Tumor Lysis Syndrome in the Cancer Patient

  • O’Dene Lewis
  • Stephen M. PastoresEmail author
Reference work entry


Tumor lysis syndrome (TLS) is an onco-metabolic emergency that is triggered by lysis of tumor cells either after cytotoxic therapy or spontaneously, which results in the release of large amounts of potassium, phosphate, and uric acid into the systemic circulation. These metabolites can overwhelm normal homeostatic mechanisms in the body leading to hyperkalemia, hyperphosphatemia, hyperuricemia, secondary hypocalcemia, and their associated clinical manifestations. TLS can lead to acute kidney injury via crystal dependent (uric acid and/or calcium phosphate crystal deposits in renal tubules) and crystal independent mechanisms, resulting in increased morbidity and mortality. TLS is most commonly seen in patients being treated for hematologic malignancies such as non-Hodgkin’s lymphoma and acute lymphoblastic leukemia but may also occur in highly proliferative and sensitive solid tumors. With the advent of novel and effective new therapies for a variety of hematologic malignancies, the incidence of TLS is expected to increase. Identifying patients at risk and instituting preventative measures are key to minimize the clinical consequences of this syndrome. The cornerstone of management includes intravenous hydration, diuretics as needed, hypouricemic agents (allopurinol, rasburicase), close monitoring of electrolytes, and renal replacement therapy when indicated. In this chapter, we discuss the etiology, definition, pathophysiology, prophylaxis, and management of TLS, with an emphasis on high-risk patients who require intensive care support.


Tumor lysis syndrome Intensive care unit Critical care oncology Uric acid Allopurinol Rasburicase Acute kidney injury 



