Advertisement

Respiratory Support Strategies and Nonconventional Ventilation Modes in Oncologic Critical Care Ventilation strategies

  • Yenny R. Cardenas
  • Joseph L. NatesEmail author
Reference work entry

Abstract

Nonconventional modes of ventilation have been around for decades. Starting in the 1970s, several modes of high-frequency ventilation (HFV) were introduced and have been used as experimental or rescue ventilation modes since then. More recently, close-loop dual modes of ventilation have been developed. Biphasic ventilation (BiPAP/APRV) and pressure-regulated volume control (PRVC) are among the most accepted and popular. Other less known include proportional assist ventilation (PAV) and neurally adjusted ventilatory assist (NAVA), among many others. To date, there is little to no evidence available for the use of these modes in cancer patients. We review some of the most important modes in current clinical practice and share our experience in the MD Anderson Cancer Center Intensive Care Units with the use of HFV, BiPAP, and APRV as well our respiratory support strategy to manage cancer patients in respiratory failure.

Keywords

Ventilation strategies Cancer Critically ill Oncology Mechanical ventilation Bi-level Biphasic ventilation BiPAP APRV HFV VDR HFOV NAVA ECMO Recruitment maneuvers Prone positioning 

References

  1. 1.
    Baum M, Benzer H, Putensen C, Koller W, Putz G. Biphasic positive airway pressure (BiPAP) – a new form of augmented ventilation. Anaesthesist. 1989;38(9):452–8.PubMedGoogle Scholar
  2. 2.
    Bellani G, Laffey JG, Fan E, Brochard L, Esteban A, Gattinoni L, van Haren F, Larsson A, McAuley DF, Ranieri M, Rubenfeld G, Thompson BT, Wrigge H, Slutsky AS, Presenti A, for the LUNG SAFE Investigators and the ESICM Trials Group. Epidemiology, patters of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788–800.CrossRefGoogle Scholar
  3. 3.
    Carlucci A, Richard J-C, Wysocki M, Lepage E, Brochard L, SRLF Collaborative Group on Mechanical Ventilation. Noninvasive versus conventional mechanical ventilation: an epidemiologic survey. Am J Respir Crit Care Med. 2001;163:874–80.CrossRefGoogle Scholar
  4. 4.
    Chang S, Shi J, Fu C, Wu X, Li S. A comparison of synchronized intermittent mandatory ventilation and pressure-regulated volume control ventilation in elderly patients with acute exacerbations of COPD and respiratory failure. Int J Chron Obstruct Pulmon Dis. 2016;17(11):1023–9.CrossRefGoogle Scholar
  5. 5.
    Demoule A, Clavel M, Rolland-Debord C, Perbet S, Terzi N, Kouatchet A, Wallet F, Roze H, Vargas F, Guerin C, Dellamonia J, Jaber S, Brochjard L, Similowski T. Neurally adjusted ventilatory assist as an alternative to pressure support ventilation in adults: a French multicenter randomized trial. Intensive Care Med. 2016;42:1723–32.CrossRefGoogle Scholar
  6. 6.
    Di Mussi R, Spadaro S, Mirabella L, Volta CA, Serio G, Staffieri F, Dambrosio M, Cinella G, Bruno F, Grasso S. Impact of prolonged assisted ventilation on diaphragmatic efficiency: NAVA versus PSV. Crit Care. 2016;20:1.  https://doi.org/10.1186/s13054-015-1178-0.CrossRefPubMedGoogle Scholar
  7. 7.
    Emr B, Gatto LA, Roy S, Satalin J, Ghosh A, Snyder K, Andrews P, Habashi N, Marx W, Ge L, Wang G, Dean DA, Vodovotz Y, Nieman G. Airway pressure release ventilation prevents ventilator induced lung injury in normal lungs. JAMA Surg. 2013;148(11): 1005–12.CrossRefGoogle Scholar
