Noninvasive Oxygen Therapies in Oncologic Patients

  • Michael C. Sklar
  • Bruno L. Ferreyro
  • Laveena MunshiEmail author
Reference work entry


Acute hypoxemic respiratory failure (ARF) is the most common cause of critical illness in oncologic patients. Despite significant advancements in survival of oncologic patients who develop critical illness, mortality rates in those requiring invasive mechanical ventilation have improved but remain high. Avoiding intubation is paramount to the management of oncologic patients with ARF. There are important differences between the oncologic patient with ARF compared to the general ICU population that likely underlie the increased mortality once intubated. Noninvasive oxygen modalities have been recognized as an important therapeutic approach to prevent intubation. Continuous low-flow oxygen therapy, noninvasive ventilation, and high-flow nasal cannula are the most commonly used noninvasive oxygen therapies in recent years. They have unique physiologic properties. The data surrounding their efficacy in the general ICU population and oncologic population has evolved over time reflecting the changes in the oncologic population. This chapter reviews the three different noninvasive oxygen modalities, their physiologic impact, and evidence surrounding their effectiveness.


High-flow nasal cannula High-flow oxygen therapy Low-flow oxygen therapy Continuous oxygen therapy Noninvasive ventilation Acute respiratory failure Acute respiratory distress syndrome Oncologic critical care Immunocompromised 


