. Carbohydr Polym 128:147–153PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Zhang H, Wu J, Zhang J, He J (2005) 1-allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38(20):8272–8277CrossRefGoogle Scholar
  98. 98.
    Fukaya Y, Hayashi K, Wada M, Ohno H (2008) Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions. Green Chem 10(1):44–46CrossRefGoogle Scholar
  99. 99.
    Fukaya Y, Sugimoto A, Ohno H (2006) Superior solubility of polysaccharides in low viscosity, polar, and halogen-free 1,3-dialkylimidazolium formates. Biomacromolecules 7(12): 3295–3297PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Phillips DM, Drummy LF, Conrady DG, Fox DM, Naik RR, Stone MO, Trulove PC, De Long HC, Mantz RA (2004) Dissolution and regeneration of Bombyx mori silk fibroin using ionic liquids. J Am Chem Soc 126:14350–14351PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Sun N, Rahman M, Qin Y, Maxim ML, Rodríguez H, Rogers RD (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11(5):646–655CrossRefGoogle Scholar
  102. 102.
    Garcia H, Ferreira R, Petkovic M, Ferguson JL, Leit MC, Gunaratne HQN, Seddon KR, Rebelo PN, Silva C (2010) Cutting-edge research for a greener sustainable future dissolution of cork biopolymers in biocompatible ionic liquids. Green Chem 12(3):353–524CrossRefGoogle Scholar
  103. 103.
    Burns FP, Themens PA, Ghandi K (2014) Assessment of phosphonium ionic liquid-dimethylformamide mixtures for dissolution of cellulose. Compos Interfaces 21(1):59–73CrossRefGoogle Scholar
  104. 104.
    Lan W, Liu C, Yue F, Sun R (2013) Chapter 7. Rapid dissolution of cellulose in ionic liquid with different methods. In: van de Ven T, Godbout L (eds) Cellulose – fundamental aspects. Tech Open Access Publisher, Rijeka, pp 179–196Google Scholar
  105. 105.
    Isik M, Sardon H, Mecerreyes D (2014) Ionic liquids and cellulose: dissolution, chemical modification and preparation of new cellulosic materials. Int J Mol Sci 15(7):11922–11940PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Lu B, Xu A, Wang J (2014) Cation does matter: how cationic structure affects the dissolution of cellulose in ionic liquids. Green Chem 16(3):1326–1335CrossRefGoogle Scholar
  107. 107.
    Mazza M, Catana DA, Vaca-Garcia C, Cecutti C (2009) Influence of water on the dissolution of cellulose in selected ionic liquids. Cellulose 16:207–215CrossRefGoogle Scholar
  108. 108.
    Clasen C, Kulicke WM (2001) Determination of viscoelastic and rheo-optical material functions of water-soluble cellulose derivatives. Prog Polym Sci 26(9):1839–1919CrossRefGoogle Scholar
  109. 109.
    Biswas A, Berfield JL, Saha BC, Cheng HN (2013) Conversion of agricultural by-products to methyl cellulose. Ind Crop Prod 46:297–300CrossRefGoogle Scholar
  110. 110.
    Cao J, Sun X, Lu C, Zhou Z, Zhang X, Yuan G (2016) Water-soluble cellulose acetate from waste cotton fabrics and the aqueous processing of all-cellulose composites. Carbohydr Polym 149:60–67PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Yoshimura T, Matsuo K, Fujioka R (2006) Novel biodegradable superabsorbent hydrogels derived from cotton cellulose and succinic anhydride: synthesis and characterization. J Appl Polym Sci 99(6):3251–3256CrossRefGoogle Scholar
  112. 112.
    Weng L, Zhang L, Ruan D, Shi L, Xu J (2004) Thermal gelation of cellulose in a NaOH/thiourea aqueous solution. Langmuir 20(6):2086–2093CrossRefPubMedGoogle Scholar
  113. 113.
    Li L, Shan H, Yue CY, Lam YC, Tam K, Hu X (2002) Thermally induced association and dissociation of methylcellulose in aqueous solutions. Langmuir 18(20):7291–7298CrossRefGoogle Scholar
  114. 114.
