Cellulose-Based Superabsorbent Hydrogels

  • Abdulraheim M. A. Hasan
  • Manar El-Sayed Abdel-RaoufEmail author
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)


Hydrogels are polymeric three-dimensional networks able to absorb and release water solutions. Sometimes, this behavior is reversed in response to definite environmental stimuli, i.e., temperature, pH, ionic strength, etc. Such stimuli-responsive behavior makes hydrogels attractive candidates for the design of “smart” devices, applicable in a variety of technological fields. In particular, when concerning either ecological or biocompatibility issues, the biodegradability of the hydrogel network, combined with the control of the degradation rate, may add more value to the developed device. Development of new products and materials, particularly those which are based on renewable organic resources using innovative sustainable processes, represents an increasing interest in both academic and industrial research. Cellulose and its derivatives – with numerous hydroxyl groups – have established to be flexible materials with unique chemical structure which provides a good platform for the creation of hydrogel networks with distinctive properties with respect to swelling ability and sensibility to external stimuli. Consequently, cellulose-based hydrogels are attractive materials, biodegradable, biocompatible, and low cost, which exhibit properties that make them promising in many applications, particularly in biomedical and environmental applications. This article reviews the design and the applications of cellulose-based hydrogels, which are extensively investigated due to cellulose availability in nature, the intrinsic degradability of cellulose, and the smart behavior displayed by some cellulose derivatives.


Cellulose Carboxymethyl cellulose Hydrogels Smart polymers 



The authors express their gratitude for the Egyptian Petroleum Research Institute for supporting this work.


  1. 1.
    Kamath KR, Park K (1993) Biodegradable hydrogels in drug delivery. Adv Drug Deliv Rev 11:59–84CrossRefGoogle Scholar
  2. 2.
    Kaplan DL (1998) Introduction to polymers from renewable resources. In: Kaplan DL (ed) Biopolymers from renewable resources. Springer, Berlin, pp 1–29CrossRefGoogle Scholar
  3. 3.
    Narain R (2011) Engineered carbohydrate-based materials for biomedical applications: polymers, surfaces, dendrimers, nanoparticles, and hydrogels. Wiley, Hoboken, pp 15–36CrossRefGoogle Scholar
  4. 4.
    Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46:92–100CrossRefGoogle Scholar
  5. 5.
    Carmen AL, Barbara BF, Ana MP, Angel C (2013) Cross-linked ionic polysaccharides for stimuli-sensitive drug delivery. Adv Drug Deliv Rev 65:1148–1171CrossRefGoogle Scholar
  6. 6.
    Brandt L (2001) Cellulose ethers. In: Wilks ES (ed) Industrial polymers handbook, vol 3. Wiley-VCH, Weinheim, pp 1569–1613Google Scholar
  7. 7.
    Xie J, Hsieh YL (2003) Thermosensitive poly(n-isopropylacrylamide) hydrogels bonded on cellulose supports. J Appl Polym Sci 89:999–1006CrossRefGoogle Scholar
  8. 8.
    Lund K, Sjöström K, Brelid H (2012) Alkali extraction of kraft pulp fibers: influence on fiber and fluff pulp properties. J Eng Fibers Fabr 7:30–39Google Scholar
  9. 9.
    Krassig HA (1993) Cellulose-structure, accessibility and reactivity. Gordon and Breach Science Publisher, Yverdon, pp 103–119Google Scholar
  10. 10.
    Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393CrossRefGoogle Scholar
  11. 11.
    Krassig HA (1985) In: Kennedy JF, Phillips GO, Wedlock DJ, Williams PA (eds) Cellulose and its derivatives: chemistry, biochemistry and applications. Ellis Horwood Limited, Chichester, pp 3–25Google Scholar
  12. 12.
    Wakelyn PJ (1998) In: Lewin M, Pearce EM (eds) Handbook of fiber chemistry. Marcel Dekker, New York, pp 642–654Google Scholar
  13. 13.
    Zeronian SH (1985) In: Nevell TP, Zeronian SH (eds) Cellulose chemistry and its applications. Ellis Horwood Limited, Chichester, pp 159–180Google Scholar
  14. 14.
    Roy D, Semsarilar M, James T, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Trejo-O’Reilly JA, Cavaille JY, Gandini A (1997) The surface chemical modification of cellulosic fibers in view of their use in composite materials. Cellulose 4:305–320CrossRefGoogle Scholar
  16. 16.
    Vail SL (1985) In: Nevell TP, Zeronian SH (eds) Cellulose chemistry and its applications. Halsted Press, John Wiley, New York, pp 384–422Google Scholar
  17. 17.
