Benefits of Renewable Hydrogels over Acrylate- and Acrylamide-Based Hydrogels

  • Abul K. MallikEmail author
  • Md. Shahruzzaman
  • Md. Nurus Sakib
  • Asaduz Zaman
  • Md. Shirajur Rahman
  • Md. Minhajul Islam
  • Md. Sazedul Islam
  • Papia Haque
  • Mohammed Mizanur Rahman
Living reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)


In recent years, renewable/biodegradable polymer-based hydrogels have attracted great interest in the field of hydrogel research and development. The reasons of this interest are their applications in versatile fields including personal care products; drug delivery systems; wound healing; tissue engineering; industrial, pharmaceutical, and biomedical, agricultures; water treatments; food packaging; etc. Other important reasons are the problems caused by synthetic sources to the environment. Therefore, it is our demand to develop natural materials that can be biocompatible and biodegradable with the environment, and important efforts are focused on finding alternatives to replace the synthetic one. Furthermore, renewable hydrogels display unique properties such as biodegradability, biocompatibility, stimuli-responsive characteristics and biological functions. Natural hydrogels are often based on polysaccharide or protein chains. Due to the hydrophilic structure of polysaccharides, they have a good property to form hydrogel. There are various polysaccharides like starch, cellulose, sodium alginate, chitosan, guar gum, carrageenan, etc. that have been focused and used for the preparation of environmental friendly hydrogels. Among them, cellulose and its derivatives revealed distinctive benefits because they are the most abundant natural polysaccharide having low cost and better biodegradability and biocompatibility. Protein chains, which form natural hydrogels, are collagen, silk, keratin, elastin, resilin, and gelatin. On the other hand, many synthetic polymers/copolymers also form hydrogel like poly(vinyl alcohol), polyacrylamide, poly(ethylene oxide), poly(ethylene glycol), etc. Synthetic polymer-based hydrogels have one benefit of chemical strength than natural counterpart due to the slower degradation rate of the hydrolyzable moieties. However, biorenewable polymers usually present higher biocompatibility compared to synthetic polymers, as they undergo enzyme-controlled biodegradation by human enzymes (e.g., lysozyme) and produce biocompatible by-products. This chapter focused on the advantages of biorenewable hydrogels over synthetic (acrylate- and acrylamide-based) hydrogels.


Renewable hydrogels Synthetic hydrogels Biopolymer Polysaccharide Protein chains 


  1. 1.
    Gomes M, Azevedo H, Malafaya P, Silva S, Olivera J, Silva G, Sousa R, Mano J, Reis R (2008) Natural polymers in tissue engineering applications. In: Van Blitterswijk C, Thomsen P, Lindahl A, Hubbell J, Williams DF, Cancedda R, De Bruijn JD and Sohier J (eds) Tissue Engineering. Academic Press, Burlington, MA, pp 145–192Google Scholar
  2. 2.
    Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185:117–118CrossRefGoogle Scholar
  3. 3.
    Lim F, Sun AM (1980) Microencapsulated islets as bioartificial endocrine pancreas. Science 210:908–910PubMedCrossRefGoogle Scholar
  4. 4.
    Yannas I, Lee E, Orgill DP, Skrabut E, Murphy GF (1989) Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc Natl Acad Sci 86:933–937PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Ratner BD, Hoffman AS (1976) Synthetic hydrogels for biomedical applications. In: Hydrogels for medical and related applications. ACS, Washington, DC, pp 1–36Google Scholar
  6. 6.
    Peppas N, Huang Y, Torres-Lugo M, Ward J, Zhang J (2000) Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu Rev Biomed Eng 2:9–29PubMedCrossRefGoogle Scholar
  7. 7.
    Chen L, Tian Z, Du Y (2004) Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices. Biomaterials 25:3725–3732PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2:353–373CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23CrossRefGoogle Scholar
  10. 10.
    Boateng JS, Matthews KH, Stevens HN, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97:2892–2923PubMedCrossRefGoogle Scholar
  11. 11.
    Jagur-Grodzinski J (2010) Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polym Adv Technol 21:27–47Google Scholar
  12. 12.
    Xinming L, Yingde C, Lloyd AW, Mikhalovsky SV, Sandeman SR, Howel CA, Liewen L (2008) Polymeric hydrogels for novel contact lens-based ophthalmic drug delivery systems: a review. Cont Lens Anterior Eye 31:57–64PubMedCrossRefGoogle Scholar
  13. 13.
    Guilherme MR, Aouada FA, Fajardo AR, Martins AF, Paulino AT, Davi MF, Rubira AF, Muniz EC (2015) Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: a review. Eur Polym J 72:365–385CrossRefGoogle Scholar
  14. 14.
    Jing G, Wang L, Yu H, Amer WA, Zhang L (2013) Recent progress on study of hybrid hydrogels for water treatment. Colloids Surf A Physicochem Eng Asp 416:86–94CrossRefGoogle Scholar
  15. 15.
    Farris S, Schaich KM, Liu L, Piergiovanni L, Yam KL (2009) Development of polyion-complex hydrogels as an alternative approach for the production of bio-based polymers for food packaging applications: a review. Trends Food Sci Technol 20:316–332CrossRefGoogle Scholar
  16. 16.
    Bordi F, Paradossi G, Rinaldi C, Ruzicka B (2002) Chemical and physical hydrogels: two casesystems studied by quasi elastic light scattering. Physica A 304:119–128CrossRefGoogle Scholar
  17. 17.
    Akhtar MF, Hanif M, Ranjha NM (2016) Methods of synthesis of hydrogels… a review. Saudi Pharm J 24:554–559PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Myung D, Waters D, Wiseman M, Duhamel PE, Noolandi J, Ta CN, Frank CW (2008) Progress in the development of interpenetrating polymer network hydrogels. Polym Adv Technol 19:647–657PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Sperling LH (1994) Interpenetrating polymer networks: an overview. In: Klempner D, Sperling LH, Utracki LA (eds) Interpenetrating polymer networks, Advances in chemistry series, vol 239. American Chemical Society, Washington, DC, pp 3–38CrossRefGoogle Scholar
  20. 20.
    Dragan ES, Perju MM, Dinu MV (2012) Preparation and characterization of IPN composite hydrogels based on polyacrylamide and chitosan and their interaction with ionic dyes. Carbohydr Polym 88:270–281CrossRefGoogle Scholar
  21. 21.
    Yin L, Fei L, Tang C, Yin C (2007) Synthesis, characterization, mechanical properties and biocompatibility of interpenetrating polymer network–super-porous hydrogel containing sodium alginate. Polym Int 56:1563–1571CrossRefGoogle Scholar
  22. 22.
    Oh SB, Choi YK, Cho CS (2003) Thermoplastic hydrogel based on pentablock copolymer consisting of poly (γ-benzyl L-glutamate) and poloxamer. J Appl Polym Sci 88:2649–2656CrossRefGoogle Scholar
  23. 23.
    Işiklan N (2006) Controlled release of insecticide carbaryl from sodium alginate, sodium alginate/gelatin, and sodium alginate/sodium carboxymethyl cellulose blend beads crosslinked with glutaraldehyde. J Appl Polym Sci 99:1310–1319CrossRefGoogle Scholar
  24. 24.
    Cipriano BH, Banik SJ, Sharma R, Rumore D, Hwang W, Briber RM, Raghavan SR (2014) Superabsorbent hydrogels that are robust and highly stretchable. Macromolecules 47:4445–4452CrossRefGoogle Scholar
  25. 25.
    Zhang M, Cheng Z, Zhao T, Liu M, Hu M, Li J (2014) Synthesis, characterization, and swelling behaviors of salt-sensitive maize bran–poly (acrylic acid) superabsorbent hydrogel. J Agric Food Chem 62:8867–8874PubMedCrossRefGoogle Scholar
  26. 26.
    Sun JY, Zhao X, Illeperuma WR, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo Z (2012) Highly stretchable and tough hydrogels. Nature 489:133PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Derraik JG (2002) The pollution of the marine environment by plastic debris: a review. Mar Pollut Bull 44:842–852PubMedCrossRefGoogle Scholar
  28. 28.
    Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297:803–807PubMedCrossRefGoogle Scholar
  29. 29.
    Van Vlierberghe S, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12:1387–1408PubMedCrossRefGoogle Scholar
  30. 30.
    Prabaharan M, Mano JF (2006) Stimuli-responsive hydrogels based on polysaccharides incorporated with thermo-responsive polymers as novel biomaterials. Macromol Biosci 6:991–1008PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Thakur VK, Thakur MK (2014) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15CrossRefGoogle Scholar
  32. 32.
