Advertisement

Stimuli-Responsive Cellulose Based Hydrogels

  • Lei Miao
  • Min Zhang
  • Yuanyuan Tu
  • Shudong Lin
  • Jiwen Hu
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)

Abstract

Stimuli-responsive hydrogels can spontaneously change their physical and chemical properties in response to changes in the external environment, and they have potential applications in numerous fields as demonstrated in many reports. Cellulose is the most abundant polysaccharide in the natural world, and cellulosic polymers have been considered to be outstanding candidates as building blocks for stimuli-responsive hydrogels with great potential applications for absorption, separation, in the biomedical field, as well as other fields. The main purpose of this chapter is to demonstrate the significance of these materials and provide representative examples regarding the combination of stimuli-responsive hydrogels and cellulosic polymers. Inspired by the merits of both cellulose and stimuli-responsive hydrogels, in this chapter, we will also individually discuss some of the superior properties of stimuli-responsive cellulose-based hydrogels relative to a fossil-based hydrogel, including bulk hydrogels, microgels/nanogels, and injectable hydrogels that respond to stimuli such as heat, pH, ionic strength, light, electric field, magnetic fields, or shear, as well as their major applications. Furthermore, the typical strategies for the preparation of hydrogels (i.e., chemical cross-linking and physical cross-linking), as well as the mechanisms that drive the ability of these hydrogels to respond to various stimuli (i.e., heat, pH, light, special chemicals, electric fields, magnetic fields, and shear), will also be briefly presented in this chapter. This chapter might be useful for the development of novel stimuli-responsive cellulose-based hydrogels with high performance.

Keywords

Stimuli-responsive Cellulose Hydrogels Synthesis Applications 

Notes

Acknowledgments

We thank Dr. Ian Wyman for proofreading this paper.

References

  1. 1.
    Stuart MAC, Huck WTS, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9(2):101–113PubMedCrossRefGoogle Scholar
  2. 2.
    Gil ES, Hudson SM (2004) Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci 29(12):1173–1222CrossRefGoogle Scholar
  3. 3.
    Samchenko Y, Ulberg Z, Korotych O (2011) Multipurpose smart hydrogel systems. Adv Colloid Interf Sci 168(1–2):247–262CrossRefGoogle Scholar
  4. 4.
    Rosiak JM, Yoshii F (1999) Hydrogels and their medical applications. Nucl Instrum Methods B 151(1–4):56–64CrossRefGoogle Scholar
  5. 5.
    Koetting MC, Peters JT, Steichen SD, Peppas NA (2015) Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater Sci Eng R 93:1–49CrossRefGoogle Scholar
  6. 6.
    Grabe M, Oster G (2001) Regulation of organelle acidity. J Gen Physiol 117(4):329–343PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Galperin A, Long TJ, Ratner BD (2010) Degradable, Thermo-sensitive poly(N-isopropyl acrylamide)-based scaffolds with controlled porosity for tissue engineering applications. Biomacromolecules 11(10):2583–2592PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Yue MC, Hoshino Y, Ohshiro Y, Imamura K, Miura Y (2014) Temperature-responsive microgel films as reversible carbon dioxide absorbents in wet environment. Angew Chem Int Ed 53(10):2654–2657CrossRefGoogle Scholar
  9. 9.
    Tokarev I, Minko S (2009) Stimuli-responsive hydrogel thin films. Soft Matter 5(3):511–524CrossRefGoogle Scholar
  10. 10.
    Richter A, Paschew G, Klatt S, Lienig J, Arndt KF, Adler HJP (2008) Review on hydrogel-based pH sensors and microsensors. Sensors Basel 8(1):561–581PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Dong L, Jiang H (2007) Autonomous microfluidics with stimuli-responsive hydrogels. Soft Matter 3(10):1223–1230CrossRefGoogle Scholar
  12. 12.
    Takashima Y, Hatanaka S, Otsubo M, Nakahata M, Kakuta T, Hashidzume A, Yamaguchi H, Harada A (2012) Expansion-contraction of photoresponsive artificial muscle regulated by host-guest interactions. Nat Commun 3:1270–1278PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Introduction. In: Comprehensive cellulose chemistry: fundamentals and analytical methods, vol 1. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 105–107Google Scholar
  14. 14.
    Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494CrossRefGoogle Scholar
  15. 15.
    Kang HL, Liu RG, Huang Y (2013) Cellulose derivatives and graft copolymers as blocks for functional materials. Polym Int 62(3):338–344CrossRefGoogle Scholar
  16. 16.
    Hernandez R, Lopez D, Mijangos C (2006) Preparation and characterization of polyacrylic acid-poly(vinyl alcohol)-based interpenetrating hydrogels. J Appl Polym Sci 102(6): 5789–5794CrossRefGoogle Scholar
  17. 17.