    Stevens MP (1999) Polymer chemistry, 3rd edn. Oxford University Press, New York, pp 122–157Google Scholar
  18. 18.
    Odian G (2004) Principles of polymerization, 4th edn. Wiley, HobokenCrossRefGoogle Scholar
  19. 19.
    Roy D, Guthrie JT, Perrier S (2005) Cellulose modification by polymer grafting: a review. Polym Prepr Am Chem Soc Div Polym Chem 46:324–325Google Scholar
  20. 20.
    Gomez-Dıaz D, Navaza JM (2002) Rheological characterization of aqueous solutions of the food additive carboxymethyl cellulose. Elec J Env Agricult Food Chem 1(1):1579–1587Google Scholar
  21. 21.
    Sannino A, Esposito A, Nicolais L, Del Nobile MA, Giovane A, Balestrieri C, Esposito R, Agresti M (2000) Cellulose-based hydrogels as body water retainers. J Mater Sci Mater Med 11(4):247–253CrossRefPubMedGoogle Scholar
  22. 22.
    Bao Y, Ma J, Li N (2011) Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly (AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydr Polym 84(1):76–82CrossRefGoogle Scholar
  23. 23.
    Chang C, Duan B, Cai J (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46(1):92–100CrossRefGoogle Scholar
  24. 24.
    Bao Y, Ma J, Sun Y (2012) Swelling behaviors of organic/inorganic composites based on various cellulose derivatives and inorganic particles. Carbohydr Polym 88(2):589–595CrossRefGoogle Scholar
  25. 25.
    Bortolin A, Aouada FA, Mattoso LH, Ribeiro C (2013) Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: evidence of synergistic effects for the slow release of fertilizers. J Agric Food Chem 61(31):7431–7439CrossRefPubMedGoogle Scholar
  26. 26.
    Stoyneva V, Momekova D, Kostova B (2014) Stimuli sensitive super-macroporous cryogels based on photocrosslinked 2-hydroxyethylcellulose and chitosan. Carbohydr Polym 99:825–830CrossRefPubMedGoogle Scholar
  27. 27.
    Liu C, Wei N, Wang S (2009) Preparation and characterization superporous hydroxypropyl methylcellulose gel beads. Carbohydr Polym 78(1):1–4CrossRefGoogle Scholar
  28. 28.
    Peng XW, Ren JL, Zhong LX (2011) Xylan-rich hemicelluloses-graft-acrylic acid ionic hydrogels with rapid responses to pH, salt, and organic solvents. J Agric Food Chem 59(15):8208–8215CrossRefPubMedGoogle Scholar
  29. 29.
    Sand A, Yadav M, Behari K (2010) Preparation and characterization of modified sodium carboxymethyl cellulose via free radical grafting copolymerization of vinyl sulfonic acid in aqueous media. Carbohydr Polym 81(1):97–103CrossRefGoogle Scholar
  30. 30.
    Tripathy J, Mishra DK, Behari K (2009) Grafting copolymerization of N-vinylformamide onto sodium carboxymethylcellulose and study of its swelling, metal ion sorption and flocculation behaviour. Carbohydr Polym 75(4):604–611CrossRefGoogle Scholar
  31. 31.
    Liu J, Li Q, Su Y (2013) Synthesis of wheat straw cellulose-g-poly (potassium acrylate)/PVA semi-IPNs superabsorbent resin. Carbohydr Polym 94(1):539–546CrossRefPubMedGoogle Scholar
  32. 32.
    Gil E, Hudson S (2004) Stimuli-responsive polymers and their bioconjugates. Prog Polym Sci 29(12):1173–1222. ISSN: 0079-6700CrossRefGoogle Scholar
  33. 33.
    Peppas N, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50(1):27–46. ISSN 0939-6411CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Alpesh P, Kibret M (2011) Hydrogel biomaterials, biomedical engineering – frontiers and challenges. Prof. Reza Fazel (Ed.). InTech. ISBN: 978-953-307-309-5. Available from
  35. 35.
    Chen C, Tsai C, Chen W, Mi F, Liang H, Chen S, Sung H (2006) Novel living cell sheet harvest system composed of thermo-reversible methylcellulose hydrogels. Biomacromolecules 7(3):736–743CrossRefPubMedGoogle Scholar
  36. 36.
    Stabenfeldt SE, Garcia AJ, LaPlaca MC (2006) Thermo-reversible laminin-functionalized hydrogel for neural tissue engineering. J Biomed Mater Res A 77(4):718–725CrossRefPubMedGoogle Scholar
  37. 37.