Anaplastic large cell lymphoma


Acute kidney injury


Absolute lymphocyte count


Acute lymphoblastic leukemia


Acute myeloid leukemia


Chimeric antigen receptor


Chronic kidney disease


Chronic lymphoblastic leukemia


Chronic myeloid leukemia


Continuous renal replacement therapy


US Food and Drug Administration


Glucose-6-phosphate dehydrogenase


Glomerular filtration rate


High-risk for disease


Intensive care unit


Intermediate-risk for disease


Lactate dehydrogenase


Low-risk for disease


Laboratory tumor lysis syndrome


Non-Hodgkin’s lymphoma


Tumor lysis syndrome


Upper limit normal


White blood cell


  1. 1.
    Hematology/Oncology (Cancer) Approvals & Safety Notifications 2018 [updated 6-13-18]. Available from:
  2. 2.
    Howard SC, Trifilio S, Gregory TK, Baxter N, McBride A. Tumor lysis syndrome in the era of novel and targeted agents in patients with hematologic malignancies: a systematic review. Ann Hematol. 2016;95(4):563–73.CrossRefPubMedGoogle Scholar
  3. 3.
    Ward E, DeSantis C, Robbins A, Kohler B, Jemal A. Childhood and adolescent cancer statistics, 2014. CA Cancer J Clin. 2014;64(2):83–103.CrossRefPubMedGoogle Scholar
  4. 4.
    Cairo MS, Coiffier B, Reiter A, Younes A. Recommendations for the evaluation of risk and prophylaxis of tumour lysis syndrome (TLS) in adults and children with malignant diseases: an expert TLS panel consensus. Br J Haematol. 2010;149(4):578–86.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Magrath IT, Semawere C, Nkwocha J. Causes of death in patients with Burkitt’s lymphoma – the role of supportive care in overall management. East Afr Med J. 1974;51(9):623–32.PubMedGoogle Scholar
  6. 6.
    Bedrna J, Polcak J. Akuter Harnleiterverschluss nach Bestrahlung chronischer Leukämien mit Röntgenstrahlen. Med Klin. 1929;25(1700):01.Google Scholar
  7. 7.
    Rieselbach RE, Bentzel CJ, Cotlove E, Frei E 3rd, Freireich EJ. Uric acid excretion and renal function in the acute hyperuricemia of leukemia. Pathogenesis and therapy of uric acid nephropathy. Am J Med. 1964;37:872–83.CrossRefPubMedGoogle Scholar
  8. 8.
    Abu-Alfa AK, Younes A. Tumor lysis syndrome and acute kidney injury: evaluation, prevention, and management. Am J Kidney Dis. 2010;55(5 Suppl 3):S1–13.. quiz S14–9CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Krishnan G, D’Silva K, Al-Janadi A. Cetuximab-related tumor lysis syndrome in metastatic colon carcinoma. J Clin Oncol. 2008;26(14):2406–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Noh GY, Choe DH, Kim CH, Lee JC. Fatal tumor lysis syndrome during radiotherapy for non-small-cell lung cancer. J Clin Oncol. 2008;26(36):6005–6.CrossRefPubMedGoogle Scholar
  11. 11.
    Hande KR, Garrow GC. Acute tumor lysis syndrome in patients with high-grade non-Hodgkin’s lymphoma. Am J Med. 1993;94(2):133–9.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Coiffier B, Altman A, Pui CH, Younes A, Cairo MS. Guidelines for the management of pediatric and adult tumor lysis syndrome: an evidence-based review. J Clin Oncol. 2008;26(16):2767–78.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Cairo MS, Bishop M. Tumour lysis syndrome: new therapeutic strategies and classification. Br J Haematol. 2004;127(1):3–11.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Elinoff JM, Salit RB, Ackerman HC. The tumor lysis syndrome. N Engl J Med. 2011;365(6):571–2.. author reply 3–4CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Montesinos P, Lorenzo I, Martin G, Sanz J, Perez-Sirvent ML, Martinez D, et al. Tumor lysis syndrome in patients with acute myeloid leukemia: identification of risk factors and development of a predictive model. Haematologica. 2008;93(1):67–74.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Annemans L, Moeremans K, Lamotte M, Garcia Conde J, van den Berg H, Myint H, et al. Incidence, medical resource utilisation and costs of hyperuricemia and tumour lysis syndrome in patients with acute leukaemia and non-Hodgkin’s lymphoma in four European countries. Leuk Lymphoma. 2003;44(1):77–83.CrossRefPubMedGoogle Scholar
  17. 17.