    Suh JKF, Matthew HW (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21:2589–2598PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Coviello T, Matricardi P, Marianecci C, Alhaique F (2007) Polysaccharide hydrogels for modified release formulations. J Control Release 119:5–24PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Qiu X, Hu S (2013) “Smart” materials based on cellulose: a review of the preparations, properties, and applications. Materials 6:738–781PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Rutz AL, Shah RN (2016) Protein-based hydrogels. In: Polymeric hydrogels as smart biomaterials. Springer, Cham, pp 73–104CrossRefGoogle Scholar
  36. 36.
    Jonker AM, Löwik DW, van Hest JC (2012) Peptide-and protein-based hydrogels. Chem Mater 24:759–773CrossRefGoogle Scholar
  37. 37.
    Chen Q, Zhu L, Chen H, Yan H, Huang L, Yang J, Zheng J (2015) A novel design strategy for fully physically linked double network hydrogels with tough, fatigue resistant, and self-healing properties. Adv Funct Mater 25:1598–1607CrossRefGoogle Scholar
  38. 38.
    Matzelle T, Geuskens G, Kruse N (2003) Elastic properties of poly (N-isopropylacrylamide) and poly (acrylamide) hydrogels studied by scanning force microscopy. Macromolecules 36:2926–2931CrossRefGoogle Scholar
  39. 39.
    Anseth KS, Bowman CN, Brannon-Peppas L (1996) Mechanical properties of hydrogels and their experimental determination. Biomaterials 17:1647–1657PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Joshi JR, Patel RP (2012) Role of biodegradable polymers in drug delivery. Int J Curr Pharm Res 4:74–81Google Scholar
  41. 41.
    Chan AW, Whitney RA, Neufeld RJ (2009) Semisynthesis of a controlled stimuli-responsive alginate hydrogel. Biomacromolecules 10:609–616PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46:92–100CrossRefGoogle Scholar
  43. 43.
    Zhou J, Chang C, Zhang R, Zhang L (2007) Hydrogels prepared from unsubstituted cellulose in NaOH/urea aqueous solution. Macromol Biosci 7:804–809PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Meyers MA, Chen PY, Lin AYM, Seki Y (2008) Biological materials: structure and mechanical properties. Prog Mater Sci 53:1–206CrossRefGoogle Scholar
  45. 45.
    Kumar A, Srivastava A, Galaev IY, Mattiasson B (2007) Smart polymers: physical forms and bioengineering applications. Prog Polym Sci 32:1205–1237CrossRefGoogle Scholar
  46. 46.
    Li H, Koenig AM, Sloan P, Leipzig ND (2014) In vivo assessment of guided neural stem cell differentiation in growth factor immobilized chitosan-based hydrogel scaffolds. Biomaterials 35:9049–9057CrossRefPubMedGoogle Scholar
  47. 47.
    Sokker H, Ghaffar AA, Gad Y, Aly A (2009) Synthesis and characterization of hydrogels based on grafted chitosan for the controlled drug release. Carbohydr Polym 75:222–229CrossRefGoogle Scholar
  48. 48.
    Rinaudo M (2008) Main properties and current applications of some polysaccharides as biomaterials. Polym Int 57:397–430CrossRefGoogle Scholar
  49. 49.
    Ismail H, Irani M, Ahmad Z (2013) Starch-based hydrogels: present status and applications. Int J Polym Mater Polym Biomater 62:411–420CrossRefGoogle Scholar
  50. 50.
    Wang X, Li H, Cao Y, Tang Q (2011) Cellulose extraction from wood chip in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl). Bioresour Technol 102:7959–7965PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Joshi MK, Pant HR, Tiwari AP, Maharjan B, Liao N, Park CH, Kim CS (2016) Three-dimensional cellulose sponge: fabrication, characterization, biomimetic mineralization, and in vitro cell infiltration. Carbohydr Polym 136:154–162PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Bajpai A, Shukla SK, Bhanu S, Kankane S (2008) Responsive polymers in controlled drug delivery. Prog Polym Sci 33:1088–1118CrossRefGoogle Scholar
  54. 54.
    Faroongsarng D, Sukonrat P (2008) Thermal behavior of water in the selected starch-and cellulose-based polymeric hydrogels. Int J Pharm 352:152–158PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Hebeish A, Higazy A, El-Shafei A, Sharaf S (2010) Synthesis of carboxymethyl cellulose (CMC) and starch-based hybrids and their applications in flocculation and sizing. Carbohydr Polym 79:60–69CrossRefGoogle Scholar
  56. 56.
    Sannino A, Madaghiele M, Conversano F, Mele G, Maffezzoli A, Netti P, Ambrosio L, Nicolais L (2004) Cellulose derivative− hyaluronic acid-based microporous hydrogels cross-linked through divinyl sulfone (DVS) to modulate equilibrium sorption capacity and network stability. Biomacromolecules 5:92–96PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Ivanov C, Popa M, Ivanov M, Popa A (2007) Synthesis of poly(vinyl alcohol): methyl cellulose hydrogel as possible scaffolds in tissue engineering. J Optoelectron Adv Mater 9:3440–3444Google Scholar
  58. 58.
    Nie K, Pang W, Wang Y, Lu F, Zhu Q (2005) Effects of specific bonding interactions in poly (ɛ-caprolactone)/silica hybrid materials on optical transparency and melting behavior. Mater Lett 59:1325–1328CrossRefGoogle Scholar
  59. 59.
    Sannino A, Esposito A, Nicolais L, Del Nobile M, Giovane A, Balestrieri C, Esposito R, Agresti M (2000) Cellulose-based hydrogels as body water retainers. J Mater Sci Mater M 11:247–253CrossRefGoogle Scholar
  60. 60.
    Sannino A, Mensitieri G, Nicolais L (2004) Water and synthetic urine sorption capacity of cellulose-based hydrogels under a compressive stress field. J Appl Polym Sci 91:3791–3796CrossRefGoogle Scholar
  61. 61.
    Lenzi F, Sannino A, Borriello A, Porro F, Capitani D, Mensitieri G (2003) Probing the degree of crosslinking of a cellulose based superabsorbing hydrogel through traditional and NMR techniques. Polymer 44:1577–1588CrossRefGoogle Scholar
  62. 62.
    Sannino A, Esposito A, Rosa AD, Cozzolino A, Ambrosio L, Nicolais L (2003) Biomedical application of a superabsorbent hydrogel for body water elimination in the treatment of edemas. J Biomed Mater Res A 67:1016–1024PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Peng X-W, Zhong L-X, Ren J-L, Sun R-C (2012) Highly effective adsorption of heavy metal ions from aqueous solutions by macroporous xylan-rich hemicelluloses-based hydrogel. J Agric Food Chem 60:3909–3916PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Chen X, Zhou S, Zhang L, You T, Xu F (2016) Adsorption of heavy metals by graphene oxide/cellulose hydrogel prepared from NaOH/urea aqueous solution. Materials 9:582PubMedCentralCrossRefGoogle Scholar
  65. 65.
    Esposito A, Sannino A, Cozzolino A, Quintiliano SN, Lamberti M, Ambrosio L, Nicolais L (2005) Response of intestinal cells and macrophages to an orally administered cellulose-PEG based polymer as a potential treatment for intractable edemas. Biomaterials 26:4101–4110PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Sannino A, Pappad à S, Madaghiele M, Maffezzoli A, Ambrosio L, Nicolais L (2005) Crosslinking of cellulose derivatives and hyaluronic acid with water-soluble carbodiimide. Polymer 46:11206–11212CrossRefGoogle Scholar
  67. 67.
    Sannino A, Madaghiele M, Lionetto M, Schettino T, Maffezzoli A (2006) A cellulose-based hydrogel as a potential bulking agent for hypocaloric diets: an in vitro biocompatibility study on rat intestine. J Appl Polym Sci 102:1524–1530CrossRefGoogle Scholar
  68. 68.
    Stabenfeldt SE, García AJ, LaPlaca MC (2006) Thermoreversible laminin-functionalized hydrogel for neural tissue engineering. J Biomed Mater Res A 77:718–725PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Fellah BH, Weiss P, Gauthier O, Rouillon T, Pilet P, Daculsi G, Layrolle P (2006) Bone repair using a new injectable self-crosslinkable bone substitute. J Orthop Res 24:628–635PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Marler JJ, Upton J, Langer R, Vacanti JP (1998) Transplantation of cells in matrices for tissue regeneration. Adv Drug Deliv Rev 33:165–182PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Prabhakaran MP, Venugopal J, Ramakrishna S (2009) Electrospun nanostructured scaffolds for bone tissue engineering. Acta Biomater 5:2884–2893PubMedCrossRefGoogle Scholar
  72. 72.
    Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL (2007) Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev 59:1413–1433PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1880PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Märtson M, Viljanto J, Hurme T, Saukko P (1998) Biocompatibility of cellulose sponge with bone. Eur Surg Res 30:426–432PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Takata T, Miyauchi M, Wang HL (2001) Migration of osteoblastic cells on various guided bone regeneration membranes. Clin Oral Implants Res 12:332–338PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Risbud MV, Bhonde RR (2001) Suitability of cellulose molecular dialysis membrane for bioartificial pancreas: in vitro biocompatibility studies. J Biomed Mater Res A 54:436–444CrossRefGoogle Scholar
  77. 77.
    LaIuppa JA, McAdams TA, Papoutsakis ET, Miller WM (1997) Culture materials affect ex vivo expansion of hematopoietic progenitor cells. J Biomed Mater Res A 36:347–359CrossRefGoogle Scholar
  78. 78.
    Cullen B, Watt PW, Lundqvist C, Silcock D, Schmidt RJ, Bogan D, Light ND (2002) The role of oxidised regenerated cellulose/collagen in chronic wound repair and its potential mechanism of action. Int J Biochem Cell Biol 34:1544–1556PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Katepetch C, Rujiravanit R, Tamura H (2013) Formation of nanocrystalline ZnO particles into bacterial cellulose pellicle by ultrasonic-assisted in situ synthesis. Cellulose 20:1275–1292CrossRefGoogle Scholar
  80. 80.
    Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51CrossRefGoogle Scholar
  81. 81.
    Flores-Hernández CG, Colín-Cruz A, Velasco-Santos C, Castaño VM, Rivera-Armenta JL, Almendarez-Camarillo A, García-Casillas PE, Martínez-Hernández AL (2014) All green composites from fully renewable biopolymers: chitosan-starch reinforced with keratin from feathers. Polymers 6:686–705CrossRefGoogle Scholar
  82. 82.
    Baran E, Mano J, Reis R (2004) Starch–chitosan hydrogels prepared by reductive alkylation cross-linking. J Mater Sci Mater M 15:759–765CrossRefGoogle Scholar
  83. 83.
    Chatakanonda P, Varavinit S, Chinachoti P (2000) Effect of crosslinking on thermal and microscopic transitions of rice starch. LWT-Food Sci Technol 33:276–284CrossRefGoogle Scholar
  84. 84.
    Xing GX, Zhang SF, Ju BZ, Yang JZ (2006) Study on adsorption behavior of crosslinked cationic starch maleate for chromium (VI). Carbohydr Polym 66:246–251CrossRefGoogle Scholar
  85. 85.
    Chen YX, Wang GY (2006) Adsorption properties of oxidized carboxymethyl starch and cross-linked carboxymethyl starch for calcium ion. Colloids Surf A Physicochem Eng Asp 289:75–83CrossRefGoogle Scholar
  86. 86.
    Ngoenkam J, Faikrua A, Yasothornsrikul S, Viyoch J (2010) Potential of an injectable chitosan/starch/β-glycerol phosphate hydrogel for sustaining normal chondrocyte function. Int J Pharm 391:115–124PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Pereira C, Cunha A, Reis R, Vazquez B, San Roman J (1998) New starch-based thermoplastic hydrogels for use as bone cements or drug-delivery carriers. J Mater Sci Mater M 9:825–833CrossRefGoogle Scholar
  88. 88.
    Fekete T, Borsa J, Takács E, Wojnárovits L (2017) Synthesis of carboxymethylcellulose/starch superabsorbent hydrogels by gamma-irradiation. Chem Cent J 11:46PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Chantawong V, Harvey N, Bashkin V (2003) Comparison of heavy metal adsorptions by Thai kaolin and ballclay. Water Air Soil Pollut 148:111–125CrossRefGoogle Scholar
  90. 90.
    Hashem A, Ahmad F, Fahad R (2008) Application of some starch hydrogels for the removal of mercury (II) ions from aqueous solutions. Adsorpt Sci Technol 26:563–579CrossRefGoogle Scholar
  91. 91.
    Chauhan K, Chauhan GS, Ahn J-H (2010) Novel polycarboxylated starch-based sorbents for Cu2+ ions. Ind Eng Chem Res 49:2548–2556CrossRefGoogle Scholar
  92. 92.
    Schoeck VE Jr, Fuller EE, Dubnik A (2002) Water-blocked telecommunications cables, and water-blocking yarns usefully employed in same. US Patent 650,054,1 B1Google Scholar
  93. 93.
    Sirviö JA, Kolehmainen A, Liimatainen H, Niinimäki J, Hormi OE (2014) Biocomposite cellulose-alginate films: promising packaging materials. Food Chem 151:343–351PubMedCrossRefGoogle Scholar
  94. 94.
    Draget KI, Taylor C (2011) Chemical, physical and biological properties of alginates and their biomedical implications. Food Hydrocoll 25:251–256CrossRefGoogle Scholar
  95. 95.
    Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Klöck G, Pfeffermann A, Ryser C, Gröhn P, Kuttler B, Hahn HJ, Zimmermann U (1997) Biocompatibility of mannuronic acid-rich alginates. Biomaterials 18:707–713PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Mukai-Correa R, Prata A, Alvim I, Grosso C (2004) Controlled release of protein from hydrocolloid gel microbeads before and after drying. Curr Drug Deliv 1:265–273PubMedCrossRefGoogle Scholar
  98. 98.
    Kumar Malik D, Baboota S, Ahuja A, Hasan S, Ali J (2007) Recent advances in protein and peptide drug delivery systems. Curr Drug Deliv 4:141–151CrossRefGoogle Scholar
  99. 99.
    Reyes N, Rivas-Ruiz I, Dominguez-Espinosa R, Solis S (2006) Influence of immobilization parameters on endopolygalacturonase productivity by hybrid Aspergillus sp. HL entrapped in calcium alginate. Biochem Eng J 32:43–48CrossRefGoogle Scholar
  100. 100.
    Seal B, Otero T, Panitch A (2001) Polymeric biomaterials for tissue and organ regeneration. Mater Sci Eng R Rep 34:147–230CrossRefGoogle Scholar
  101. 101.
    Zhao LB, Pan L, Zhang K, Guo SS, Liu W, Wang Y, Chen Y, Zhao XZ, Chan HL (2009) Generation of Janus alginate hydrogel particles with magnetic anisotropy for cell encapsulation. Lab Chip 9:2981–2986PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Navratil M, Gemeiner P, Klein J, Sturdik E, Malovikova A, Nahalka J, Vikartovska A, Domeny Z, Smogrovicova D (2002) Properties of hydrogel materials used for entrapment of microbial cells in production of fermented beverages. Artif Cells Blood Substit Immobil Biotechnol 30:199–218PubMedCrossRefGoogle Scholar
  103. 103.
    Wang CC, Yang KC, Lin KH, Liu HC, Lin FH (2011) A highly organized three-dimensional alginate scaffold for cartilage tissue engineering prepared by microfluidic technology. Biomaterials 32:7118–7126PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Kulkarni RV, Sreedhar V, Mutalik S, Setty CM, Sa B (2010) Interpenetrating network hydrogel membranes of sodium alginate and poly(vinyl alcohol) for controlled release of prazosin hydrochloride through skin. Int J Biol Macromol 47:520–527PubMedCrossRefGoogle Scholar
  105. 105.
    El-Sherbiny IM, Smyth HD (2010) Biodegradable nano-micro carrier systems for sustained pulmonary drug delivery:(I) self-assembled nanoparticles encapsulated in respirable/swellable semi-IPN microspheres. Int J Pharm 395:132–141PubMedCrossRefGoogle Scholar
  106. 106.
    Detsch R, Sarker B, Zehnder T, Frank G, Boccaccini AR (2015) Advanced alginate-based hydrogels. Mater Today 18:590–591CrossRefGoogle Scholar
  107. 107.
    Xu Y, Zhan C, Fan L, Wang L, Zheng H (2007) Preparation of dual crosslinked alginate–chitosan blend gel beads and in vitro controlled release in oral site-specific drug delivery system. Int J Pharm 336:329–337PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Bunaprasert T, Thongmarongsri N, Thanakit V, Ruangvejvorachai P, Buranapraditkul S, Maneesri S, Kanokpanont S (2006) Tissue engineering of cartilage with porous polycarprolactone–alginate scaffold: the first report of tissue engineering in Thailand. J Med Assoc Thailand 89:S108–S114Google Scholar
  109. 109.
    Pereira R, Mendes A, Bártolo P (2013) Alginate/Aloe vera hydrogel films for biomedical applications. Procedia CIRP 5:210–215CrossRefGoogle Scholar
  110. 110.