    Te N (2007) On the nature of crosslinks in thermo-reversible gels. Polym Bull 58(1):27–42CrossRefGoogle Scholar
  38. 38.
    Schmaljohann D (2005) Thermo-responsive polymers and hydrogels in tissue engineering. E-Polymers 5:1–17. 021. ISSN 1618-7229CrossRefGoogle Scholar
  39. 39.
    Vinatier C, Magne D, Weiss P, Trojani C, Rochet N, Carle G, Vignes C, Chadjichristos C, Galera P, Daculsi G, Guicheux J (2005) A silanized hydroxypropyl methylcellulose hydrogel for the three-dimensional culture of chondrocytes. Biomaterials 26(33):6643–6651. ISSN: 0142-9612CrossRefPubMedGoogle Scholar
  40. 40.
    Weng L, Zhang L, Ruan D, Shi L, Xu J (2004) Thermal gelation of cellulose in a NaOH/thiourea aqueous solution. Langmuir 20:2086CrossRefPubMedGoogle Scholar
  41. 41.
    Deng J, He Q, Wu Z, Yang W (2008) Using glycidyl methacrylate as crosslinking agent to prepare thermosensitive hydrogels by a novel one-step method. J Polym Sci A Polym Chem 46:2193CrossRefGoogle Scholar
  42. 42.
    Wu D, Wang T, Lu B, Xu X, Cheng S, Jiang X (2008) Fabrication of supramolecular hydrogels for drug delivery and stem cell encapsulation. Langmuir 24:10306CrossRefPubMedGoogle Scholar
  43. 43.
    Vinatier C, Magne D, Moreau A, Gauthier O, Malard O, Colombeix C, Daculsi G, Weiss P, Guicheux J (2007) Engineering cartilage with human nasal chondrocytes and a silanized hydroxypropyl methylcellulose hydrogel. J Biomed Mater Res 80A(1):66–74CrossRefGoogle Scholar
  44. 44.
    Zohuriaan-Mehr MJ, Kabir K (2008) Superabsorbent polymer material: a review. Iran Polym J 17(6):451–477Google Scholar
  45. 45.
    Alessandro S, Christian D, Marta M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2:353–373. Scholar
  46. 46.
    Chen H, Fan M (2008) Novel thermally sensitive pH-dependent chitosan/carboxymethyl cellulose hydrogels. J Bioact Compat Polym 23(1):38–48CrossRefGoogle Scholar
  47. 47.
    Sannino A, Pappadà S, Madaghiele M, Maffezzoli A, Ambrosio L, Nicolais L (2005) Crosslinking of cellulose derivatives and hyaluronic acid with water-soluble carbodiimide. Polymer 46(25):11206–11212CrossRefGoogle Scholar
  48. 48.
    Marcì G, Mele G, Palmisano L, Pulito P, Sannino A (2006) Environmentally sustainable production of cellulose-based superabsorbent hydrogels. Green Chem 8(5):439–444CrossRefGoogle Scholar
  49. 49.
    Sarvas M, Pavlenda P, Takacova E (2007) Effect of hydrogel application on survival and growth of pine seedlings in reclamations. J For Sci 53(5):204–209Google Scholar
  50. 50.
    Lenzi F, Sannino A, Borriello A, Porro F, Mensitieri G (2003) Probing the degree of crosslinking of a cellulose based superabsorbing hydrogel through traditional and NMR techniques. Polymer 44(5):1577–1588CrossRefGoogle Scholar
  51. 51.
    Trong MD, Mei-Lien H, Ai-Chien C, Kuo-Huai K, Wen-Yen C, Lien-Hua C (2008) Preparation of thermo-responsive acrylic hydrogels useful for the application in transdermal drug delivery systems. Mater Chem Phys 107:266–273CrossRefGoogle Scholar
  52. 52.
    Jing W, Xuesong Z, Huining X (2013) Structure and properties of cellulose/poly(N-isopropylacrylamide) hydrogels prepared by SIPN strategy. Carbohydr Polym 94:749–754CrossRefGoogle Scholar
  53. 53.
    Zhang GQ, Zha LS, Zhou MH, Ma JH, Liang BR (2005) Preparation and characterization of pH- and temperature-responsive semi-interpenetrating polymer network hydrogels based on linear sodium alginate and crosslinked poly(N-isopropylacrylamide). J Appl Polym Sci 97:1931–1940CrossRefGoogle Scholar
  54. 54.
    Fidelia N, Chris B (2011) Environmentally friendly superabsorbent polymers for water conservation in agricultural lands. J Soil Sci Environ Manage 2(7):206–211Google Scholar
  55. 55.