    Arseneau JC, Canellos GP, Banks PM, Berard CW, Gralnick HR, DeVita VT Jr. American Burkitt’s lymphoma: a clinicopathologic study of 30 cases. I. Clinical factors relating to prolonged survival. Am J Med. 1975;58(3):314–21.CrossRefPubMedGoogle Scholar
  18. 18.
    Okamoto K, Kinoshita T, Shimizu M, Okura I, Kawada A, Mizobuchi K, et al. A case of spontaneous tumor lysis syndrome in a patient with ovarian cancer. Case Rep Obstet Gynecol. 2015; 461870.Google Scholar
  19. 19.
    Brinton T, Yousuf T, Steinecker G, Rydel J. A case of tumor lysis syndrome in a patient with pancreatic adenocarcinoma treated with low-dose gemcitabine. Ochsner J. 2015;15(4):455–6.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Saleh RR, Rodrigues J, Lee TC. A tumour lysis syndrome in a chemotherapy naive patient with metastatic pancreatic adenocarcinoma. BMJ Case Rep. 2015;2015:2015.Google Scholar
  21. 21.
    Lobe TE, Karkera MS, Custer MD, Shenefelt RE, Douglass EC. Fatal refractory hyperkalemia due to tumor lysis during primary resection for hepatoblastoma. J Pediatr Surg. 1990;25(2):249–50.CrossRefPubMedGoogle Scholar
  22. 22.
    Kushner BH, LaQuaglia MP, Modak S, Cheung NK. Tumor lysis syndrome, neuroblastoma, and correlation between serum lactate dehydrogenase levels and MYCN-amplification. Med Pediatr Oncol. 2003;41(1):80–2.CrossRefPubMedGoogle Scholar
  23. 23.
    Ascani S, Went P, Liberati AM, Piccaluga PP, Zinzani PL, Pileri SA. Difficult diagnostic and therapeutic cases: CASE 1. true thymic hyperplasia in a patient treated for T-cell lymphoma. J Clin Oncol. 2004;22(5):953–4.CrossRefPubMedGoogle Scholar
  24. 24.
    Alkan A, Kutuk T, Karci E, Yasar A, Hicsonmez A, Utkan G. Radiation-induced tumor lysis syndrome in chronic lymphocytic leukemia. Turk J Haematol. 2016;33(3):248–50.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Chen SW, Hwang WS, Tsao CJ, Liu HS, Huang GC. Hydroxyurea and splenic irradiation-induced tumour lysis syndrome: a case report and review of the literature. J Clin Pharm Ther. 2005;30(6):623–5.CrossRefPubMedGoogle Scholar
  26. 26.
    Abou Mourad Y, Taher A, Shamseddine A. Acute tumor lysis syndrome in large B-cell non-Hodgkin lymphoma induced by steroids and anti-CD 20. Hematol J. 2003;4(3):222–4.CrossRefPubMedGoogle Scholar
  27. 27.
    Salsamendi JT, Doshi MH, Gortes FJ, Levi JU, Narayanan G. Acute tumor lysis syndrome after proximal splenic artery embolization. Radiol Case Rep. 2016;11(2):90–2.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Weeks AC, Kimple ME. Spontaneous tumor lysis syndrome: a case report and critical evaluation of current diagnostic criteria and optimal treatment regimens. J Investig Med High Impact Case Rep. 2015;3(3):2324709615603199.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Hochberg J, Cairo MS. Rasburicase: future directions in tumor lysis management. Expert Opin Biol Ther. 2008;8(10):1595–604.CrossRefPubMedGoogle Scholar
  30. 30.
    Wilson FP, Berns JS. Onco-nephrology: tumor lysis syndrome. Clin J Am Soc Nephrol. 2012;7(10):1730–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Shimada M, Johnson RJ, May WS Jr, Lingegowda V, Sood P, Nakagawa T, et al. A novel role for uric acid in acute kidney injury associated with tumour lysis syndrome. Nephrol Dial Transplant. 2009;24(10):2960–4.CrossRefPubMedGoogle Scholar
  32. 32.
    Conger JD, Falk SA. Intrarenal dynamics in the pathogenesis and prevention of acute urate nephropathy. J Clin Invest. 1977;59(5):786–93.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Cohen LF, Balow JE, Magrath IT, Poplack DG, Ziegler JL. Acute tumor lysis syndrome. A review of 37 patients with Burkitt’s lymphoma. Am J Med. 1980;68(4):486–91.CrossRefPubMedGoogle Scholar
  34. 34.
    McCullough PA, Beaver TM, Bennett-Guerrero E, Emmett M, Fonarow GC, Goyal A, et al. Acute and chronic cardiovascular effects of hyperkalemia: new insights into prevention and clinical management. Rev Cardiovasc Med. 2014;15(1):11–23.PubMedGoogle Scholar
  35. 35.
    Davidson MB, Thakkar S, Hix JK, Bhandarkar ND, Wong A, Schreiber MJ. Pathophysiology, clinical consequences, and treatment of tumor lysis syndrome. Am J Med. 2004;116(8):546–54.CrossRefPubMedGoogle Scholar
  36. 36.