    Dragan ES (2014) Design and applications of interpenetrating polymer network hydrogels. A review. Chem Eng J 243:572–590CrossRefGoogle Scholar
  18. 18.
    Spagnol C, Rodrigues FHA, Neto AGVC, Pereira AGB, Fajardo AR, Radovanovic E, Rubira AF, Muniz EC (2012) Nanocomposites based on poly(acrylamide-co-acrylate) and cellulose nanowhiskers. Eur Polym J 48(3):454–463CrossRefGoogle Scholar
  19. 19.
    Chang CW, van Spreeuwel A, Zhang C, Varghese S (2010) PEG/clay nanocomposite hydrogel: a mechanically robust tissue engineering scaffold. Soft Matter 6(20):5157–5164CrossRefGoogle Scholar
  20. 20.
    Huang T, Xu HG, Jiao KX, Zhu LP, Brown HR, Wang HL (2007) A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel. Adv Mater 19(12): 1622–1626CrossRefGoogle Scholar
  21. 21.
    Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2(2):353–373PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Grishkewich N, Mohammed N, Tang JT, Tam KC (2017) Recent advances in the application of cellulose nanocrystals. Curr Opin Colloid Interface Sci 29:32–45CrossRefGoogle Scholar
  23. 23.
    Lam E, Male KB, Chong JH, Leung ACW, Luong JHT (2012) Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends Biotechnol 30(5):283–290PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Xu FJ, Zhu Y, Liu FS, Nie J, Ma J, Yang WT (2010) Comb-shaped conjugates comprising hydroxypropyl cellulose backbones and low-molecular-weight poly(N-isopropylacryamide) side chains for smart hydrogels: synthesis, characterization, and biomedical applications. Bioconjug Chem 21(3):456–464PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Tan JJ, Kang HL, Liu RG, Wang DQ, Jin X, Li QM, Huang Y (2011) Dual-stimuli sensitive nanogels fabricated by self-association of thiolated hydroxypropyl cellulose. Polym Chem 2(3):672–678CrossRefGoogle Scholar
  26. 26.
    Martson M, Viljanto J, Hurme T, Laippala P, Saukko P (1999) Is cellulose sponge degradable or stable as implantation material? An in vivo subcutaneous study in the rat. Biomaterials 20(21):1989–1995PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41(4):1538–1558PubMedCrossRefGoogle Scholar
  28. 28.
    Nasatto PL, Pignon F, Silveira JLM, Duarte MER, Noseda MD, Rinaudo M (2015) Methylcellulose, a cellulose derivative with original physical properties and extended applications. Polymers Basel 7(5):777–803CrossRefGoogle Scholar
  29. 29.
    Joshi SC (2011) Sol-gel behavior of hydroxypropyl methylcellulose (HPMC) in ionic media including drug release. Materials 4(10):1861–1905PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Jing Y, Wu PY (2013) Study on the thermoresponsive two phase transition processes of hydroxypropyl cellulose concentrated aqueous solution: from a microscopic perspective. Cellulose 20(1):67–81CrossRefGoogle Scholar
  31. 31.
    Gulrez SKH, Al-Assaf S, Phillips GO (2011) Hydrogels: methods of preparation, characterisation and applications. In: Carpi A (ed) Progress in molecular and environmental bioengineering: from analysis and modeling to technology applications. InTech, Rijeka, pp 117–150Google Scholar
  32. 32.
    Feng XH, Pelton R (2007) Carboxymethyl cellulose: polyvinylamine complex hydrogel swelling. Macromolecules 40(5):1624–1630CrossRefGoogle Scholar
  33. 33.
    Chen G, Jiang M (2011) Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chem Soc Rev 40(5):2254–2266PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Zhang JT, Bhat R, Jandt KD (2009) Temperature-sensitive PVA/PNIPAAm semi-IPN hydrogels with enhanced responsive properties. Acta Biomater 5(1):488–497PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Luo YF, Peng H, Wu JC, Sun JX, Wang YL (2011) Novel amphoteric pH-sensitive hydrogels derived from ethylenediaminetetraacetic dianhydride, butanediamine and amino-terminated poly(ethylene glycol) design, synthesis and swelling behavior. Eur Polym J 47(1):40–47CrossRefGoogle Scholar
  36. 36.
    Vasylieva N, Barnych B, Meillerd A, Maucler C, Pollegioni L, Lin JS, Barbier D, Marinesco S (2011) Covalent enzyme immobilization by poly(ethylene glycol) diglycidyl ether (PEGDE) for microelectrode biosensor preparation. Biosens Bioelectron 26(10):3993–4000PubMedCrossRefGoogle Scholar
  37. 37.