  8. 8.
    Faqih NA, Qanbba’h SH, Rihani RS, Ghonimat IM, Yamani YM, Sultan IY. The use of high frequency oscillatory ventilation in a pediatric oncology intensive care unit. Pediatr Blood Cancer. 2012;58(3):384–9.CrossRefGoogle Scholar
  9. 9.
    Ferguson ND, Cook D, Guyatt GH, Mehta S, Hand L, Austin P, Zhou Q, Matte A, Walter SD, Lamontagne F, Granton JT, Arabi YM, Arroliga AC, Stewart TE, Slutsky AS, O’Meade MO, Oscillate Trial Investigators and the Canadian Critical Care Trials Group. High-frequency oscillation in early acute respiratory distress syndrome. NEJM. 2013;368(9):795–805.CrossRefGoogle Scholar
  10. 10.
    Ferreira JC, Diniz-Silva F, Moriya HT, Alencar AM, Amato MBP, Carvalho CRR. Neurally adjusted ventilatory assist (NAVA) or pressure support ventilation (PSV) during spontaneous breathing trials in critically ill patients: a crossover trial. BMC Pulm Med. 2017;17(1):139.CrossRefGoogle Scholar
  11. 11.
    Gattinoni L, Colino F, Maiolo G, Rapetti F, Romitti F, Tonetti T, Vasques F, Quintel M. Positive end-expiratory pressure: how to set it an individual level. Ann Transl Med. 2017;5(14):288.CrossRefGoogle Scholar
  12. 12.
    Hering R, Peters D, Zinserling J, Wrigge H, von Spiegel T, Putensen C. Effects of spontaneous breathing during airway pressure release ventilation on renal perfusion and function in patients with acute lung injury. Intensive Care Med. 2002;28(10):1426–33.CrossRefGoogle Scholar
  13. 13.
    Hörman C, Baum M, Putensen C, Mutz NJ, Benzer H. Biphasi positive airway pressure (BiPAP) – a new mode of ventilatory support. Eur J Anesthesiol. 1994;11(1):37–42.Google Scholar
  14. 14.
    Kaplan L, Bailey H, Formosa V. Airway pressure release ventilation increases cardiac performance in patients with acute ling injury/adult respiratory distress syndrome. Crit Care. 2001;5(4):221–6.CrossRefGoogle Scholar
  15. 15.
    Klain M, Smith RB. High frequency percutaneous transtracheal jet ventilation. Crit Care Med. 1977;5: 280–7.CrossRefGoogle Scholar
  16. 16.
    Krishnan JA, Brower RG. High-frequency ventilation for acute lung injury and ARDS. Chest. 2000;118: 795–807.CrossRefGoogle Scholar
  17. 17.
    Lukangelo U, Fontanesi L, Antonaglia V, Pellis T, Berlot G, Liguori G, Bird FM, Gullo A. High frequency percussive ventilation (HFPV). Minerva Anestesiol. 2003;69:841–51.Google Scholar
  18. 18.
    Lunkenheimer PP, Rafflenbeul W, Keller H, Frank I, Dickhut HH, Fuhrmann C. Application of transtracheal pressure oscillations as a modification of “diffusion respiration”. Br J Anaesth. 1972;44:627.CrossRefGoogle Scholar
  19. 19.
    Nguyen AP, Schmidt UH, Macintyre NR. Should high-frequency in the adult be abandoned? Respir Care. 2016;61(6):791–800.CrossRefGoogle Scholar
  20. 20.
    Putensen C, Wrigge H. Clinical review: biphasic positive airway pressure and airway pressure release ventilation. Crit Care. 2004;8:492–7.  https://doi.org/10.1186/cc2919.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Putensen C, Mutz NJ, Putensen-Himmer G, Zinserling J. Spontaneous breathing during ventilatory support improves ventilation-perfusion distributions in patients with respiratory distress syndrome. Am J Respir Crit Care Med. 1999;159(4 Pt 1):1241–8.CrossRefGoogle Scholar