    Dahlmann J, Krause A, Möller L, Kensah G, Möwes M, Diekmann A, Martin U, Kirschning A, Gruh I, Dräger G (2013) Fully defined in situ cross-linkable alginate and hyaluronic acid hydrogels for myocardial tissue engineering. Biomaterials 34:940–951PubMedCrossRefGoogle Scholar
  111. 111.
    Jayakumar R, Menon D, Manzoor K, Nair S, Tamura H (2010) Biomedical applications of chitin and chitosan based nanomaterials – a short review. Carbohydr Polym 82:227–232CrossRefGoogle Scholar
  112. 112.
    Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632CrossRefGoogle Scholar
  113. 113.
    Duceppe N, Tabrizian M (2010) Advances in using chitosan-based nanoparticles for in vitro and in vivo drug and gene delivery. Expert Opin Drug Deliv 7:1191–1207PubMedCrossRefGoogle Scholar
  114. 114.
    Sezer AD, Cevher E (2012) Topical drug delivery using chitosan nano-and microparticles. Expert Opin Drug Deliv 9:1129–1146PubMedCrossRefGoogle Scholar
  115. 115.
    Peppas NA, Sahlin JJ (1996) Hydrogels as mucoadhesive and bioadhesive materials: a review. Biomaterials 17:1553–1561PubMedCrossRefGoogle Scholar
  116. 116.
    Dai YN, Li P, Zhang JP, Wang AQ, Wei Q (2008) A novel pH sensitive N-succinyl chitosan/alginate hydrogel bead for nifedipine delivery. Biopharm Drug Dispos 29:173–184PubMedCrossRefGoogle Scholar
  117. 117.
    Chang CH, Lin YH, Yeh CL, Chen YC, Chiou SF, Hsu YM, Chen YS, Wang CC (2009) Nanoparticles incorporated in pH-sensitive hydrogels as amoxicillin delivery for eradication of Helicobacter pylori. Biomacromolecules 11:133–142CrossRefGoogle Scholar
  118. 118.
    Patel VR, Amiji MM (1996) Preparation and characterization of freeze-dried chitosan-poly (ethylene oxide) hydrogels for site-specific antibiotic delivery in the stomach. Pharm Res 13:588–593PubMedCrossRefGoogle Scholar
  119. 119.
    Nazar H, Fatouros DG, van der Merwe SM, Bouropoulos N, Avgouropoulos G, Tsibouklis J, Roldo M (2011) Thermosensitive hydrogels for nasal drug delivery: the formulation and characterisation of systems based on N-trimethyl chitosan chloride. Eur J Pharm Biopharm 77:225–232PubMedCrossRefGoogle Scholar
  120. 120.
    Agrawal A, Gupta P, Khanna A, Sharma R, Chandrabanshi H, Gupta N, Patil U, Yadav S (2010) Development and characterization of in situ gel system for nasal insulin delivery. Die Pharmazie Int J Pharm Sci 65:188–193Google Scholar
  121. 121.
    Wu J, Wei W, Wang LY, Su ZG, Ma GH (2007) A thermosensitive hydrogel based on quaternized chitosan and poly(ethylene glycol) for nasal drug delivery system. Biomaterials 28:2220–2232PubMedCrossRefGoogle Scholar
  122. 122.
    Yang C, Xu L, Zhou Y, Zhang X, Huang X, Wang M, Han Y, Zhai M, Wei S, Li J (2010) A green fabrication approach of gelatin/CM-chitosan hybrid hydrogel for wound healing. Carbohydr Polym 82:1297–1305CrossRefGoogle Scholar
  123. 123.
    Tran NQ, Joung YK, Lih E, Park KD (2011) In situ forming and rutin-releasing chitosan hydrogels as injectable dressings for dermal wound healing. Biomacromolecules 12:2872–2880PubMedCrossRefGoogle Scholar
  124. 124.
    Hong Y, Gong Y, Gao C, Shen J (2008) Collagen-coated polylactide microcarriers/chitosan hydrogel composite: injectable scaffold for cartilage regeneration. J Biomed Mater Res A 85:628–637PubMedCrossRefGoogle Scholar
  125. 125.
    Park KM, Lee SY, Joung YK, Na JS, Lee MC, Park KD (2009) Thermosensitive chitosan-Pluronic hydrogel as an injectable cell delivery carrier for cartilage regeneration. Acta Biomater 5:1956–1965PubMedCrossRefGoogle Scholar
  126. 126.
    Tang Y, Wang X, Li Y, Lei M, Du Y, Kennedy JF, Knill CJ (2010) Production and characterisation of novel injectable chitosan/methylcellulose/salt blend hydrogels with potential application as tissue engineering scaffolds. Carbohydr Polym 82:833–841CrossRefGoogle Scholar
  127. 127.
    Wu SJ, Liou TH, Yeh CH, Mi FL, Lin TK (2013) Preparation and characterization of porous chitosan–tripolyphosphate beads for copper (II) ion adsorption. J Appl Polym Sci 127:4573–4580CrossRefGoogle Scholar
  128. 128.
    Li N, Bai R (2005) Copper adsorption on chitosan–cellulose hydrogel beads: behaviors and mechanisms. Sep Purif Technol 42:237–247CrossRefGoogle Scholar
  129. 129.
    Wang X, Sun R, Wang C (2014) pH dependence and thermodynamics of Hg (II) adsorption onto chitosan-poly(vinyl alcohol) hydrogel adsorbent. Colloids Surf A Physicochem Eng Asp 441:51–58CrossRefGoogle Scholar
  130. 130.
    Mishra A, Sharma A (2011) Synthesis of γ-cyclodextrin/chitosan composites for the efficient removal of Cd (II) from aqueous solution. Int J Biol Macromol 49:504–512PubMedCrossRefGoogle Scholar
  131. 131.
    Prabhanjan H, Gharia M, Srivastava H (1989) Guar gum derivatives. Part I: preparation and properties. Carbohydr Polym 11:279–292CrossRefGoogle Scholar
  132. 132.
    Patel J, Karve M, Patel NK (2014) Guar gum: a versatile material for pharmaceutical industries. Int J Pharm Pharm Sci 6:13–19Google Scholar
  133. 133.
    Shenoy MA, D’Melo DJ (2010) Synthesis and characterization of acryloyloxy guar gum. J Appl Polym Sci 117:148–154Google Scholar
  134. 134.
    Mestechkina NM, Egorov AV, Shcherbukhin VD (2010) Synthesis of galactomannan sulfates. J Appl Biochem Microbiol 42(3):326–330CrossRefGoogle Scholar
  135. 135.
    Gacitua W, Ballerini A, Zhang J (2005) Polymer nanocomposites: synthetic and natural fillers a review. Maderas Cienc Technol 7:159–178Google Scholar
  136. 136.
    Singh A, Sarkar DJ, Singh AK, Parsad R, Kumar A, Parmar BS (2011) Studies on novel nanosuperabsorbent composites: swelling behavior in different environments and effect on water absorption and retention properties of sandy loam soil and soil-less medium. J Appl Polym Sci 120:1448–1458CrossRefGoogle Scholar
  137. 137.
    Anupama Singh K, Jat ML, Parmar BS (2005) Performance of a new superabsorbent polymer on crop and water productivity of summer mung bean (Phaseolus radiatus). J Water Manage 13:1–5Google Scholar
  138. 138.
    Chourasia M, Jain S (2004) Polysaccharides for colon targeted drug delivery. Drug Deliv 11:129–148PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Chaurasia M, Chourasia MK, Jain NK, Jain A, Soni V, Gupta Y, Jain SK (2006) Cross-linked guar gum microspheres: a viable approach for improved delivery of anticancer drugs for the treatment of colorectal cancer. AAPS PharmSciTech 7:E143PubMedCentralCrossRefGoogle Scholar
  140. 140.
    Gliko-Kabir I, Yagen B, Baluom M, Rubinstein A (2000) Phosphated crosslinked guar for colon-specific drug delivery. J Control Release 63:129–134PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Fujioka R, Tanaka Y, Yoshimura T (2009) Synthesis and properties of superabsorbent hydrogels based on guar gum and succinic anhydride. J Appl Polym Sci 114:612–616CrossRefGoogle Scholar
  142. 142.
    Campo VL, Kawano DF, da Silva DB, Carvalho I (2009) Carrageenans: biological properties, chemical modifications and structural analysis – a review. Carbohydr Polym 77:167–180CrossRefGoogle Scholar
  143. 143.
    Montolalu RI, Tashiro Y, Matsukawa S, Ogawa H (2008) Effects of extraction parameters on gel properties of carrageenan from Kappaphycus alvarezii (Rhodophyta). J Appl Phycol 20:521–526CrossRefGoogle Scholar
  144. 144.