    Shu XZ, Liu YC, Luo Y, Roberts MC, Prestwich GD (2002) Disulfide cross-linked hyaluronan hydrogels. Biomacromolecules 3(6):1304–1311PubMedCrossRefGoogle Scholar
  38. 38.
    Karaaslan AM, Tshabalala MA, Buschle-Diller G (2010) Wood hemicellulose/chitosan-based semi-interpenetrating network hydrogels: mechanical, swelling and controlled drug release properties. Bioresources 5(2):1036–1054Google Scholar
  39. 39.
    Miao L, Hu JW, Lu MG, Tu YY, Chen X, Li YW, Lin SD, Li F, Hu SY (2016) Alkynyl-functionalization of hydroxypropyl cellulose and thermoresponsive hydrogel thereof prepared with P(NIPAAm-co-HEMAPCL). Carbohydr Polym 137:433–440PubMedCrossRefGoogle Scholar
  40. 40.
    Lin CC, Raza A, Shih H (2011) PEG hydrogels formed by thiol-ene photo-click chemistry and their effect on the formation and recovery of insulin-secreting cell spheroids. Biomaterials 32(36):9685–9695PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Zhang QL, Hoogenboom R (2015) Polymers with upper critical solution temperature behavior in alcohol/water solvent mixtures. Prog Polym Sci 48:122–142CrossRefGoogle Scholar
  42. 42.
    Seuring J, Agarwal S (2012) Polymers with upper critical solution temperature in aqueous solution. Macromol Rapid Commun 33(22):1898–1920PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Niskanen J, Tenhu H (2017) How to manipulate the upper critical solution temperature (UCST)? Polym Chem 8(1):220–232CrossRefGoogle Scholar
  44. 44.
    Schild HG (1992) Poly (N-isopropylacrylamide) – experiment, theory and application. Prog Polym Sci 17(2):163–249CrossRefGoogle Scholar
  45. 45.
    Kawatani R, Nishiyama Y, Kamikubo H, Kakiuchi K, Ajiro H (2017) Aggregation control by multi-stimuli-responsive poly(N-vinylamide) derivatives in aqueous system. Nanoscale Res Lett 12:1–6CrossRefGoogle Scholar
  46. 46.
    Pastorczak M, Dominguez-Espinosa G, Okrasa L, Pyda M, Kozanecki M, Kadlubowski S, Rosiak JM, Ulanski J (2014) Poly(vinyl methyl ether) hydrogels at temperatures below the freezing point of water-molecular interactions and states of water. Colloid Polym Sci 292(8):1775–1784PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Liang X, Kozlovskaya V, Chen Y, Zavgorodnya O, Kharlampieva E (2012) Thermosensitive multilayer hydrogels of poly(N-vinylcaprolactam) as nanothin films and shaped capsules. Chem Mater 24(19):3707–3719PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Liu Y, Lu WL, Wang HC, Zhang X, Zhang H, Wang XQ, Zhou TY, Zhang Q (2007) Controlled delivery of recombinant hirudin based on thermo-sensitive Pluronic (R) F127 hydrogel for subcutaneous administration: in vitro and in vivo characterization. J Control Release 117(3):387–395PubMedCrossRefGoogle Scholar
  49. 49.
    Boustta M, Colombo PE, Lenglet S, Poujol S, Vert M (2014) Versatile UCST-based thermoresponsive hydrogels for loco-regional sustained drug delivery. J Control Release 174:1–6PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Willcock H, Lu A, Hansell CF, Chapman E, Collins IR, O’Reilly RK (2014) One-pot synthesis of responsive sulfobetaine nanoparticles by RAFT polymerisation: the effect of branching on the UCST cloud point. Polym Chem 5(3):1023–1030CrossRefGoogle Scholar
  51. 51.
    Mary P, Bendejacq DD, Labeau MP, Dupuis P (2007) Reconciling low- and high-salt solution behavior of sulfobetaine polyzwitterions. J Phys Chem B 111(27):7767–7777PubMedCrossRefGoogle Scholar
  52. 52.
    Seunng J, Agarwal S (2012) First example of a universal and cost-effective approach: polymers with tunable upper critical solution temperature in water and electrolyte solution. Macromolecules 45(9):3910–3918CrossRefGoogle Scholar
  53. 53.
    Khare AR, Peppas NA, Massimo G, Colombo P (1992) Measurement of the swelling force in ionic polymeric networks.1. Effect of Ph and ionic content. J Control Release 22(3):239–244CrossRefGoogle Scholar
  54. 54.