    Qunibi WY. Consequences of hyperphosphatemia in patients with end-stage renal disease (ESRD). Kidney Int Suppl. 2004;90:S8–12.Google Scholar
  37. 37.
    Burghi G, Berrutti D, Manzanares W. Tumor lysis syndrome in intensive therapy: diagnostic and therapeutic encare. Med Int. 2011;35(3):170–8.Google Scholar
  38. 38.
    Jeha S. Tumor lysis syndrome. Semin Hematol. 2001;38(4 Suppl 10):4–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Darmon M, Guichard I, Vincent F, Schlemmer B, Azoulay E. Prognostic significance of acute renal injury in acute tumor lysis syndrome. Leuk Lymphoma. 2010;51(2):221–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Tosi P, Barosi G, Lazzaro C, Liso V, Marchetti M, Morra E, et al. Consensus conference on the management of tumor lysis syndrome. Haematologica. 2008;93(12):1877–85.CrossRefPubMedGoogle Scholar
  41. 41.
    Mirrakhimov AE, Voore P, Khan M, Ali AM. Tumor lysis syndrome: a clinical review. World J Crit Care Med. 2015;4(2):130–8.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Krakoff IH, Meyer RL. Prevention of hyperuricemia in leukemia and lymphoma: us of allopurinol, a xanthine oxidase inhibitor. JAMA. 1965;193:1–6.CrossRefPubMedGoogle Scholar
  43. 43.
    LaRosa C, McMullen L, Bakdash S, Ellis D, Krishnamurti L, Wu HY, et al. Acute renal failure from xanthine nephropathy during management of acute leukemia. Pediatr Nephrol (Berlin, Germany). 2007;22(1):132–5.CrossRefGoogle Scholar
  44. 44.
    Smalley RV, Guaspari A, Haase-Statz S, Anderson SA, Cederberg D, Hohneker JA. Allopurinol: intravenous use for prevention and treatment of hyperuricemia. J Clin Oncol. 2000;18(8):1758–63.CrossRefPubMedGoogle Scholar
  45. 45.
    Arellano F, Sacristan JA. Allopurinol hypersensitivity syndrome: a review. Ann Pharmacother. 1993;27(3):337–43.CrossRefPubMedGoogle Scholar
  46. 46.
    McLeod HL. Clinically relevant drug-drug interactions in oncology. Br J Clin Pharmacol. 1998;45(6):539–44.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Takano Y, Hase-Aoki K, Horiuchi H, Zhao L, Kasahara Y, Kondo S, et al. Selectivity of febuxostat, a novel non-purine inhibitor of xanthine oxidase/xanthine dehydrogenase. Life Sci. 2005;76(16):1835–47.CrossRefPubMedGoogle Scholar
  48. 48.
    Mayer MD, Khosravan R, Vernillet L, Wu JT, Joseph-Ridge N, Mulford DJ. Pharmacokinetics and pharmacodynamics of febuxostat, a new non-purine selective inhibitor of xanthine oxidase in subjects with renal impairment. Am J Ther. 2005;12(1):22–34.CrossRefPubMedGoogle Scholar
  49. 49.
    Wilson FP, Berns JS. Tumor lysis syndrome: new challenges and recent advances. Adv Chronic Kidney Dis. 2014;21(1):18–26.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Spina M, Nagy Z, Ribera JM, Federico M, Aurer I, Jordan K, et al. FLORENCE: a randomized, double-blind, phase III pivotal study of febuxostat versus allopurinol for the prevention of tumor lysis syndrome (TLS) in patients with hematologic malignancies at intermediate to high TLS risk. Ann Oncol. 2015;26(10):2155–61.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Alakel N, Middeke JM, Schetelig J, Bornhauser M. Prevention and treatment of tumor lysis syndrome, and the efficacy and role of rasburicase. Onco Targets Ther. 2017;10:597–605.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Lopez-Olivo MA, Pratt G, Palla SL, Salahudeen A. Rasburicase in tumor lysis syndrome of the adult: a systematic review and meta-analysis. Am J Kidney Dis. 2013;62(3):481–92.CrossRefPubMedGoogle Scholar
  53. 53.
    Sonbol MB, Yadav H, Vaidya R, Rana V, Witzig TE. Methemoglobinemia and hemolysis in a patient with G6PD deficiency treated with rasburicase. Am J Hematol. 2013;88(2):152–4.CrossRefPubMedGoogle Scholar
  54. 54.