    Haque A, Morris ER (1993) Thermogelation of methylcellulose. Part I: molecular structures and processes. Carbohydr Polym 22(3):161–173CrossRefGoogle Scholar
  115. 115.
    Deng J, He Q, Wu Z, Yang W (2008) Using glycidyl methacrylate as crosslinking agent to prepare thermosensitive hydrogels by a novel one-step method. J Polym Sci Part A Polym Chem 46(6):2193–2201CrossRefGoogle Scholar
  116. 116.
    Guo K, Chu CC (2005) Synthesis and characterization of novel biodegradable unsaturated poly(ester amide)/poly(ethylene glycol) diacrylate hydrogels. J Polym Sci Part A Polym Chem 43(17):3932–3944CrossRefGoogle Scholar
  117. 117.
    Bidgoli H, Zamani A, Jeihanipour A, Taherzadeh MJ (2014) Preparation of carboxymethyl cellulose superabsorbents from waste textiles. Fiber Polym 15(3):431–436CrossRefGoogle Scholar
  118. 118.
    Demitri C, Scalera F, Madaghiele M, Sannino A, Maffezzoli A (2013) Potential of cellulose-based superabsorbent hydrogels as water reservoir in agriculture. Int J Polym Sci 2013.  https://doi.org/10.1155/2013/435073. Article ID 435073, 6 pages
  119. 119.
    Buchholz FL (1998) Applications superabsorbent polymers. In: Buchholz FL, Graham T (eds) Modern superabsorbent polymer technology. Wiley-VCH, New York, pp 251–272Google Scholar
  120. 120.
    Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2(2):353–373CrossRefPubMedCentralGoogle Scholar
  121. 121.
    Kono H, Fujita S (2012) Biodegradable superabsorbent hydrogels derived from cellulose by esterification crosslinking with 1, 2, 3, 4-butanetetracarboxylic dianhydride. Carbohydr Polym 87(4):2582–2588CrossRefGoogle Scholar
  122. 122.
    Adel AM, Abou-Youssef H, El-Gendy AA, Nada AM (2010) Carboxymethylated cellulose hydrogel; sorption behavior and characterization. Nat Sci 8(8):244–256Google Scholar
  123. 123.
    Shen X, Shamshina JL, Berton P, Gurau G, Rogers RD (2016) Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chem 18(1):53–75CrossRefGoogle Scholar
  124. 124.
    Ahmad M, Ahmed S, Swami BL, Ikram S (2015) Adsorption of heavy metal ions: role of chitosan and cellulose for water treatment. Langmuir 79:109–155Google Scholar
  125. 125.
    Zhou D, Zhang L, Zhou J, Guo S (2004) Development of a fixed-bed column with cellulose/chitin beads to remove heavy-metal ions. J Appl Polym Sci 94(2):684–691CrossRefGoogle Scholar
  126. 126.
    Zhou Y, Fu S, Liu H, Yang S, Zhan H (2011) Removal of methylene blue dyes from wastewater using cellulose-based superadsorbent hydrogels. Polym Eng Sci 51(12): 2417–2424CrossRefGoogle Scholar
  127. 127.
    Mohammed N, Grishkewich N, Berry RM, Tam KC (2015) Cellulose nanocrystal–alginate hydrogel beads as novel adsorbents for organic dyes in aqueous solutions. Cellulose 22(6):3725–3738CrossRefGoogle Scholar
  128. 128.
    Aouada FA, de Moura MR, Orts WJ, Mattoso LH (2011) Preparation and characterization of novel micro-and nanocomposite hydrogels containing cellulosic fibrils. J Agric Food Chem 59(17):9433–9442PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Peng N, Wang Y, Ye Q, Liang L, An Y, Li Q, Chang C (2016) Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity. Carbohydr Polym 137:59–64PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Noonan C, Quigley S, Curley MAQ (2006) Skin integrity in hospitalized infants and children: a prevalence survey. J Pediatr Nurs 21:445–453PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Boateng JS, Matthews KH, Stevens HN, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97(8):2892–2923CrossRefPubMedGoogle Scholar
  132. 132.