    Akar E, Altinisik A, Seki Y (2012) Preparation of pH- and ionic-strength responsive biodegradable fumaric acid crosslinked carboxymethyl cellulose. Carbohydr Polym 90(4): 1634–1641PubMedCrossRefGoogle Scholar
  55. 55.
    Liu SY, Armes SP (2001) The facile one-pot synthesis of shell cross-linked micelles in aqueous solution at high solids. J Am Chem Soc 123(40):9910–9911PubMedCrossRefGoogle Scholar
  56. 56.
    Plamper FA, Ruppel M, Schmalz A, Borisov O, Ballauff M, Muller AHE (2007) Tuning the thermoresponsive properties of weak polyelectrolytes: aqueous solutions of star-shaped and linear poly(N,N-dimethylaminoethyl methacrylate). Macromolecules 40(23):8361–8366CrossRefGoogle Scholar
  57. 57.
    Fisher OZ, Peppas NA (2009) Polybasic Nanomatrices prepared by UV-initiated photopolymerization. Macromolecules 42(9):3391–3398PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Tomer R, Florence AT (1993) Photo-responsive hydrogels for potential responsive release applications. Int J Pharm 99(2–3):R5–R8CrossRefGoogle Scholar
  59. 59.
    Merino E, Ribagorda M (2012) Control over molecular motion using the cis-trans photoisomerization of the azo group. Beilstein J Org Chem 8:1071–1090PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Barrett CJ, Mamiya JI, Yager KG, Ikeda T (2007) Photo-mechanical effects in azobenzene-containing soft materials. Soft Matter 3(10):1249–1261CrossRefGoogle Scholar
  61. 61.
    Tamesue S, Takashima Y, Yamaguchi H, Shinkai S, Harada A (2010) Photoswitchable supramolecular hydrogels formed by cyclodextrins and azobenzene polymers. Angew Chem Int Ed 49(41):7461–7464CrossRefGoogle Scholar
  62. 62.
    Sugiura S, Szilagyi A, Sumaru K, Hattori K, Takagi T, Filipcsei G, Zrinyi M, Kanamori T (2009) On-demand microfluidic control by micropatterned light irradiation of a photoresponsive hydrogel sheet. Lab Chip 9(2):196–198PubMedCrossRefGoogle Scholar
  63. 63.
    Fomina N, McFearin C, Sermsakdi M, Edigin O, Almutairi A (2010) UV and near-IR triggered release from polymeric nanoparticles. J Am Chem Soc 132(28):9540–9542PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    He J, Tremblay L, Lacelle S, Zhao Y (2011) Preparation of polymer single chain nanoparticles using intramolecular photodimerization of coumarin. Soft Matter 7(6):2380–2386CrossRefGoogle Scholar
  65. 65.
    Zheng YJ, Mieie M, Mello SV, Mabrouki M, Andreopoulos FM, Konka V, Pham SM, Leblanc RM (2002) PEG-based hydrogel synthesis via the photodimerization of anthracene groups. Macromolecules 35(13):5228–5234CrossRefGoogle Scholar
  66. 66.
    Wu Q, Wang L, Yu HJ, Wang JJ, Chen ZF (2011) Organization of glucose-responsive systems and their properties. Chem Rev 111(12):7855–7875PubMedCrossRefGoogle Scholar
  67. 67.
    Li PF, Xie R, Fan H, Ju XJ, Chen YC, Meng T, Chu LY (2012) Regulation of critical ethanol response concentrations of ethanol-responsive smart gating membranes. Ind Eng Chem Res 51(28):9554–9563CrossRefGoogle Scholar
  68. 68.
    Shang J, Shao ZZ, Chen X (2008) Electrical behavior of a natural polyelectrolyte hydrogel: chitosan/carboxymethylcellulose hydrogel. Biomacromolecules 9(4):1208–1213PubMedCrossRefGoogle Scholar
  69. 69.
    Li L, Hsieh YL (2005) Ultra-fine polyelectrolyte hydrogel fibres from poly(acrylic acid)/poly(vinyl alcohol). Nanotechnology 16(12):2852–2860CrossRefGoogle Scholar
  70. 70.
    Aulisa L, Dong H, Hartgerink JD (2009) Self-assembly of multidomain peptides: sequence variation allows control over cross-linking and viscoelasticity. Biomacromolecules 10(9): 2694–2698PubMedCrossRefGoogle Scholar
  71. 71.
    Nzihou A, Attias L, Sharrock P, Ricard A (1998) A rheological, thermal and mechanical study of bone cement – from a suspension to a solid biomaterial. Powder Technol 99(1):60–69CrossRefGoogle Scholar
  72. 72.