  22. 22.
    Putensen C, Zech S, Wrigge H, Zinserling J, Stüber F, von Spiegel T, Mutz N. Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med. 2001;164:43–9.CrossRefGoogle Scholar
  23. 23.
    Rathgeber J, Schorn B, Falk V, Kazmaier S, Spiegel T. The influence of controlled mandatory ventilation (CMV), intermittent mandatory ventilation (IMV), and biphasic intermittent positive airway pressure (BiPAP) on duration of intubation and consumption of analgesics and sedatives. A prospective analysis in 596 patients following cardiac surgery. Eur J Anesthesiol. 1997;14:576–82.CrossRefGoogle Scholar
  24. 24.
    Remmers JE, Gautier H. Servo respirator constructed from a positive pressure ventilator. J Appl Physiol. 1976;41:252–5.CrossRefGoogle Scholar
  25. 25.
    Riverso P, Bernard PL, Corsa D, Morra MG, Pagannini G, Parigi F. A comparison of ventilation techniques in ARDS. Volume controlled vs pressure regulated volume control. Minerva Anesthesiol. 1998;64(7–8):339–43.Google Scholar
  26. 26.
    Rowan CM, Loomis A, McArthur J, Smith LS, Gertz SJ, Fitzgerald JC, Nitu ME, Moser EA, Hsing DD, Duncan CN, Mahadeo KM, Moffet J, Hall MW, Pinos EL, Tamburro RF, Cheifetz IM, Investigators of the Pediatric Acute Lung Injury and Sepsis Network. High-frequency oscillatory ventilation use and severe pediatric ARDS in the pediatric hematopoietic cell transplant recipient. Respir Care. 2018;63(4): 404–11.CrossRefGoogle Scholar
  27. 27.
    Saddy F, Moraes L, Santos CL, Pena G, Morales MM, Capelozzi VL, Game de Abreu M, Baez CS, Pelosi P, Rieken P. Biphasic positive airway pressure minimizes biological impact on lung tissue in mild acute lung injury independent of etiology. Crit Care. 2013;17:R228.CrossRefGoogle Scholar
  28. 28.
    Schirmer-Mikalsen K, Vik A, Skogvoll E, Moen KG, Solheim O, Klepstad P. Intracranial pressure during pressure control and pressure-regulated volume control ventilation in patients with traumatic brain injury: a randomized crossover trial. Neurocrit Care. 2016;24(3):332–41.CrossRefGoogle Scholar
  29. 29.
    Sehgal IS, Dhooria S, Aggarwal AN, Behera D, Agarwal R. Asynchrony index in pressure support ventilation (PSV) versus neurally adjust ventilator assist (NAVA) during non-invasive ventilation (NIV) for respiratory failure: a systematic review and meta-analysis. Intensive Care Med. 2016;42(11):1813–5.CrossRefGoogle Scholar
  30. 30.
    Sinderby C, Beck J. Proportional assist ventilation and neurally adjusted ventilatory assist – better approaches to patient ventilator synchrony? Clin Chest Med. 2008;29(2):329–42.CrossRefGoogle Scholar
  31. 31.
    Sinderby C, Navalesi P, Beck J, Skrobik Y, Comtois N, Friberg S, Gottfried SB, Lindström L. Neural control of mechanical ventilation in respiratory failure. Nature Med. 1999;5:1433–6.CrossRefGoogle Scholar
  32. 32.
    Singh PM, Borle A, Trikha A. Newer nonconventional modes of mechanical ventilation. J Emerg Trauma Shock. 2014;7(3):222–7.CrossRefGoogle Scholar
  33. 33.
    Stefan MS, Shieh MS, Pekow PS, Rothberg MB, Steingrub JS, Lagu T, Lindenauer PK. Epidemiology and outcomes of acute respiratory failure in the United States, 2001–2009: a national survey. J Hosp Med. 2013;8(2):76–82.CrossRefGoogle Scholar
  34. 34.