  1. 1.
    Nava S, Cuomo AM. Acute respiratory failure in the cancer patient: the role of noninvasive mechanical ventilation. Crit Rev Oncol Hematol. 2004;51(2):91–103.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Azoulay E, Lemiale V, Mokart D, et al. Acute respiratory distress syndrome in patients with malignancies. Intensive Care Med. 2014;40(8):1106–15.CrossRefGoogle Scholar
  3. 3.
    Cortegiani A, Madotto F, Gregoretti C, et al. Immunocompromised patients with acute respiratory distress syndrome: secondary analysis of the LUNG SAFE database. Crit Care. 2018;22:157–72.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Adda M, Coquet I, Darmon M, et al. Predictors of noninvasive ventilation failure in patients with hematologic malignancy and acute respiratory failure. Crit Care Med. 2008;36(10):2766–72.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Darmon MR, Bernal T, et al. Ventilatory support in critically ill hematology patients with respiratory failure. Crit Care. 2012;16(4):R133.CrossRefGoogle Scholar
  6. 6.
    Hilbert G, Gruson D, Vargas F, et al. Noninvasive ventilation in immunosuppressed patients with pulmonary infiltrates. N Engl J Med. 2001;344:481–7.CrossRefGoogle Scholar
  7. 7.
    Azevedo LCP, Caruso P, Silva UVA, et al. Outcomes for patients with cancer admitted to the ICU requiring ventilatory support: results from a prospective multicenter study. Chest. 2014;146(2):257–66.CrossRefGoogle Scholar
  8. 8.
    Antonelli M, Conti G, Bufi M, et al. Noninvasive ventilation for treatment of acute respiratory failure in patients undergoing solid organ transplant: a randomized trial. JAMA. 2000;283:235–41.Google Scholar
  9. 9.
    Lemiale V, Mokart D, Resche-Rigon M, et al. Effect of noninvasive ventilation vs oxygen therapy on mortality among immunocompromised patients with acute respiratory failure: a randomized clinical trial. JAMA. 2015;314(16):1711–9.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Schellongowski P, Sperr W, Wohlfarth P, et al. Critically ill patients with cancer: chances and limitations of intensive care medicine – a narrative review. ESMO Open. 2016;1:e000018.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Azoulay E, Mokart D, Penne F, et al. Outcomes of critically ill patients with hematologic malignancies: prospective multicenter data From France and Belgium – a groupe de recherche respiratoire en réanimation onco-hématologique study. J Clin Oncol. 2013; 31(22):2810–8.CrossRefGoogle Scholar
  12. 12.
    Azoulay E, Pickkers P, Soares M, et al. Acute hypoxemic respiratory failure in immunocompromised patients: the Efraim multinational prospective cohort study. Intensive Care Med. 2017;43:1808–19.CrossRefGoogle Scholar
  13. 13.
    Weijs PJM, Looijaard WGPM, Dekker IM, et al. Low skeletal muscle area is a risk factor for mortality in mechanically ventilated critically ill patients. Crit Care. 2014;18(2):R12.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Moisey LL, Mourtzakis M, Cotton BA, et al. Skeletal muscle predicts ventilator-free days, ICU-free days, and mortality in elderly ICU patients. Crit Care. 2013;17(5):R206.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Cesari M, Landi F, Vellas B, et al. Sarcopenia and physical frailty: two sides of the same coin. Front Aging Neurosci. 2014;6:192.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Rathi N, Haque S, Nates R. Non-invasive positive pressure ventilation vs invasive mechanical ventilation as first-line therapy for acute hypoxemic respiratory failure in cancer patients. J Crit Care. 2017;39:56–61.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Afessa B, Peters SG. Major complications following hematopoietic stem cell transplantation. Semin Respir Crit Care Med. 2006;27(3):297–309.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Herridge MS, Tansey CM, Matté A, et al. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med. 2011;364(14):1293–304.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Taccone F, Artigas A, Sprung C, et al. Characteristics and outcomes of cancer patients in European ICUs. Crit Care. 2009;13:R15.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Van Vliet M, Verburg I, Boogaard M. Trends in admission prevalence, illness severity and survival of hematological patients treated in Dutch intensive care units. Intensive Care Med. 2014;40:1275–84.CrossRefGoogle Scholar
  21. 21.