    Li YH, Huang GY, Zhang XH, Li BQ, Chen YM, Lu TL, Lu TJ, Xu F (2013) Magnetic hydrogels and their potential biomedical applications. Adv Funct Mater 23(6):660–672CrossRefGoogle Scholar
  73. 73.
    Zhao XH, Kim J, Cezar CA, Huebsch N, Lee K, Bouhadir K, Mooney DJ (2011) Active scaffolds for on-demand drug and cell delivery. Proc Natl Acad Sci USA 108(1):67–72PubMedCrossRefGoogle Scholar
  74. 74.
    Liu TY, Hu SH, Liu TY, Liu DM, Chen SY (2006) Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug. Langmuir 22(14):5974–5978PubMedCrossRefGoogle Scholar
  75. 75.
    Mehmood N, Hariz A, Fitridge R, Voelcker NH (2014) Applications of modern sensors and wireless technology in effective wound management. J Biomed Mater Res Part B 102(4): 885–895CrossRefGoogle Scholar
  76. 76.
    Boateng J, Catanzano O (2015) Advanced therapeutic dressings for effective wound Healing: a review. J Pharm Sci 104(11):3653–3680PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Jayakumar R, Prabaharan M, Kumar PTS, Nair SV, Tamura H (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29(3):322–337PubMedCrossRefGoogle Scholar
  78. 78.
    Madsen J, Armes SP, Bertal K, Lomas H, MacNeil S, Lewis AL (2008) Biocompatible wound dressings based on chemically degradable triblock copolymer hydrogels. Biomacromolecules 9(8):2265–2275PubMedCrossRefGoogle Scholar
  79. 79.
    Zubik K, Singhsa P, Wang YA, Manuspiya H, Narain R (2017) Thermo-responsive poly(N-isopropylacrylamide)-cellulose nanocrystals hybrid hydrogels for wound dressing. Polymers Basel 9(4):119–136CrossRefGoogle Scholar
  80. 80.
    Jiang Q, Zhou W, Wang J, Tang RP, Zhang D, Wang X (2016) Hypromellose succinate-crosslinked chitosan hydrogel films for potential wound dressing. Int J Biol Macromol 91:85–91PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Barud HGD, da Silva RR, Barud HD, Tercjak A, Gutierrez J, Lustri WR, de Oliveira OB, Ribeiro SJL (2016) A multipurpose natural and renewable polymer in medical applications: bacterial cellulose. Carbohydr Polym 153:406–420CrossRefGoogle Scholar
  82. 82.
    Antimisiaris SG, Mourtas S (2015) Recent advances on anti-HIV vaginal delivery systems development. Adv Drug Deliv Rev 92:123–145PubMedCrossRefGoogle Scholar
  83. 83.
    Krishnan S, Dunbar MS, Minnis AM, Medlin CA, Gerdts CE, Padian NS (2008) Poverty, gender inequities, and women’s risk of human immunodeficiency virus/AIDS. Ann N Y Acad Sci 1136:101–110PubMedCrossRefGoogle Scholar
  84. 84.
    Li N, Yu MH, Deng LD, Yang J, Dong AJ (2012) Thermosensitive hydrogel of hydrophobically-modified methylcellulose for intravaginal drug delivery. J Mater Sci Mater Med 23(8):1913–1919PubMedCrossRefGoogle Scholar
  85. 85.
    Aka-Any-Grah A, Bouchemal K, Koffi A, Agnely F, Zhang M, Djabourov M, Ponchel G (2010) Formulation of mucoadhesive vaginal hydrogels insensitive to dilution with vaginal fluids. Eur J Pharm Biopharm 76(2):296–303PubMedCrossRefGoogle Scholar
  86. 86.
    Soliman GM, Fetih G, Abbas AM (2017) Thermosensitive bioadhesive gels for the vaginal delivery of sildenafil citrate: in vitro characterization and clinical evaluation in women using clomiphene citrate for induction of ovulation. Drug Dev Ind Pharm 43(3):399–408PubMedCrossRefGoogle Scholar
  87. 87.
    Gupta KM, Barnes SR, Tangaro RA, Roberts MC, Owen DH, Katz DF, Kiser PF (2007) Temperature and pH sensitive hydrogels: an approach towards smart semen-triggered vaginal microbicidal vehicles. J Pharm Sci 96(3):670–681PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Hollister SJ (2006) Porous scaffold design for tissue engineering (vol 4, pg 518, 2005). Nat Mater 5(7):590–590CrossRefGoogle Scholar
  89. 89.
    Hoo SP, Loh QL, Yue ZL, Fu J, Tan TTY, Choong C, Chan PPY (2013) Preparation of a soft and interconnected macroporous hydroxypropyl cellulose methacrylate scaffold for adipose tissue engineering. J Mater Chem B 1(24):3107–3117CrossRefGoogle Scholar
  90. 90.