    Fontana JD, De Souza AM, Fontana CK, Torriani IL, Moreschi JC, Gallotti BJ, De Souza SJ, Narcisco GP, Bichara JA, Farah LFX (1990) Acetobacter cellulose pellicle as a temporary skin substitute. Appl Biochem Biotechnol 24:253–264PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Fu L, Zhang J, Yang G (2013) Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr Polym 92:1432–1442CrossRefPubMedGoogle Scholar
  134. 134.
    Hu Y, Catchmark JM (2011) Integration of cellulases into bacterial cellulose: toward bioabsorbable cellulose composites. J Biomed Mater Res B Appl Biomater 97B:114–123CrossRefGoogle Scholar
  135. 135.
    Fischer F, Rigacci A, Pirard R, Berthon-Fabry S, Achard P (2006) Cellulose-based aerogels. Polymer 47(22):7636–7645CrossRefGoogle Scholar
  136. 136.
    Wang M, Anoshkin IV, Nasibulin AG, Korhonen JT, Seitsonen J, Pere J, Kauppinen EI, Ras RH, Ikkala O (2013) Modifying native nanocellulose aerogels with carbon nanotubes for mechanoresponsive conductivity and pressure sensing. Adv Mater 25(17):2428–2432PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Mi QY, Ma SR, Yu J, He JS, Zhang J (2016) Flexible and transparent cellulose aerogels with uniform nanoporous structure by a controlled regeneration process. ACS Sustain Chem Eng 4(3):656–660CrossRefGoogle Scholar
  138. 138.
    Wan C, Li J (2016) Cellulose aerogels functionalized with polypyrrole and silver nanoparticles: in-situ synthesis, characterization and antibacterial activity. Carbohydr Polym 146:362–367PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Rahbar Shamskar K, Heidari H, Rashidi A (2016) Preparation and evaluation of nanocrystalline cellulose aerogels from raw cotton and cotton stalk. Ind Crop Prod 93:203–211CrossRefGoogle Scholar
  140. 140.
    Trache D, Hussin MH, Chuin CTH, Sabar S, Fazita MN, Taiwo OF, Hassan TM, Haafiz MM (2016) Microcrystalline cellulose: isolation, characterization and bio-composites application – a review. Int J Biol Macromol 93:789–804PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Hu Y, Abidi N (2016) Distinct chiral nematic self-assembling behavior caused by different size-unified cellulose nanocrystals via a multistage separation. Langmuir 32(38):9863–9872PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Gu J, Catchmark JM, Kaiser EQ, Archibald DD (2013) Quantification of cellulose nanowhiskers sulfate esterification levels. Carbohydr Polym 92(2):1809–1816PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94(1):154–169PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Zuo L, Zhang Y, Zhang L, Miao YE, Fan W, Liu T (2015) Polymer/carbon-based hybrid aerogels: preparation, properties and applications. Materials 8(10):6806–6848PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Alatalo SM, Pileidis F, Mäkilä E, Sevilla M, Repo E, Salonen J, Sillanpää M, Titirici MM (2015) Versatile cellulose-based carbon aerogel for the removal of both cationic and anionic metal contaminants from water. ACS Appl Mater Interfaces 7(46):25875–25883PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Zhang F, Ren H, Dou J, Tong G, Deng Y (2017) Cellulose nanofibril based-aerogel microreactors: a high efficiency and easy recoverable W/O/W membrane separation system. Sci Rep 7:40096.  https://doi.org/10.1038/srep40096CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Toivonen MS, Kaskela A, Rojas OJ, Kauppinen EI, Ikkala O (2015) Ambient-dried cellulose nanofibril aerogel membranes with high tensile strength and their use for aerosol collection and templates for transparent, flexible devices. Adv Funct Mater 25(42):6618–6626CrossRefGoogle Scholar
  148. 148.