    Van de Velde F, Knutsen S, Usov A, Rollema H, Cerezo A (2002) 1 H and 13 C high resolution NMR spectroscopy of carrageenans: application in research and industry. Trends Food Sci Technol 13:73–92CrossRefGoogle Scholar
  145. 145.
    Keppeler S, Ellis A, Jacquier J (2009) Cross-linked carrageenan beads for controlled release delivery systems. Carbohydr Polym 78:973–977CrossRefGoogle Scholar
  146. 146.
    Meena R, Prasad K, Siddhanta A (2007) Effect of genipin, a naturally occurring crosslinker on the properties of kappa-carrageenan. Int J Biol Macromol 41:94–101PubMedCrossRefGoogle Scholar
  147. 147.
    Distantina S, Rochmadi R, Fahrurrozi M, Wiratni W (2013) Hydrogels based on carrageenan extracted from Kappaphycus alvarezii. Int J Med Health Biomed Bioeng Pharm Eng 7(6):244–247Google Scholar
  148. 148.
    Santo VE, Frias AM, Carida M, Cancedda R, Gomes ME, Mano JF, Reis RL (2009) Carrageenan-based hydrogels for the controlled delivery of PDGF-BB in bone tissue engineering applications. Biomacromolecules 10:1392–1401PubMedCrossRefGoogle Scholar
  149. 149.
    Soares PAG, C de Seixas JRP, Albuquerque PBS, Santos GRC, Mourão PAS, Barros W, Correia MTS, Carneiro-da-Cunha MG (2015) Development and characterization of a new hydrogel based on galactomannan and κ-carrageenan. Carbohydr Polym 134:673–679PubMedCrossRefGoogle Scholar
  150. 150.
    Wang X, Kim HJ, Wong C, Vepari C, Matsumoto A, Kaplan DL (2006) Fibrous proteins and tissue engineering. Mater Today 9:44–53CrossRefGoogle Scholar
  151. 151.
    Karsdal MA, Nielsen MJ, Sand JM, Henriksen K, Genovese F, Bay-Jensen AC, Smith V, Adamkewicz JI, Christiansen C, Leeming DJ (2013) Extracellular matrix remodeling: the common denominator in connective tissue diseases possibilities for evaluation and current understanding of the matrix as more than a passive architecture, but a key player in tissue failure. Assay Drug Dev Technol 11:70–92PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Vasconcelos A, Gomes AC, Cavaco-Paulo A (2012) Novel silk fibroin/elastin wound dressings. Acta Biomater 8:3049–3060PubMedCrossRefGoogle Scholar
  153. 153.
    Scheibel T (2005) Protein fibers as performance proteins: new technologies and applications. Curr Opin Biotechnol 16:427–433PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Pace LA, Plate JF, Smith TL, Van Dyke ME (2013) The effect of human hair keratin hydrogel on early cellular response to sciatic nerve injury in a rat model. Biomaterials 34:5907–5914PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Leach JB, Wolinsky JB, Stone PJ, Wong JY (2005) Crosslinked α-elastin biomaterials: towards a processable elastin mimetic scaffold. Acta Biomater 1:155–164PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Parenteau-Bareil R, Gauvin R, Berthod F (2010) Collagen-based biomaterials for tissue engineering applications. Materials 3:1863–1887PubMedCentralCrossRefGoogle Scholar
  157. 157.
    Ricard-Blum S (2011) The collagen family. Cold Spring Harb Perspect Biol 3:a004978PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Gelse K, Pöschl E, Aigner T (2003) Collagens – structure, function, and biosynthesis. Adv Drug Deliv Rev 55:1531–1546PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Hesse E, Hefferan TE, Tarara JE, Haasper C, Meller R, Krettek C, Lu L, Yaszemski MJ (2010) Collagen type I hydrogel allows migration, proliferation, and osteogenic differentiation of rat bone marrow stromal cells. J Biomed Mater Res A 94:442–449PubMedPubMedCentralGoogle Scholar
  160. 160.
    Almelkar S, Patwardhan A, Divate S, Agrawal N, Bhonde R, Chaukar A (2014) Fibrin matrix supports endothelial cell adhesion and migration in culture. OA Biology 2:5Google Scholar
  161. 161.
    Silvipriya K, Kumar KK, Bhat A, Kumar BD, John A (2015) Collagen: animal sources and biomedical application. J Appl Pharm Sci 5:123–127CrossRefGoogle Scholar
  162. 162.
    Gómez-Guillén M, Giménez B, López-Caballero MA, Montero M (2011) Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocoll 25:1813–1827CrossRefGoogle Scholar
  163. 163.
    Browne S, Zeugolis DI, Pandit A (2013) Collagen: finding a solution for the source. Tissue Eng A 19:1491–1494CrossRefGoogle Scholar
  164. 164.
    Kouris NA, Squirrell JM, Jung JP, Pehlke CA, Hacker T, Eliceiri KW, Ogle BM (2011) A nondenatured, noncrosslinked collagen matrix to deliver stem cells to the heart. Regen Med 6:569–582PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Calderon L, Collin E, Velasco-Bayon D, Murphy M, O’Halloran D, Pandit A (2010) Type II collagen-hyaluronan hydrogel-a step towards a scaffold for intervertebral disc tissue engineering. Eur Cell Mater 20:134–148PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Helary C, Bataille I, Abed A, Illoul C, Anglo A, Louedec L, Letourneur D, Meddahi-Pelle A, Giraud-Guille MM (2010) Concentrated collagen hydrogels as dermal substitutes. Biomaterials 31:481–490PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Hui T, Cheung K, Cheung W, Chan D, Chan B (2008) In vitro chondrogenic differentiation of human mesenchymal stem cells in collagen microspheres: influence of cell seeding density and collagen concentration. Biomaterials 29:3201–3212PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Aper T, Wilhelmi M, Gebhardt C, Hoeffler K, Benecke N, Hilfiker A, Haverich A (2016) Novel method for the generation of tissue-engineered vascular grafts based on a highly compacted fibrin matrix. Acta Biomater 29:21–32PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Yamaoka H, Asato H, Ogasawara T, Nishizawa S, Takahashi T, Nakatsuka T, Koshima I, Nakamura K, Kawaguchi H, Chung U (2006) Cartilage tissue engineering using human auricular chondrocytes embedded in different hydrogel materials. J Biomed Mater Res A 78:1–11PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Schneider-Barthold C, Baganz S, Wilhelmi M, Scheper T, Pepelanova I (2016) Hydrogels based on collagen and fibrin–frontiers and applications. BioNanoMat 17:3–12CrossRefGoogle Scholar
  171. 171.
    Hu Y, Liu L, Gu Z, Dan W, Dan N, Yu X (2014) Modification of collagen with a natural derived cross-linker, alginate dialdehyde. Carbohydr Polym 102:324–332PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Zhang X, Yang Y, Yao J, Shao Z, Chen X (2014) Strong collagen hydrogels by oxidized dextran modification. ACS Sustain Chem Eng 2:1318–1324CrossRefGoogle Scholar
  173. 173.
    Peng Z, Li Z, Zhang F, Peng X (2012) Preparation and properties of poly(vinyl alcohol)/collagen hydrogel. J Macromol Sci B 51:1934–1941CrossRefGoogle Scholar
  174. 174.
    Tronci G, Grant CA, Thomson NH, Russell SJ, Wood DJ (2015) Multi-scale mechanical characterization of highly swollen photo-activated collagen hydrogels. J R Soc Interf 12: 20141079CrossRefGoogle Scholar
  175. 175.
    Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24:401–416PubMedCrossRefGoogle Scholar
  176. 176.
    Vepari C, Kaplan DL (2007) Silk as a biomaterial. Prog Polym Sci 32:991–1007PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Yucel T, Lovett ML, Kaplan DL (2014) Silk-based biomaterials for sustained drug delivery. J Control Release 190:381–397PubMedCrossRefGoogle Scholar
  178. 178.
    Chao PHG, Yodmuang S, Wang X, Sun L, Kaplan DL, Vunjak-Novakovic G (2010) Silk hydrogel for cartilage tissue engineering. J Biomed Mater Res B Appl Biomater 95:84–90PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Wang X, Kluge JA, Leisk GG, Kaplan DL (2008) Sonication-induced gelation of silk fibroin for cell encapsulation. Biomaterials 29:1054–1064PubMedCrossRefGoogle Scholar
  180. 180.
    Kaplan D, Adams WW, Farmer B, Viney C (1993) Silk: biology, structure, properties, and genetics. In: Silk Polymers Materials Science and Biotechnology, vol 544, ACS symposium series, ACS, Washington, DC, pp 2–16Google Scholar
  181. 181.