    Tang YF, Wang XY, Li Y, Lei M, Du YM, Kennedy JF, Knill CJ (2010) Production and characterisation of novel injectable chitosan/methylcellulose/salt blend hydrogels with potential application as tissue engineering scaffolds. Carbohydr Polym 82(3):833–841CrossRefGoogle Scholar
  91. 91.
    Yue ZL, Wen F, Gao SJ, Ang MY, Pallathadka PK, Liu LH, Yu H (2010) Preparation of three-dimensional interconnected macroporous cellulosic hydrogels for soft tissue engineering. Biomaterials 31(32):8141–8152PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Shimada N, Nakayama M, Kano A, Maruyama A (2013) Design of UCST polymers for chilling capture of proteins. Biomacromolecules 14(5):1452–1457PubMedCrossRefGoogle Scholar
  93. 93.
    Wang QF, Li SM, Wang ZY, Liu HZ, Li CJ (2009) Preparation and characterization of a positive thermoresponsive hydrogel for drug loading and release. J Appl Polym Sci 111(3): 1417–1425CrossRefGoogle Scholar
  94. 94.
    Zhang GW, Wang Y, Liu GJ (2016) Poly(3-imidazolyl-2-hydroxypropyl methacrylate) – a new polymer with a tunable upper critical solution temperature in water. Polym Chem 7(43): 6645–6654CrossRefGoogle Scholar
  95. 95.
    Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58(15):1655–1670PubMedCrossRefGoogle Scholar
  96. 96.
    Omidian H, Park K (2008) Swelling agents and devices in oral drug delivery. J Drug Deliv Sci Technol 18(2):83–93CrossRefGoogle Scholar
  97. 97.
    Ichikawa S, Iwamoto S, Watanabe J (2005) Formation of biocompatible nanoparticles by self-assembly of enzymatic hydrolysates of chitosan and carboxymethyl cellulose. Biosci Biotech Bioch 69(9):1637–1642CrossRefGoogle Scholar
  98. 98.
    Abeer MM, Amin MCIM, Martin C (2014) A review of bacterial cellulose-based drug delivery systems: their biochemistry, current approaches and future prospects. J Pharm Pharmacol 66(8):1047–1061PubMedGoogle Scholar
  99. 99.
    Swamy BY, Yun YS (2015) In vitro release of metformin from iron (III) cross-linked alginate-carboxymethyl cellulose hydrogel beads. Int J Biol Macromol 77:114–119PubMedCrossRefGoogle Scholar
  100. 100.
    Gunathilake TMSU, Ching YC, Chuah CH (2017) Enhancement of curcumin bioavailability using nanocellulose reinforced chitosan hydrogel. Polymers Basel 9(2):64–83CrossRefGoogle Scholar
  101. 101.
    Rodriguez R, Alvarez-Lorenzo C, Concheiro A (2003) Cationic cellulose hydrogels: kinetics of the cross-linking process and characterization as pH-/ion-sensitive drug delivery systems. J Control Release 86(2–3):253–265PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Vakili M, Rafatullah M, Salamatinia B, Abdullah AZ, Ibrahim MH, Tan KB, Gholami Z, Amouzgar P (2014) Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review. Carbohydr Polym 113:115–130PubMedCrossRefGoogle Scholar
  103. 103.
    Mu B, Wang A (2016) Adsorption of dyes onto palygorskite and its composites: a review. J Environ Chem Eng 4(1):1274–1294CrossRefGoogle Scholar
  104. 104.
    Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97(9):1061–1085PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Lin QW, Gao MF, Chang JL, Ma HZ (2016) Adsorption properties of crosslinking carboxymethyl cellulose grafting dimethyldiallylammonium chloride for cationic and anionicdyes. Carbohydr Polym 151:283–294PubMedCrossRefGoogle Scholar
  106. 106.
    Kono H, Ogasawara K, Kusumoto R, Oshima K, Hashimoto H, Shimizu Y (2016) Cationic cellulose hydrogels cross-linked by poly(ethylene glycol): preparation, molecular dynamics, and adsorption of anionic dyes. Carbohydr Polym 152:170–180PubMedCrossRefGoogle Scholar
  107. 107.
    Wang YX, Wang ZC, Wu KL, Wu JN, Meng GH, Liu ZY, Guo XH (2017) Synthesis of cellulose-based double-network hydrogels demonstrating high strength, self-healing, and antibacterial properties. Carbohydr Polym 168:112–120PubMedCrossRefGoogle Scholar
  108. 108.
    Yadollahi M, Namazi H, Aghazadeh M (2015) Antibacterial carboxymethyl cellulose/Ag nanocomposite hydrogels cross-linked with layered double hydroxides. Int J Biol Macromol 79:269–277PubMedCrossRefGoogle Scholar
  109. 109.