    Bhandari J, Mishra H, Mishra PK, Wimmer R, Ahmad FJ, Talegaonkar S (2017) Cellulose nanofiber aerogel as a promising biomaterial for customized oral drug delivery. Int J Nanomed 12:2021–2031.  https://doi.org/10.2147/IJN.S124318CrossRefGoogle Scholar
  149. 149.
    Pircher N, Fischhuber D, Carbajal L, Strauß C, Nedelec JM, Kasper C, Rosenau T, Liebner F (2015) Preparation and reinforcement of dual-porous biocompatible cellulose scaffolds for tissue engineering. Macromol Mater Eng 300(9):911–924PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Dassanayake RS, Gunathilake C, Jackson T, Jaroniec M, Abidi N (2016) Preparation and adsorption properties of aerocellulose-derived activated carbon monoliths. Cellulose 23(2): 1363–1374CrossRefGoogle Scholar
  151. 151.
    Han Y, Zhang X, Wu X, Lu C (2015) Flame retardant, heat insulating cellulose aerogels from waste cotton fabrics by in situ formation of magnesium hydroxide nanoparticles in cellulose gel nanostructures. ACS Sustain Chem Eng 3(8):1853–1859CrossRefGoogle Scholar
  152. 152.
    Nguyen ST, Feng J, Ng SK, Wong JP, Tan VB, Duong HM (2014) Advanced thermal insulation and absorption properties of recycled cellulose aerogels. Colloids Surf A 445:128–134CrossRefGoogle Scholar
  153. 153.
    Liu H, Geng B, Chen Y, Wang H (2016) Review on the aerogel-type oil sorbents derived from nanocellulose. ACS Sustain Chem Eng 5(1):49–66CrossRefGoogle Scholar
  154. 154.
    Lin R, Li A, Zheng T, Lu L, Cao Y (2015) Hydrophobic and flexible cellulose aerogel as an efficient, green and reusable oil sorbent. RSC Adv 5(100):82027–82033CrossRefGoogle Scholar
  155. 155.
    Duong HM, Nguyen ST (2016) Nanocellulose aerogels as thermal insulation materials. In: Pacheco Torgal F, Buratti C, Kalaiselvam S, Granqvist CG, Ivanov V (eds) Nano and biotech based materials for energy building efficiency. Springer International Publishing, pp 411–427CrossRefGoogle Scholar
  156. 156.
    Jabbour L, Bongiovanni R, Chaussy D, Gerbaldi C, Beneventi D (2013) Cellulose-based Li-ion batteries: a review. Cellulose 20(4):1523–1545CrossRefGoogle Scholar
  157. 157.
    Zhang X, Lin Z, Chen B, Zhang W, Sharma S, Gu W, Deng Y (2014) Solid-state flexible polyaniline/silver cellulose nanofibrils aerogel supercapacitors. J Power Sources 246:283–289CrossRefGoogle Scholar
  158. 158.
    Tamis JE, Jongbloed RH, Karman CC, Koops W, Murk AJ (2012) Rational application of chemicals in response to oil spills may reduce environmental damage. Integr Environ Assess 8(2):231–241CrossRefGoogle Scholar
  159. 159.
    Yang SZ, Jin HJ, Wei Z, He RX, Ji YJ, Li XM, Yu SP (2009) Bioremediation of oil spills in cold environments: a review. Pedosphere 19(3):371–381CrossRefGoogle Scholar
  160. 160.
    Hu H, Zhao Z, Gogotsi Y, Qiu J (2014) Compressible carbon nanotube–graphene hybrid aerogels with superhydrophobicity and superoleophilicity for oil sorption. Environ Sci Technol Lett 1(3):214–220CrossRefGoogle Scholar
  161. 161.
    Cheng H, Gu B, Pennefather MP, Nguyen TX, Phan-Thien N, Duong HM (2017) Cotton aerogels and cotton-cellulose aerogels from environmental waste for oil spillage cleanup. Mater Des 130:452–458CrossRefGoogle Scholar
  162. 162.