    Yigit S, Dinjaski N, Kaplan DL (2016) Fibrous proteins: at the crossroads of genetic engineering and biotechnological applications. Biotechnol Bioeng 113:913–929PubMedCrossRefGoogle Scholar
  182. 182.
    Murphy AR, Kaplan DL (2009) Biomedical applications of chemically-modified silk fibroin. J Mater Chem 19:6443–6450PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Kundu B, Rajkhowa R, Kundu SC, Wang X (2013) Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 65:457–470PubMedCrossRefGoogle Scholar
  184. 184.
    Hanawa T, Watanabe A, Tsuchiya T, Ikoma R, Hidaka M, Sugihara M (1995) New oral dosage form for elderly patients: preparation and characterization of silk fibroin gel. Chem Pharm Bull 43:284–288PubMedCrossRefGoogle Scholar
  185. 185.
    Kim U-J, Park J, Li C, Jin H-J, Valluzzi R, Kaplan DL (2004) Structure and properties of silk hydrogels. Biomacromolecules 5:786–792PubMedCrossRefGoogle Scholar
  186. 186.
    Motta A, Migliaresi C, Faccioni F, Torricelli P, Fini M, Giardino R (2004) Fibroin hydrogels for biomedical applications: preparation, characterization and in vitro cell culture studies. J Biomater Sci Polym Ed 15:851–864PubMedCrossRefGoogle Scholar
  187. 187.
    Kim I, Yoo M, Seo J, Park S, Na H, Lee H, Kim S, Cho C (2007) Evaluation of semi-interpenetrating polymer networks composed of chitosan and poloxamer for wound dressing application. Int J Pharm 341:35–43PubMedCrossRefGoogle Scholar
  188. 188.
    Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360CrossRefGoogle Scholar
  189. 189.
    Cen L, Liu W, Cui L, Zhang W, Cao Y (2008) Collagen tissue engineering: development of novel biomaterials and applications. Pediatr Res 63:492–496PubMedCrossRefGoogle Scholar
  190. 190.
    Seib FP, Pritchard EM, Kaplan DL (2013) Self-assembling doxorubicin silk hydrogels for the focal treatment of primary breast cancer. Adv Funct Mater 23:58–65PubMedCrossRefGoogle Scholar
  191. 191.
    Gil ES, Frankowski DJ, Spontak RJ, Hudson SM (2005) Swelling behavior and morphological evolution of mixed gelatin/silk fibroin hydrogels. Biomacromolecules 6:3079–3087PubMedCrossRefGoogle Scholar
  192. 192.
    Sun W, Incitti T, Migliaresi C, Quattrone A, Casarosa S, Motta A (2016) Genipin-crosslinked gelatin–silk fibroin hydrogels for modulating the behaviour of pluripotent cells. J Tissue Eng Regen Med 10:876–887PubMedCrossRefGoogle Scholar
  193. 193.
    Lv Q, Hu K, Feng Q, Cui F (2008) Fibroin/collagen hybrid hydrogels with crosslinking method: preparation, properties, and cytocompatibility. J Biomed Mater Res A 84:198–207PubMedCrossRefGoogle Scholar
  194. 194.
    Ziv K, Nuhn H, Ben-Haim Y, Sasportas LS, Kempen PJ, Niedringhaus TP, Hrynyk M, Sinclair R, Barron AE, Gambhir SS (2014) A tunable silk–alginate hydrogel scaffold for stem cell culture and transplantation. Biomaterials 35:3736–3743PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Kweon H, Park S, Yeo J, Lee Y, Cho C (2001) Preparation of semi-interpenetrating polymer networks composed of silk fibroin and poly(ethylene glycol) macromer. J Appl Polym Sci 80:1848–1853CrossRefGoogle Scholar
  196. 196.
    Megeed Z, Haider M, Li D, O’malley BW, Cappello J, Ghandehari H (2004) In vitro and in vivo evaluation of recombinant silk-elastinlike hydrogels for cancer gene therapy. J Control Release 94:433–445PubMedCrossRefPubMedCentralGoogle Scholar
  197. 197.
    Wang B, Yang W, McKittrick J, Meyers MA (2016) Keratin: structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Prog Mater Sci 76:229–318CrossRefGoogle Scholar
  198. 198.
    Shavandi A, Silva TH, Bekhit AA, Bekhit AE-D (2017) Dissolution, extraction and biomedical application of keratin: methods and factors affecting the extraction and physicochemical properties of keratin. Biomater Sci 5:1699–1735PubMedCrossRefGoogle Scholar
  199. 199.
    Balaji S, Kumar R, Sripriya R, Kakkar P, Ramesh DV, Reddy PNK, Sehgal P (2012) Preparation and comparative characterization of keratin–chitosan and keratin–gelatin composite scaffolds for tissue engineering applications. Mater Sci Eng C 32:975–982CrossRefGoogle Scholar
  200. 200.
    Rouse JG, Van Dyke ME (2010) A review of keratin-based biomaterials for biomedical applications. Materials 3:999–1014PubMedCentralCrossRefGoogle Scholar
  201. 201.
    Buchanan JH (1977) A cystine-rich protein fraction from oxidized α-keratin. Biochem J 167:489–491PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Maclaren J (1962) The extent of reduction of wool proteins by thiols. Aust J Chem 15:824–831CrossRefGoogle Scholar
  203. 203.
    Vasconcelos A, Cavaco-Paulo A (2011) Wound dressings for a proteolytic-rich environment. Appl Microbiol Biotechnol l90:445–460CrossRefGoogle Scholar
  204. 204.
    Apel PJ, Garrett JP, Sierpinski P, Ma J, Atala A, Smith TL, Koman LA, Van Dyke ME (2008) Peripheral nerve regeneration using a keratin-based scaffold: long-term functional and histological outcomes in a mouse model. J Hand Surg 33:1541–1547CrossRefGoogle Scholar
  205. 205.
    Aboushwareb T, Eberli D, Ward C, Broda C, Holcomb J, Atala A, Van Dyke M (2009) A keratin biomaterial gel hemostat derived from human hair: evaluation in a rabbit model of lethal liver injury. J Biomed Mater Res B Appl Biomater 90:45–54PubMedPubMedCentralGoogle Scholar
  206. 206.
    Wang J, Hao S, Luo T, Cheng Z, Li W, Gao F, Guo T, Gong Y, Wang B (2017) Feather keratin hydrogel for wound repair: preparation, healing effect and biocompatibility evaluation. Colloid Surfs B 149:341–350CrossRefGoogle Scholar
  207. 207.
    Wang S, Taraballi F, Tan LP, Ng KW (2012) Human keratin hydrogels support fibroblast attachment and proliferation in vitro. Cell Tissue Res 347:795–802PubMedCrossRefPubMedCentralGoogle Scholar
  208. 208.
    Almine JF, Bax DV, Mithieux SM, Nivison-Smith L, Rnjak J, Waterhouse A, Wise SG, Weiss AS (2010) Elastin-based materials. Chem Soc Rev 39:3371–3379PubMedCrossRefPubMedCentralGoogle Scholar
  209. 209.
    Wise SG, Mithieux SM, Weiss AS (2009) Engineered tropoelastin and elastin-based biomaterials. Adv Protein Chem Struct Biol 78:1–24PubMedCrossRefPubMedCentralGoogle Scholar
  210. 210.
    Annabi N, Mithieux SM, Boughton EA, Ruys AJ, Weiss AS, Dehghani F (2009) Synthesis of highly porous crosslinked elastin hydrogels and their interaction with fibroblasts in vitro. Biomaterials 30:4550–4557PubMedCrossRefGoogle Scholar
  211. 211.
    Jiankang H, Dichen L, Yaxiong L, Bo Y, Hanxiang Z, Qin L, Bingheng L, Yi L (2009) Preparation of chitosan–gelatin hybrid scaffolds with well-organized microstructures for hepatic tissue engineering. Acta Biomater 5:453–461PubMedCrossRefGoogle Scholar
  212. 212.
    Annabi N, Mithieux SM, Weiss AS, Dehghani F (2009) The fabrication of elastin-based hydrogels using high pressure CO 2. Biomaterials 30:1–7PubMedCrossRefGoogle Scholar
  213. 213.
    Mithieux SM, Rasko JE, Weiss AS (2004) Synthetic elastin hydrogels derived from massive elastic assemblies of self-organized human protein monomers. Biomaterials 25:4921–4927PubMedCrossRefGoogle Scholar
  214. 214.
    McDaniel JR, Bhattacharyya J, Vargo KB, Hassouneh W, Hammer DA, Chilkoti A (2013) Self-assembly of thermally responsive nanoparticles of a genetically encoded peptide polymer by drug conjugation. Angew Chem Int Ed 52:1683–1687CrossRefGoogle Scholar
  215. 215.