    Guyton AC, Hall JE (1998) Secretory functions of the alimentary tract. In: Guyton AC, Hall JE (eds) Textbook of medical physiology. Elsevier Saunders, Philadelphia, pp 815–832Google Scholar
  56. 56.
    Deshpande AA (1992) Intravaginal drug delivery. Drug Dev Ind Pharm 18:1225–1279CrossRefGoogle Scholar
  57. 57.
    Sujan D, Pousali S, Dibakar D (2016) Temperature, pH and redox responsive cellulose based hydrogels for protein delivery. Int J Biol Macromol 87:92–100CrossRefGoogle Scholar
  58. 58.
    Lim SL, Ishak A, Azwan ML (2015) pH sensitive hydrogel based on poly(acrylic acid) and cellulose nanocrystals. Sains Malaysiana 44(6):779–785CrossRefGoogle Scholar
  59. 59.
    Gholamreza M, Ali A, Hossein E, Hossein H (2017) Magnetic/pH-sensitive nanocomposite hydrogel based carboxymethyl cellulose-g-polyacrylamide/montmorillonite for colon targeted drug deliver. Nanomed Res J 2(2):111–122Google Scholar
  60. 60.
    Toshio Y, Nana H, Rumiko F (1997) Preparation and Characterization of Biodegradable Hydrogels Based on Ulvan, a Polysaccharide from Green Seaweeds. Polymer 38:2791CrossRefGoogle Scholar
  61. 61.
    Min-min W, Li W (2013) Synthesis and characterization of carboxymethyl cellulose/organic montmorillonite nanocomposites and its adsorption behavior for Congo Red dye. Water Sci Eng 6(3):272–282Google Scholar
  62. 62.
    Toshio Y, Keiko S, Rumiko F (2005) Pectin-based surperabsorbent hydrogels crosslinked by some chemicals: synthesis and characterization. Polym Bull 55:123–129CrossRefGoogle Scholar
  63. 63.
    Stahl JD, Cameron MD, Haselbach J, Aust SD (2000) Biodegradation of superabsorbent polymers in soil. Environ Sci Pollut Res Int 7(2):83–88CrossRefPubMedGoogle Scholar
  64. 64.
    Barbucci R, Magnani A, Consumi M (2000) Swelling behavior of carboxymethylcellulose hydrogels in relation to cross-linking, pH, and charge density. Macromolecules 33:7475–7480CrossRefGoogle Scholar
  65. 65.
    Heinze T, Pfeiffer K (1999) Studies on the synthesis and characterization of carboxymethylcellulose. Angew Makromol Chem 266:37–45CrossRefGoogle Scholar
  66. 66.
    Suo A, Qian J, Yao Y, Zhang W (2007) Synthesis and properties of carboxymethyl cellulose-graft-poly(acrylic acid-co-acrylamide) as a novel cellulose-based superabsorbent. J Appl Polym Sci 103:1382–1388CrossRefGoogle Scholar
  67. 67.
    Lee WF, Wu RJ (1996) Superabsorbent polymeric materials. I. Swelling behaviors of crosslinked poly(sodium acrylate-co-hydroxyethyl methacrylate) in aqueous salt solution. J Appl Polym Sci 62:1099–1114CrossRefGoogle Scholar
  68. 68.
    Toshio Y, Kaori M, Rumiko F (2006) Novel biodegradable superabsorbent hydrogels derived from cotton cellulose and succinic anhydride: synthesis and characterization. J Appl Polym Sci 99:3251–3256CrossRefGoogle Scholar
  69. 69.
    Montesanoa FF, Parente A, Santamaria P, Sannino A, Serio F (2015) Biodegradable superabsorbent hydrogel increases water retention properties of growing media and plant growth. Agric Agric Sci Procedia 4:451–458CrossRefGoogle Scholar
  70. 70.
    Christian D, Roberta DS, Francesca S, Alessandro S, Giuseppe V, Alfonso M, Luigi A, Luigi N (2008) Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. J Appl Polym Sci 110:2453–2460CrossRefGoogle Scholar
  71. 71.
    Chunyu C, Ang L, Lina Z (2008) Effects of crosslinking methods on structure and properties of cellulose/PVA hydrogels. Macromol Chem Phys 209:1266–1273CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Abdulraheim M. A. Hasan
    • 1
  • Manar El-Sayed Abdel-Raouf
    • 1
    Email author
  1. 1.Egyptian Petroleum Research InstituteCairoEgypt

Personalised recommendations