    Relling MV, McDonagh EM, Chang T, Caudle KE, McLeod HL, Haidar CE, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for rasburicase therapy in the context of G6PD deficiency genotype. Clin Pharmacol Ther. 2014;96(2):169–74.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Cortes J, Moore JO, Maziarz RT, Wetzler M, Craig M, Matous J, et al. Control of plasma uric acid in adults at risk for tumor Lysis syndrome: efficacy and safety of rasburicase alone and rasburicase followed by allopurinol compared with allopurinol alone – results of a multicenter phase III study. J Clin Oncol. 2010;28(27):4207–13.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Coiffier B, Mounier N, Bologna S, Ferme C, Tilly H, Sonet A, et al. Efficacy and safety of rasburicase (recombinant urate oxidase) for the prevention and treatment of hyperuricemia during induction chemotherapy of aggressive non-Hodgkin’s lymphoma: results of the GRAAL1 (Groupe d’Etude des Lymphomes de l’Adulte trial on Rasburicase Activity in Adult Lymphoma) study. J Clin Oncol. 2003;21(23):4402–6.CrossRefPubMedGoogle Scholar
  57. 57.
    Jeha S, Kantarjian H, Irwin D, Shen V, Shenoy S, Blaney S, et al. Efficacy and safety of rasburicase, a recombinant urate oxidase (Elitek), in the management of malignancy-associated hyperuricemia in pediatric and adult patients: final results of a multicenter compassionate use trial. Leukemia. 2005;19(1):34–8.CrossRefPubMedGoogle Scholar
  58. 58.
    Vadhan-Raj S, Fayad LE, Fanale MA, Pro B, Rodriguez A, Hagemeister FB, et al. A randomized trial of a single-dose rasburicase versus five-daily doses in patients at risk for tumor lysis syndrome. Ann Oncol. 2012;23(6):1640–5.CrossRefPubMedGoogle Scholar
  59. 59.
    Pea F. Pharmacology of drugs for hyperuricemia. Mechanisms, kinetics and interactions. Contrib Nephrol. 2005;147:35–46.PubMedGoogle Scholar
  60. 60.
    Ueng S. Rasburicase (Elitek): a novel agent for tumor lysis syndrome. Proc (Baylor Univ Med Cent). 2005;18(3):275–9.CrossRefGoogle Scholar
  61. 61.
    Baeksgaard L, Sorensen JB. Acute tumor lysis syndrome in solid tumors – a case report and review of the literature. Cancer Chemother Pharmacol. 2003;1(3):187–92.Google Scholar
  62. 62.
    Jones GL, Will A, Jackson GH, Webb NJ, Rule S. Guidelines for the management of tumour lysis syndrome in adults and children with haematological malignancies on behalf of the British Committee for Standards in Haematology. Br J Haematol. 2015;169(5):661–71.CrossRefPubMedGoogle Scholar
  63. 63.
    Agha-Razii M, Amyot SL, Pichette V, Cardinal J, Ouimet D, Leblanc M. Continuous veno-venous hemodiafiltration for the treatment of spontaneous tumor lysis syndrome complicated by acute renal failure and severe hyperuricemia. Clin Nephrol. 2000;54(1):59–63.PubMedGoogle Scholar
  64. 64.
    Sakarcan A, Quigley R. Hyperphosphatemia in tumor lysis syndrome: the role of hemodialysis and continuous veno-venous hemofiltration. Pediatr Nephrol (Berlin, Germany). 1994;8(3):351–3.CrossRefGoogle Scholar
  65. 65.
    Heney D, Essex-Cater A, Brocklebank JT, Bailey CC, Lewis IJ. Continuous arteriovenous haemofiltration in the treatment of tumour lysis syndrome. Pediatr Nephrol (Berlin, Germany). 1990;4(3):245–7.CrossRefGoogle Scholar
  66. 66.
    Gutzwiller JP, Schneditz D, Huber AR, Schindler C, Gutzwiller F, Zehnder CE. Estimating phosphate removal in haemodialysis: an additional tool to quantify dialysis dose. Nephrol Dial Transplant: Off Publ Eur Dial Transplant Assoc – Eur Renal Assoc. 2002;17(6):1037–44.CrossRefGoogle Scholar
  67. 67.
    Kjellstrand CM, Cambell DC 2nd, von Hartitzsch B, Buselmeier TJ. Hyperuricemic acute renal failure. Arch Intern Med. 1974;133(3):349–59.CrossRefPubMedGoogle Scholar
  68. 68.
    Algrin C, Faguer S, Lemiale V, Lengline E, Boutboul D, Amorim S, et al. Outcomes after intensive care unit admission of patients with newly diagnosed lymphoma. Leuk Lymphoma. 2015;56(5):1240–5.CrossRefPubMedGoogle Scholar
  69. 69.
    Lengline E, Raffoux E, Lemiale V, Darmon M, Canet E, Boissel N, et al. Intensive care unit management of patients with newly diagnosed acute myeloid leukemia with no organ failure. Leuk Lymphoma. 2012;53(7):1352–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Critical Care Medicine Fellow, Department of Anesthesiology and Critical Care MedicineMemorial Sloan Kettering Cancer CenterNew YorkUSA
  2. 2.Department of Anesthesiology and Critical Care MedicineMemorial Sloan Kettering Cancer CenterNew YorkUSA
  3. 3.Weill Cornell Medical CollegeNew YorkUSA

Personalised recommendations