    Wang H, Cai L, Paul A, Enejder A, Heilshorn SC (2014) Hybrid elastin-like polypeptide–poly(ethylene glycol) (ELP-PEG) hydrogels with improved transparency and independent control of matrix mechanics and cell ligand density. Biomacromolecules 15:3421–3428PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Yano S, Mori M, Teramoto N, Iisaka M, Suzuki N, Noto M, Kaimoto Y, Kakimoto M, Yamada M, Shiratsuchi E (2015) Preparation of photocrosslinked fish elastin polypeptide/microfibrillated cellulose composite gels with elastic properties for biomaterial applications. Mar Drugs 13:338–353PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Weis-Fogh T (1961) Molecular interpretation of the elasticity of resilin, a rubber-like protein. J Mol Biol 3:648–667CrossRefGoogle Scholar
  218. 218.
    Weis-Fogh T (1961) Thermodynamic properties of resilin, a rubber-like protein. J Mol Biol 3:520–531CrossRefGoogle Scholar
  219. 219.
    Weis-Fogh T (1960) A rubber-like protein in insect cuticle. J Exp Biol 37:889–907Google Scholar
  220. 220.
    Gorb SN (2004) The jumping mechanism of cicada Cercopis vulnerata (Auchenorrhyncha, Cercopidae): skeleton–muscle organisation, frictional surfaces, and inverse-kinematic model of leg movements. Anthropod Struct Dev 33:201–220CrossRefGoogle Scholar
  221. 221.
    Dillinger S, Kesel A (2002) Changes in the structure of the cuticle of Ixodes ricinus L. 1758 (Acari, Ixodidae) during feeding. Anthropod Struct Dev 31:95–101CrossRefGoogle Scholar
  222. 222.
    Tatham AS, Shewry PR (2002) Comparative structures and properties of elastic proteins. Philos Trans R Soc Lond Ser B Biol Sci 357:229–234CrossRefGoogle Scholar
  223. 223.
    Su RS, Kim Y, Liu JC (2014) Resilin: protein-based elastomeric biomaterials. Acta Biomater 10:1601–1611PubMedCrossRefPubMedCentralGoogle Scholar
  224. 224.
    Qin G, Lapidot S, Numata K, Hu X, Meirovitch S, Dekel M, Podoler I, Shoseyov O, Kaplan DL (2009) Expression, cross-linking, and characterization of recombinant chitin binding resilin. Biomacromolecules 10:3227–3234PubMedCrossRefPubMedCentralGoogle Scholar
  225. 225.
    Tamburro AM, Panariello S, Santopietro V, Bracalello A, Bochicchio B, Pepe A (2010) Molecular and supramolecular structural studies on significant repetitive sequences of resilin. Chembiochem 11:83–93PubMedCrossRefPubMedCentralGoogle Scholar
  226. 226.
    Ryckaert JP, Ciccotti G, Berendsen HJ (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341CrossRefGoogle Scholar
  227. 227.
    Elvin CM, Carr AG, Huson MG, Maxwell JM, Pearson RD, Vuocolo T, Liyou NE, Wong DC, Merritt DJ, Dixon NE (2005) Synthesis and properties of crosslinked recombinant pro-resilin. Nature 437:999–1002CrossRefPubMedGoogle Scholar
  228. 228.
    Truong MY, Dutta NK, Choudhury NR, Kim M, Elvin CM, Nairn KM, Hill AJ (2011) The effect of hydration on molecular chain mobility and the viscoelastic behavior of resilin-mimetic protein-based hydrogels. Biomaterials 32:8462–8473CrossRefPubMedGoogle Scholar
  229. 229.
    Charati MB, Ifkovits JL, Burdick JA, Linhardt JG, Kiick KL (2009) Hydrophilic elastomeric biomaterials based on resilin-like polypeptides. Soft Matter 5:3412–3416PubMedPubMedCentralCrossRefGoogle Scholar
  230. 230.
    Qin G, Rivkin A, Lapidot S, Hu X, Preis I, Arinus SB, Dgany O, Shoseyov O, Kaplan DL (2011) Recombinant exon-encoded resilins for elastomeric biomaterials. Biomaterials 32:9231–9243PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    McGann CL, Levenson EA, Kiick KL (2013) Resilin-based hybrid hydrogels for cardiovascular tissue engineering. Macromol Chem Phys 214:203–213CrossRefGoogle Scholar
  232. 232.
    Li L, Tong Z, Jia X, Kiick KL (2013) Resilin-like polypeptide hydrogels engineered for versatile biological function. Soft Matter 9:665–673PubMedCrossRefGoogle Scholar
  233. 233.
    Whittaker J, Dutta N, Elvin C, Choudhury N (2015) Fabrication of highly elastic resilin/silk fibroin based hydrogel by rapid photo-crosslinking reaction. J Mater Chem B 3:6576–6579CrossRefGoogle Scholar
  234. 234.
    Liu X, Ma PX (2009) Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds. Biomaterials 30:4094–4103PubMedPubMedCentralCrossRefGoogle Scholar
  235. 235.
    Silva SS, Mano JF, Reis RL (2010) Potential applications of natural origin polymer-based systems in soft tissue regeneration. Crit Rev Biotechnol 30:200–221PubMedCrossRefGoogle Scholar
  236. 236.
    Huang S, Fu X (2010) Naturally derived materials-based cell and drug delivery systems in skin regeneration. J Control Release 142:149–159PubMedCrossRefGoogle Scholar
  237. 237.
    Neffe AT, Loebus A, Zaupa A, Stoetzel C, Müller FA, Lendlein A (2011) Gelatin functionalization with tyrosine derived moieties to increase the interaction with hydroxyapatite fillers. Acta Biomater 7:1693–1701PubMedCrossRefGoogle Scholar
  238. 238.
    Yuan S, Xiong G, Roguin A, Choong C (2012) Immobilization of gelatin onto poly (glycidyl methacrylate)-grafted polycaprolactone substrates for improved cell–material interactions. Biointerphases 7:30PubMedCrossRefGoogle Scholar
  239. 239.
    Zhao F, Grayson WL, Ma T, Bunnell B, Lu WW (2006) Effects of hydroxyapatite in 3-D chitosan–gelatin polymer network on human mesenchymal stem cell construct development. Biomaterials 27:1859–1867PubMedCrossRefGoogle Scholar
  240. 240.
    Gilsenan P, Ross-Murphy S (2000) Rheological characterisation of gelatins from mammalian and marine sources. Food Hydrocoll 14:191–195CrossRefGoogle Scholar
  241. 241.
    Yoshimura K, Terashima M, Hozan D, Ebato T, Nomura Y, Ishii Y, Shirai K (2000) Physical properties of shark gelatin compared with pig gelatin. J Agric Food Chem 48:2023–2027PubMedCrossRefGoogle Scholar
  242. 242.
    Van Den Bulcke AI, Bogdanov B, De Rooze N, Schacht EH, Cornelissen M, Berghmans H (2000) Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules 1:31–38CrossRefGoogle Scholar
  243. 243.
    Bode F, da Silva MA, Drake AF, Ross-Murphy SB, Dreiss CA (2011) Enzymatically cross-linked tilapia gelatin hydrogels: physical, chemical, and hybrid networks. Biomacromolecules 12:3741–3752PubMedCrossRefGoogle Scholar
  244. 244.
    Peña C, De La Caba K, Eceiza A, Ruseckaite R, Mondragon I (2010) Enhancing water repellence and mechanical properties of gelatin films by tannin addition. Bioresour Technol 101:6836–6842PubMedCrossRefGoogle Scholar
  245. 245.
    Parker N, Povey M (2012) Ultrasonic study of the gelation of gelatin: phase diagram, hysteresis and kinetics. Food Hydrocoll 26:99–107CrossRefGoogle Scholar
  246. 246.
    Xing Q, Yates K, Vogt C, Qian Z, Frost MC, Zhao F (2014) Increasing mechanical strength of gelatin hydrogels by divalent metal ion removal. Sci Rep 4:4706PubMedPubMedCentralCrossRefGoogle Scholar
  247. 247.
    Dash R, Foston M, Ragauskas AJ (2013) Improving the mechanical and thermal properties of gelatin hydrogels cross-linked by cellulose nanowhiskers. Carbohydr Polym 91:638–645PubMedPubMedCentralCrossRefGoogle Scholar
  248. 248.
    Liu WG, De Yao K, Wang GC, Li HX (2000) Intrinsic fluorescence investigation on the change in conformation of cross-linked gelatin gel during volume phase transition. Polymer 41:7589–7592CrossRefGoogle Scholar
  249. 249.