    Sud S, Sud M, Friedrech JO, Wunsch H, Meade MO, Ferguson ND, Adhikari NK. High-frequency oscillatory ventilation versus conventional ventilation for acute respiratory distress syndrome. Cochrane Database Syst Rev 2016;4(4):CD004085.Google Scholar
  35. 35.
    Vincent JL, Akca S, De Mendonca A, Haji-Michael P, Sprung C, Moreno R, Antonelli M, Sutter PM, SOFA Working Group. The epidemiology of acute respiratory failure in critically ill patients. Chest. 2002;121(5): 1602–9.CrossRefGoogle Scholar
  36. 36.
    Yehya N, Topjian AA, Thomas NJ, Friess SH. Improved oxygenation 24 hours after transition to airway pressure release ventilation of high-frequency oscillatory ventilation accurately discriminates survival in immunocompromised pediatric patients with acute respiratory distress syndrome. Pediatr Crit Care Med. 2014;15(4):e147–56.CrossRefGoogle Scholar
  37. 37.
    Younes M. Proportional assist ventilation, a new approach to ventilatory support. Theory. Am Rev Respir Dis. 1992;145:114–20.CrossRefGoogle Scholar
  38. 38.
    Young D, Lamb SE, Shah S, MacKenzie I, Tunnicliffe W, Lall R, Rowan K, Cuthbertson BH, OSCAR Study Group. High-frequency oscillation for acute respiratory distress. NEJM. 2013;368(9):806–13.CrossRefGoogle Scholar
  39. 39.
    Zhou Y, Jin X, Lv Y, Wang P, Yang Y, Liang G, Wang B, Kang Y. Early application of airway pressure release ventilation may reduce the duration of mechanical ventilation in acute respiratory distress syndrome. Intensive Care Med. 2017;43:1648–59.CrossRefGoogle Scholar
  40. 40.
    Esteban A, Frutos-Vivar F, Muriel A, Ferguson ND, Peñuelas O, Abraira V, Raymondos K, Rios F, Nin N, Apezteguía C, Violi DA, Thille AW, Brochard L, González M, Villagomez AJ, Hurtado J, Davies AR, Du B, Maggiore SM, Pelosi P, Soto L, Tomicic V, D’Empaire G, Matamis D, Abroug F, Moreno RP, Soares MA, Arabi Y, Sandi F, Jibaja M, Amin P, Koh Y, Kuiper MA, Bülow HH, Zeggwagh AA, Anzueto A. Evolution of mortality over time in patients receiving mechanical ventilation. Am J Respir Crit Care Med 2013;188(2):220–230.CrossRefGoogle Scholar
  41. 41.
    Maxwell RA, Green JM, Waldrop J, Dart BW, Smith PW, Brooks D, Lewis PL, Barker DE. A randomized prospective trial of airway pressure release ventilation and low tidal volume ventilation in adult trauma patients with acute respiratory failure. J Trauma 2010;69(3):501–510.CrossRefGoogle Scholar
  42. 42.
    Pillow JJ. High-frequency oscillatory ventilation: mechanisms of gas exchange and lung mechanics. Crit Care med 2005;33(3):S135–141.CrossRefGoogle Scholar
  43. 43.
    Gu XL, Wu GN, Yao YW, Shi DH, Song Y. Is high-frequency oscillatory ventilation more effective and safer than conventional protective ventilation in adult acute respiratory distress syndrome patients? A meta-analysis of randomized controlled trials. Crit Care 201418:R111CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Critical Care DepartmentUniversidad del Rosario Hospital Universitario Fundacion Santa Fe de BogotaBogotaColombia
  2. 2.Department of Critical Care and Respiratory CareThe University of Texas, MD Anderson Cancer CenterHoustonUSA

Section editors and affiliations

  • Yenny Cardenas
    • 1
  1. 1.Critical Care DepartmentUniversidad del Rosario Hospital Universitario Fundacion Santa Fe deBogotaColombia

Personalised recommendations