    Yadollahi M, Gholamali I, Namazi H, Aghazadeh M (2015) Synthesis and characterization of antibacterial carboxymethyl cellulose/ZnO nanocomposite hydrogels. Int J Biol Macromol 74:136–141PubMedCrossRefGoogle Scholar
  110. 110.
    O’Connor NA, Abugharbieh A, Yasmeen F, Buabeng E, Mathew S, Samaroo D, Cheng HP (2015) The crosslinking of polysaccharides with polyamines and dextran-polyallylamine antibacterial hydrogels. Int J Biol Macromol 72:88–93PubMedCrossRefGoogle Scholar
  111. 111.
    Kassal P, Zubak M, Scheipl G, Mohr GJ, Steinberg MD, Steinberg IM (2017) Smart bandage with wireless connectivity for optical monitoring of pH. Sensors Actuators B Chem 246:455–460CrossRefGoogle Scholar
  112. 112.
    Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K (2008) The development of microgels/nanogels for drug delivery applications. Prog Polym Sci 33(4):448–477CrossRefGoogle Scholar
  113. 113.
    Li YP, Xiao WW, Xiao K, Berti L, Luo JT, Tseng HP, Fung G, Lam KS (2012) Well-defined, reversible boronate crosslinked nanocarriers for targeted drug delivery in response to acidic pH values and cis-diols. Angew Chem Int Ed 51(12):2864–2869CrossRefGoogle Scholar
  114. 114.
    Cheng R, Meng FH, Deng C, Klok HA, Zhong ZY (2013) Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 34(14): 3647–3657PubMedCrossRefGoogle Scholar
  115. 115.
    Geng Y, Dalhaimer P, Cai SS, Tsai R, Tewari M, Minko T, Discher DE (2007) Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2(4):249–255PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    An D, Zhao D, Li XT, Lu XH, Qiu G, Shea KJ (2015) Synthesis of surfactant-free hydroxypropylcellulose nanogel and its dual-responsive properties. Carbohydr Polym 134:385–389PubMedCrossRefGoogle Scholar
  117. 117.
    He L, Liang HS, Lin LF, Shah BR, Li Y, Che YJ, Li B (2015) Green-step assembly of low density lipoprotein/sodium carboxymethyl cellulose nanogels for facile loading and pH-dependent release of doxorubicin. Colloids Surf B Biointerfaces 126:288–296PubMedCrossRefGoogle Scholar
  118. 118.
    Liu F, Hu JW, Liu GJ, Lin SD, Tu YY, Hou CM, Zou HL, Yang Y, Wu Y, Mo YM (2014) Emulsion and nanocapsules of ternary graft copolymers. Polym Chem 5(4):1381–1392CrossRefGoogle Scholar
  119. 119.
    Du JZ, Tang LY, Song WJ, Shi Y, Wang J (2009) Evaluation of polymeric micelles from brush polymer with poly(epsilon-caprolactone)-b-poly(ethylene glycol) side chains as drug carrier. Biomacromolecules 10(8):2169–2174PubMedCrossRefGoogle Scholar
  120. 120.
    Sheiko SS, Sumerlin BS, Matyjaszewski K (2008) Cylindrical molecular brushes: synthesis, characterization, and properties. Prog Polym Sci 33(7):759–785CrossRefGoogle Scholar
  121. 121.
    Zhao P, Liu LX, Feng XQ, Wang C, Shuai XT, Chen YM (2012) Molecular nanoworm with PCL core and PEO shell as a non-spherical carrier for drug delivery. Macromol Rapid Commun 33(16):1351–1355PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Jiang F, Hsieh YL (2014) Amphiphilic superabsorbent cellulose nanofibril aerogels. J Mater Chem A 2(18):6337–6342CrossRefGoogle Scholar
  123. 123.
    Kettunen M, Silvennoinen RJ, Houbenov N, Nykanen A, Ruokolainen J, Sainio J, Pore V, Kemell M, Ankerfors M, Lindstrom T, Ritala M, Ras RHA, Ikkala O (2011) Photoswitchable superabsorbency based on nanocellulose aerogels. Adv Funct Mater 21(3):510–517CrossRefGoogle Scholar
  124. 124.
    Jin CF, Yan RS, Huang JG (2011) Cellulose substance with reversible photo-responsive wettability by surface modification. J Mater Chem 21(43):17519–17525CrossRefGoogle Scholar
  125. 125.