    Ofner CM, Zhang YE, Jobeck VC, Bowman BJ (2001) Crosslinking studies in gelatin capsules treated with formaldehyde and in capsules exposed to elevated temperature and humidity. J Pharm Sci 90:79–88PubMedCrossRefGoogle Scholar
  250. 250.
    Han L, Xu J, Lu X, Gan D, Wang Z, Wang K, Zhang H, Yuan H, Weng J (2017) Biohybrid methacrylated gelatin/polyacrylamide hydrogels for cartilage repair. J Mater Chem B 5:731–741CrossRefGoogle Scholar
  251. 251.
    Bartnikowski M, Bartnikowski N, Woodruff M, Schrobback K, Klein T (2015) Protective effects of reactive functional groups on chondrocytes in photocrosslinkable hydrogel systems. Acta Biomater 27:66–76PubMedCrossRefGoogle Scholar
  252. 252.
    Dragusin D-M, Van Vlierberghe S, Dubruel P, Dierick M, Van Hoorebeke L, Declercq HA, Cornelissen MM, Stancu I-C (2012) Novel gelatin-PHEMA porous scaffolds for tissue engineering applications. Soft Matter 8:9589–9602CrossRefGoogle Scholar
  253. 253.
    Yin OS, Ahmad I, Amin MCIM (2014) Synthesis of chemical cross-linked gelatin hydrogel reinforced with cellulose nanocrystals (CNC). AIP Conf Proc 1614:375–380CrossRefGoogle Scholar
  254. 254.
    Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–121PubMedPubMedCentralCrossRefGoogle Scholar
  255. 255.
    Pourjavadi A, Hosseinzadeh H (2010) Synthesis and properties of partially hydrolyzed acrylonitrile-co-acrylamide superabsorbent hydrogel. Drugs 13:14Google Scholar
  256. 256.
    Li W, An H, Tan Y, Lu C, Liu C, Li P, Xu K, Wang P (2012) Hydrophobically associated hydrogels based on acrylamide and anionic surface active monomer with high mechanical strength. Soft Matter 8:5078–5086CrossRefGoogle Scholar
  257. 257.
    Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53:321–339PubMedPubMedCentralCrossRefGoogle Scholar
  258. 258.
    Leung KM, Yeoh GP, Chan KW (2007) Breast pathology in complications associated with polyacrylamide hydrogel (PAAG) mammoplasty. Hong Kong Med J 13:137–140PubMedPubMedCentralGoogle Scholar
  259. 259.
    Tokuyama H, Yazaki N (2010) Preparation of poly (N-isopropylacrylamide) hydrogel beads by circulation polymerization. React Funct Polym 70:967–971CrossRefGoogle Scholar
  260. 260.
    Merril E, Pekala RW, Mahmud NA (1987) Hydrogel for blood contact. In: Peppas NA (ed) Hydrogels in medicine and pharmacy, vol 3. CRC Press, Boca Rotan, pp 1–16Google Scholar
  261. 261.
    Siegel RA, Falamarzian M, Firestone BA, Moxley BC (1988) pH-controlled release from hydrophobic/polyelectrolyte copolymer hydrogels. J Control Release 8:179–182CrossRefGoogle Scholar
  262. 262.
    Stanojević M, Kalagasidis KM, Stupar M, Filipović J (2005) Swelling and paracetamol release studies of poly (acrylamide-co-itaconic acid) hydrogels. J Control Release 101:305PubMedPubMedCentralGoogle Scholar
  263. 263.
    Feng H, Zheng T, Wang X, Wang H (2016) Poly (acrylamide)-MWNTs hybrid hydrogel with extremely high mechanical strength. Open Chem 14:150–157Google Scholar
  264. 264.
    Yang M, Liu C, Li Z, Gao G, Liu F (2010) Temperature-responsive properties of poly (acrylic acid-co-acrylamide) hydrophobic association hydrogels with high mechanical strength. Macromolecules 43:10645–10651CrossRefGoogle Scholar
  265. 265.
    Yang X, Huang L, Zhou L, Xu H, Yi Z (2016) A photochromic copolymer hydrogel contact lens: from synthesis to application. Int J Polym Sci 2016:4374060, 8 pagesGoogle Scholar
  266. 266.
    Karadağ E, Saraydin D, Çaldiran Y, Güven O (2000) Swelling studies of copolymeric acrylamide/crotonic acid hydrogels as carriers for agricultural uses. Polym Adv Technol 11:59–68CrossRefGoogle Scholar
  267. 267.
    Kim S, Iyer G, Nadarajah A, Frantz JM, Spongberg AL (2010) Polyacrylamide hydrogel properties for horticultural applications. Int J Polym Anal Charact 15:307–318CrossRefGoogle Scholar
  268. 268.
    Seliktar D (2012) Designing cell-compatible hydrogels for biomedical applications. Science 336:1124–1128PubMedCrossRefGoogle Scholar
  269. 269.
    Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267CrossRefGoogle Scholar
  270. 270.
    Khademhosseini A, Langer R (2007) Microengineered hydrogels for tissue engineering. Biomaterials 28:5087–5092PubMedCrossRefGoogle Scholar
  271. 271.
    Smith EA, Prues SL, Oehme FW (1997) Environmental degradation of polyacrylamides. II. Effects of environmental (outdoor) exposure. Ecotoxicol Environ Saf 37:76–91PubMedCrossRefGoogle Scholar
  272. 272.
    Tilson H (1981) The neurotoxicity of acrylamide: an overview. Neurotoxicol Teratol 3:445–461Google Scholar
  273. 273.
    Koyama N, Yasui M, Oda Y, Suzuki S, Satoh T, Suzuki T, Matsuda T, Masuda S, Kinae N, Honma M (2011) Genotoxicity of acrylamide in vitro: acrylamide is not metabolically activated in standard in vitro systems. Environ Mol Mutagen 52:11–19PubMedCrossRefGoogle Scholar
  274. 274.
    McCollister D, Oyen F, Rowe V (1964) Toxicology of acrylamide. Toxicol Appl Pharmacol 6:172–181CrossRefGoogle Scholar
  275. 275.
    Greene SA (2013) Sittig’s handbook of pesticides and agricultural chemicals. William Andrew, Norwich, NY, p 13Google Scholar
  276. 276.
    Ma J, Li X, Bao Y (2015) Advances in cellulose-based superabsorbent hydrogels. RSC Adv 5:59745–59757CrossRefGoogle Scholar
  277. 277.
    Ohmine I, Tanaka T (1982) Salt effects on the phase transition of ionic gels. J Chem Phys 77:5725–5729CrossRefGoogle Scholar
  278. 278.
    Luo S-K, Chen G-P, Sun Z-S, Cheng N-X (2011) Our strategy in complication management of augmentation mammaplasty with polyacrylamide hydrogel injection in 235 patients. J Plast Reconstr Aesthet Surg 64:731–737PubMedCrossRefPubMedCentralGoogle Scholar
  279. 279.
    Wang Z-X, Luo D-L, Dai X, Yu P, Tao L, Li S-R (2012) Polyacrylamide hydrogel injection for augmentation mammaplasty: loss of ability for breastfeeding. Ann Plast Surg 69:123–128PubMedCrossRefPubMedCentralGoogle Scholar
  280. 280.
    Rong L, Lan S-J, Shao Y, Chen Z, Zhang D (2015) A case of special complication following a large amount of polyacrylamide hydrogel injected into the epicranial aponeurosis: leukocytopenia. Case Rep Med 2015:695359PubMedPubMedCentralCrossRefGoogle Scholar
  281. 281.
    Do ER, Shim JS (2012) Long-term complications from breast augmentation by injected polyacrylamide hydrogel. Arch Plast Surg 39:267–269PubMedPubMedCentralCrossRefGoogle Scholar
  282. 282.
    Kavoussi H, Ebrahimi A (2012) Delayed gel indurations as an adverse effect of polyacrylamide filler and its easy treatment. Dermatol Res Pract 2012:4CrossRefGoogle Scholar
  283. 283.
    Cheng N-X, Liu L-G, Hui L, Chen Y-L, Xu S-L (2009) Breast cancer following augmentation mammaplasty with polyacrylamide hydrogel (PAAG) injection. Aesthet Plast Surg 33:563CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Abul K. Mallik
    • 1
    Email author
  • Md. Shahruzzaman
    • 1
  • Md. Nurus Sakib
    • 1
  • Asaduz Zaman
    • 1
  • Md. Shirajur Rahman
    • 1
  • Md. Minhajul Islam
    • 1
  • Md. Sazedul Islam
    • 1
  • Papia Haque
    • 1
  • Mohammed Mizanur Rahman
    • 1
  1. 1.Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and TechnologyUniversity of DhakaDhakaBangladesh

Personalised recommendations