    Squadrone V, Ferreyra G, Ranieri V. Non-invasive ventilation in patients with hematologic malignancy: a new prospective. Minerva Anestesiol. 2015;81(10):1118.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Kotloff RM, Ahya VN, Crawford F. Pulmonary complications of solid organ and hematopoietic stem cell transplantation. Am J Respir Crit Care Med. 2004;170:22–48.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Lucena CM, Torres A, Rovira M, et al. Pulmonary complications in hematopoietic SCT: a prospective study. Bone Marrow Transplant. 2014;49:1293–9.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Bateman NT, Leach RM. ABC of oxygen. Acute oxygen therapy. BMJ. 1998;317:798–801.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Chu D, Kim L, Young P, et al. Mortality and morbidity in acutely ill adults treated with liberal versus conservative oxygen therapy (IOTA): a systematic review and meta-analysis. Lancet. 2018;391:1693–705.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Mehta S, Hill NS. Non-invasive ventilation. Am J Respir Crit Care Med. 2001;163:540–77.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Patel BK, Wolfe KS, Pohlman AS, et al. Effect of noninvasive ventilation delivered by helmet vs face mask on the rate of endotracheal intubation in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA. 2016;315:2435–41.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Lenique F, Habis M, Lofaso F, et al. Ventilatory and hemodynamic effects of continuous positive airway pressure in left heart failure. Am J Respir Crit Care Med. 1997;155:500–5.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Mertens M, Tabuchi A, Meissner S, et al. Alveolar dynamics in acute lung injury: heterogeneous distension rather than cyclic opening and collapse. Crit Care Med. 2009;37:2604–11.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Chadda K, Annane D, Hart N, et al. Cardiac and respiratory effects of continuous positive airway pressure and noninvasive ventilation in acute cardiac pulmonary edema. Crit Care Med. 2002;30:2457–61.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Brochard L, Mancebo J, Wysocki M, et al. Noninvasive ventilation for acute exacerbations of chronic obstructive pulmonary disease. N Engl J Med. 1995; 333:817–22.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Frat J-P, Thille AW, Mercat A, et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med. 2015;372:2185–96.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med. 2017;195:438–42.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Agarwal R, Khan A, Aggarwal AN, et al. Bronchoscopic lung biopsy using noninvasive ventilatory support: case series and review of literature of NIV-assisted bronchoscopy. Respir Care. 2012; 57(11): 1927–36.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Papazian L, Corley A, Hess D, et al. Use of high-flow nasal cannula oxygenation in ICU adults: a narrative review. Intensive Care Med. 2016;42:1336–49.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Goligher EC, Slutsky AS. Not just oxygen? Mechanisms of benefit from high-flow nasal cannula in hypoxemic respiratory failure. Am J Respir Crit Care Med. 2017;195:1128–31.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Möller W, Feng S, Domanski U, et al. Nasal high flow reduces dead space. J Appl Physiol. 2017;122:191–7.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Parke R, McGuinness S, Eccleston M. Nasal high-flow therapy delivers low level positive airway pressure. Br J Anaesth. 2009;103:886–90.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Rittayamai N, Tscheikuna J, Praphruetkit N, et al. Use of high-flow nasal cannula for acute dyspnea and hypoxemia in the emergency department. Respir Care. 2015;60:1377–82.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Pellegrini M, Hedenstierna G, Roneus A. The diaphragm acts as a brake during expiration to prevent lung collapse. Am J Respir Crit Care Med. 2016;195: 1608–16.CrossRefGoogle Scholar
  41. 41.
    Cressoni M, Chiumello D, Algieri I, et al. Opening pressures and atelectrauma in acute respiratory distress syndrome. Intensive Care Med. 2017;43:603–11.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Rochwerg B, Brochard L, Elliott M, et al. Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure. Eur Respir J. 2017;50:1602426.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Vital FM, Ladeira MT, Atallah AN. Non-invasive positive pressure ventilation (CPAP or bilevel NPPV) for cardiogenic pulmonary oedema. Cochrane Database Syst Rev. 2013;5:CD005351.Google Scholar
  44. 44.
    Mehta A, Douglas I, Walkey A. Evidence-based utilization of noninvasive ventilation and patient outcomes. Ann Am Thorac Soc. 2017;14(11):1667–73.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Bellani G, Laffey J, Pham T. Noninvasive ventilation of patients with acute respiratory distress syndrome: insights from the LUNG SAFE Study. Am J Respir Crit Care Med. 2017;195(1):67–77.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Bellani G, Laffey J, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788–800.CrossRefGoogle Scholar
  47. 47.
    Squadrone V, Massaia M, Bruno B, et al. Early CPAP prevents evolution of acute lung injury in patients with hematologic malignancy. Intensive Care Med. 2010; 36(10):1666.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Neuschwander A, Lemiale V, Darmon M, et al. Noninvasive ventilation during acute respiratory distress syndrome in patients with cancer: trends in use and outcome. J Crit Care. 2017;38:295–9.CrossRefGoogle Scholar
  49. 49.