    Wan C, Lu Y, Cao J, Sun Q, Li J (2015) Preparation, characterization and oil adsorption properties of cellulose aerogels from four kinds of plant materials via a NAOH/PEG aqueous solution. Fiber Polym 16(2):302–307CrossRefGoogle Scholar
  163. 163.
    Wang C, Li Y, He X, Ding Y, Peng Q, Zhao W, Shi E, Wu S, Cao A (2015) Cotton-derived bulk and fiber aerogels grafted with nitrogen-doped graphene. Nanoscale 7(17):7550–7558PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Bi H, Yin Z, Cao X, Xie X, Tan C, Huang X, Chen B, Chen F, Yang Q, Bu X, Lu X (2013) Carbon fiber aerogel made from raw cotton: a novel, efficient and recyclable sorbent for oils and organic solvents. Adv Mater 25(41):5916–5921PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Dassanayake RS, Rajakaruna E, Moussa H, Abidi N (2016) One-pot synthesis of MnO2–chitin hybrids for effective removal of methylene blue. Int J Biol Macromol 93:350–358PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Chen H, Wang X, Li J, Wang X (2015) Cotton derived carbonaceous aerogels for the efficient removal of organic pollutants and heavy metal ions. J Mater Chem A 3(11):6073–6081CrossRefGoogle Scholar
  167. 167.
    Li Z, Jia Z, Ni T, Li S (2017) Adsorption of methylene blue on natural cotton based flexible carbon fiber aerogels activated by novel air-limited carbonization method. J Mol Liq 242:747–756CrossRefGoogle Scholar
  168. 168.
    Melone L, Altomare L, Alfieri I, Lorenzi A, De Nardo L, Punta C (2013) Ceramic aerogels from TEMPO-oxidized cellulose nanofibre templates: synthesis, characterization, and photocatalytic properties. J Photochem Photobiol A 261:53–60CrossRefGoogle Scholar
  169. 169.
    Gu W, Yushin G (2014) Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene. Wiley Interdiscip Rev: Energy Environ 3(5):424–473Google Scholar
  170. 170.
    Wang Q, Yan J, Fan Z (2016) Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy Environ Sci 9(3):729–762CrossRefGoogle Scholar
  171. 171.
    Hu Y, Tong X, Zhuo H, Zhong L, Peng X, Wang S, Sun R (2016) 3D hierarchical porous N-doped carbon aerogel from renewable cellulose: an attractive carbon for high-performance supercapacitor electrodes and CO2 adsorption. RSC Adv 6(19):15788–15795CrossRefGoogle Scholar
  172. 172.
    Tian J, Peng D, Wu X, Li W, Deng H, Liu S (2017) Electrodeposition of Ag nanoparticles on conductive polyaniline/cellulose aerogels with increased synergistic effect for energy storage. Carbohydr Polym 156:19–25PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325CrossRefGoogle Scholar
  174. 174.
    Wansapura PT (2017) Cellulose and chitin based composites: preparation and chemical characterization. PhD thesis, Texas Tech University, Lubbock, pp 80–93Google Scholar
  175. 175.
    Edwards JV, Fontenot KR, Prevost NT, Pircher N, Liebner F, Condon BD (2016) Preparation, characterization and activity of a peptide-cellulosic aerogel protease sensor from cotton. Sensors 16(11):1789.  https://doi.org/10.3390/s16111789CrossRefPubMedCentralGoogle Scholar
  176. 176.
    Edwards VJ, Fontenot KR, Prevost NT, Haldane D, Pircher N, Liebner F, French A, Condon BD (2016) Protease biosensors based on peptide-nanocellulose conjugates: from molecular design to dressing interface. Int J Med Nano Res 3(2):1–11Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Yang Hu
    • 1
  • Rohan S. Dassanayake
    • 1
  • Sanjit Acharya
    • 1
  • Noureddine Abidi
    • 1
  1. 1.Fiber and Biopolymer Research Institute, Department of Plant and Soil ScienceTexas Tech UniversityLubbockUSA

Personalised recommendations