    Yu ZY, Zhang J, Coulston RJ, Parker RM, Biedermann F, Liu X, Scherman OA, Abell C (2015) Supramolecular hydrogel microcapsules via cucurbit[8]uril host-guest interactions with triggered and UV-controlled molecular permeability. Chem Sci 6(8):4929–4933PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Tan CSY, del Barrio J, Liu J, Scherman OA (2015) Supramolecular polymer networks based on cucurbit[8]uril host-guest interactions as aqueous photo-rheological fluids. Polym Chem 6(44):7652–7657CrossRefGoogle Scholar
  127. 127.
    Yu L, Ding JD (2008) Injectable hydrogels as unique biomedical materials. Chem Soc Rev 37(8):1473–1481PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Guvendiren M, Lu HD, Burdick JA (2012) Shear-thinning hydrogels for biomedical applications. Soft Matter 8(2):260–272CrossRefGoogle Scholar
  129. 129.
    Yan CQ, Altunbas A, Yucel T, Nagarkar RP, Schneider JP, Pochan DJ (2010) Injectable solid hydrogel: mechanism of shear-thinning and immediate recovery of injectable beta-hairpin peptide hydrogels. Soft Matter 6(20):5143–5156PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Chiu YL, Chen SC, Su CJ, Hsiao CW, Chen YM, Chen HL, Sung HW (2009) pH-triggered injectable hydrogels prepared from aqueous N-palmitoyl chitosan: in vitro characteristics and in vivo biocompatibility. Biomaterials 30(28):4877–4888PubMedCrossRefGoogle Scholar
  131. 131.
    Olsen BD, Kornfield JA, Tirrell DA (2010) Yielding behavior in injectable hydrogels from telechelic proteins. Macromolecules 43(21):9094–9099PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Himmelein S, Lewe V, Stuart MCA, Ravoo BJ (2014) A carbohydrate-based hydrogel containing vesicles as responsive non-covalent cross-linkers. Chem Sci 5(3):1054–1058CrossRefGoogle Scholar
  133. 133.
    Markstedt K, Mantas A, Tournier I, Avila HM, Hagg D, Gatenholm P (2015) 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16(5):1489–1496PubMedCrossRefGoogle Scholar
  134. 134.
    Moschou EA, Peteu SF, Bachas LG, Madou MJ, Daunert S (2004) Artificial muscle material with fast electroactuation under neutral pH conditions. Chem Mater 16(12):2499–2502CrossRefGoogle Scholar
  135. 135.
    Morales D, Palleau E, Dickey MD, Velev OD (2014) Electro-actuated hydrogel walkers with dual responsive legs. Soft Matter 10(9):1337–1348PubMedCrossRefGoogle Scholar
  136. 136.
    Santaniello T, Migliorini L, Locatelli E, Monaco I, Yan YS, Lenardi C, Franchini MC, Milani P (2017) Hybrid nanocomposites based on electroactive hydrogels and cellulose nanocrystals for high-sensitivity electro-mechanical underwater actuation. Smart Mater Struct 26(8): 85030–85040CrossRefGoogle Scholar
  137. 137.
    Shi XN, Zheng YD, Wang C, Yue LN, Qiao K, Wang GJ, Wang LN, Quan HY (2015) Dual stimulus responsive drug release under the interaction of pH value and pulsatile electric field for a bacterial cellulose/sodium alginate/multi-walled carbon nanotube hybrid hydrogel. RSC Adv 5(52):41820–41829CrossRefGoogle Scholar
  138. 138.
    Murdan S (2003) Electro-responsive drug delivery from hydrogels. J Control Release 92(1–2):1–17PubMedCrossRefGoogle Scholar
  139. 139.
    Delgado-Charro MB, Guy RH (2001) Transdermal iontophoresis for controlled drug delivery and non-invasive monitoring. Stp Pharma Sci 11(6):403–414Google Scholar
  140. 140.
    Xu PA, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Lai C, Wei Z, Huang C, Xie GX, Liu ZF (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    He F, Zhao DY, Liu JC, Roberts CB (2007) Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Ind Eng Chem Res 46(1):29–34CrossRefGoogle Scholar
  142. 142.
    Xu F, Wu CAM, Rengarajan V, Finley TD, Keles HO, Sung YR, Li BQ, Gurkan UA, Demirci U (2011) Three-dimensional magnetic assembly of microscale hydrogels. Adv Mater 23(37): 4254–4260PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Lei Miao
    • 1
    • 2
  • Min Zhang
    • 1
  • Yuanyuan Tu
    • 2
  • Shudong Lin
    • 2
  • Jiwen Hu
    • 2
  1. 1.School of Materials Science and Energy EngineeringFoshan UniversityFoshanPeople’s Republic of China
  2. 2.Guangzhou Institute of ChemistryChinese Academy of SciencesGuangzhouPeople’s Republic of China

Personalised recommendations