    Brochard L. Ventilation-induced lung injury exists in spontaneously breathing patients with acute respiratory failure: yes. Intensive Care Med. 2017;43(2):250–2.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Amato MBP, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372(8):747–56.CrossRefGoogle Scholar
  51. 51.
    Esteban A, Frutos-Vivar F, Ferguson ND, et al. Noninvasive positive-pressure ventilation for respiratory failure after extubation. N Engl J Med. 2004; 350(24):245–54.CrossRefGoogle Scholar
  52. 52.
    Frat JP, Ragot S, Coudroy R, et al. Predictors of intubation in patients with acute hypoxemic respiratory failure treated with a noninvasive oxygenation strategy. Crit Care Med. 2018;46(2):208–15.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Corley A, Rickard C, Aitken L, et al. High flow nasal cannulae for respiratory support in adult intensive care patients. Cochrane Database Syst Rev. 2017; 5:CD010172.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Higgins JPT, Green S. Cochrane handbook for systematic reviews of interventions. Hoboken: Wiley; 2011.Google Scholar
  55. 55.
    Lemiale V, Resche-Rigon M, Mokart D, et al. High-flow nasal cannula oxygenation in immunocompromised patients with acute hypoxemic respiratory failure: A Groupe de Recherche Respiratoire en Réanimation Onco-Hématologique Study. Crit Care Med. 2017;45(3):e274–81.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Liu J, Bell C, Campbell V, et al. Noninvasive ventilation in patients with hematologic malignancy. J Intensive Care Med. 2017. Epub ahead of print.CrossRefGoogle Scholar
  57. 57.
    Huang H-B, Xu B, Liu G-Y, et al. Use of noninvasive ventilation in immunocompromised patients with acute respiratory failure: a systematic review and meta-analysis. Crit Care. 2017;21(1):4–29.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Wang T, Zhang L, Luo K, et al. Noninvasive versus invasive mechanical ventilation for immunocompromised patients with acute respiratory failure: a systematic review and meta-analysis. BMC Pulm Med. 2016;16:129–43.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Lee HY, Rhee CK, Lee JW. Feasibility of high-flow nasal cannula oxygen therapy for acute respiratory failure in patients with hematologic malignancies: a retrospective single-center study. J Crit Care. 2015; 30(4):773–8.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Durey A, Kang S, Suh Y, et al. Application of high-flow nasal cannula to heterogeneous condition in the emergency department. Am J Emerg Med. 2017; 35(8):1199–201.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Hui D, Morgado M, Chisholm G, et al. High-flow oxygen and bilevel positive airway pressure for persistent dyspnea in patients with advanced cancer: a phase II randomized trial. J Pain Symptom Manage. 2013; 46(4):463–80.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Coudroy R, Jamet A, Petua P, et al. High-flow nasal cannula oxygen therapy versus noninvasive ventilation in immunocompromised patients with acute respiratory failure: an observational cohort study. Ann Intensive Care. 2016;6(1):45–56.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Mokart D, Geay C, Chow-Chine L, et al. High-flow oxygen therapy in cancer patients with acute respiratory failure. Intensive Care Med. 2015;41(11): 2008–10.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Kim WY, Sung H, Hong SB, et al. Predictors of high flow nasal cannula failure in immunocompromised patients with acute respiratory failure due to non-HIV pneumocystis pneumonia. J Thorac Dis. 2017;9(9): 3013–22.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Cortegiani A, Madotto F, Gregoretti C et al. Immunocompromised patients with acute respiratory distress syndrome: secondary analysis of the LUNG SAFE database. Critical Care. 2018;22:157–172.Google Scholar
  66. 66.
    Sklar MC, Mohammed A, Orchanian-Cheff A et al. The impact of high-flow nasal oxygen in the immunocompromised critically ill: A systematic review and meta-analysis, Respir Care. 2018;63(12):1555–1566PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Azoulay E, Lemiale V, Mokart D et al. Effect of high-flow nasal oxygen vs. standard oxygen on 28-day mortality in immunocompromised patients with acute respiratory failure. JAMA 2018; (Epub ahead of print) October 24, 2018.Google Scholar
  68. 68.
    Frat JP, Ragot S, Girault C, Perbet S, Prat G, Boulain T, Demoule A, Ricard JD, Coudroy R, Robert R, Mercat A. Effect of non-invasive oxygenation strategies in immunocompromised patients with severe acute respiratory failure: a post-hoc analysis of a randomised trial. The Lancet Respiratory Medicine. 2016 Aug 1;4(8):646–52.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Michael C. Sklar
    • 1
  • Bruno L. Ferreyro
    • 1
  • Laveena Munshi
    • 1
    Email author
  1. 1.Interdepartmental Division of Critical Care MedicineMount Sinai Hospital, Sinai Health System, University of TorontoTorontoCanada

Section editors and affiliations

  • Yenny Cardenas
    • 1
  1. 1.Critical Care DepartmentUniversidad del Rosario Hospital Universitario Fundacion Santa Fe deBogotaColombia

Personalised recommendations