Catheter- and Device-Related Infections in Critically Ill Cancer Patients

  • Alexandre MalekEmail author
  • Issam Raad
Reference work entry


Central venous catheters are essential for treating the critically ill and cancer patients. However, this patient population is at high risk for catheter-related bloodstream infections that deemed to be a major cause of healthcare-related infections and have been reported to be associated with substantial morbidity, mortality, and healthcare costs. The diagnosis of central line as a source of infection relies on specific laboratory testing, and the definition of catheter-related bloodstream infections formulated by the Infectious Diseases Society of America remains the most accurate definition. The leading cause of catheter-associated bloodstream infection is gram-positive bacteria, particularly coagulase-negative Staphylococcus species. Central line-related infections require a multidisciplinary approach for preventing and managing these infections. Catheter removal combined with appropriate intravenous antibiotics remains the keystone of therapy; however, novel interventions for salvaging the catheters have been developed, including antimicrobial lock solutions or exchanging with antimicrobial-coated catheters. Moreover, antimicrobial-impregnated catheters and lock therapy are also effective in preventing short-term and long-term catheter-related infections.


Central line-associated bloodstream infection (CLABSI) Catheter-related bloodstream infection (CRBSI) Healthcare-associated infections (HAIs) Biofilm formation Central venous catheter (CVC) Peripherally inserted central catheters (PICCs) Antimicrobial lock therapy Systemic antibiotics Catheter salvage lock therapy Catheter removal 


  1. 1.
    Smith RN, Nolan JP. Central venous catheters. BMJ. 2013;347:f6570.CrossRefGoogle Scholar
  2. 2.
    Crnich CJ, Maki DG. The role of intravascular devices in sepsis. Curr Infect Dis Rep. 2001;3(6):496–506.CrossRefGoogle Scholar
  3. 3.
    Zimlichman E, Henderson D, Tamir O, et al. Health care-associated infections: a meta-analysis of costs and financial impact on the US health care system. JAMA Intern Med. 2013;173(22):2039–46.CrossRefGoogle Scholar
  4. 4.
    Horner M, Ries L, Krapcho M, Neyman N. SEER cancer statistics review, 1975–2006. Bethesda: National Cancer Institute; 2009.Google Scholar
  5. 5.
    Raad I, Chaftari A-M. Advances in prevention and management of central line-associated bloodstream infections in patients with cancer. Clin Infect Dis. 2014;59(Suppl_5):S340–3.CrossRefGoogle Scholar
  6. 6.
    Edwards JR, Peterson KD, Mu Y, et al. National Healthcare Safety Network (NHSN) report: data summary for 2006 through 2008, issued December 2009. Am J Infect Control. 2009;37(10):783–805.CrossRefGoogle Scholar
  7. 7.
    Centers for Disease Control and Prevention (CDC). Vital signs: central line-associated blood stream infections – United States, 2001, 2008, and 2009. MMWR Morb Mortal Wkly Rep. 2011;60(8):243–8.Google Scholar
  8. 8.
    Pronovost P, Needham D, Berenholtz S, et al. An intervention to decrease catheter-related bloodstream infections in the ICU. N Engl J Med. 2006;355(26):2725–32.CrossRefGoogle Scholar
  9. 9.
    O’Grady NP, Alexander M, Burns LA, et al. Guidelines for the prevention of intravascular catheter-related infections. Clin Infect Dis. 2011;52(9):e162–93.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kritchevsky SB, Braun BI, Kusek L, et al. The impact of hospital practice on central venous catheter associated bloodstream infection rates at the patient and unit level: a multicenter study. Am J Med Qual. 2008;23(1):24–38.CrossRefGoogle Scholar
  11. 11.
    Mollee P, Jones M, Stackelroth J, et al. Catheter-associated bloodstream infection incidence and risk factors in adults with cancer: a prospective cohort study. J Hosp Infect. 2011;78(1):26–30.CrossRefGoogle Scholar
  12. 12.
    McDonald MK, Culos KA, Gatwood KS, et al. Defining incidence and risk factors for catheter-associated bloodstream infections in an outpatient adult hematopoietic cell transplantation program. Biol Blood Marrow Transplant. 2018;24:2081–7.CrossRefGoogle Scholar
  13. 13.
    Zingg W, Cartier-Fässler V, Walder B. Central venous catheter-associated infections. Best Pract Res Clin Anaesthesiol. 2008;22(3):407–21.CrossRefGoogle Scholar
  14. 14.
    Dudeck MA, Horan TC, Peterson KD, et al. National Healthcare Safety Network (NHSN) report, data summary for 2009, device-associated module. Am J Infect Control. 2011;39(5):349–67.CrossRefGoogle Scholar
  15. 15.
    Macias AE, Huertas M, Ponce de Leon S, et al. Contamination of intravenous fluids: a continuing cause of hospital bacteremia. Am J Infect Control. 2010;38(3):217–21.CrossRefGoogle Scholar
  16. 16.
    Maki DG, Rhame FS, Mackel DC, Bennett JV. Nationwide epidemic of septicemia caused by contaminated intravenous products. I. Epidemiologic and clinical features. Am J Med. 1976;60(4):471–85.CrossRefGoogle Scholar
  17. 17.
    Tenney JH, Dixon RE, Bennett JV. Letter: contaminated intravenous infusions. Lancet (London). 1974;1(7859):679.CrossRefGoogle Scholar
  18. 18.
    Maki DG, Stolz SM, Wheeler S, Mermel LA. Prevention of central venous catheter-related bloodstream infection by use of an antiseptic-impregnated catheter. A randomized, controlled trial. Ann Intern Med. 1997;127(4):257–66.CrossRefGoogle Scholar
  19. 19.
    Safdar N, Maki DG. Risk of catheter-related bloodstream infection with peripherally inserted central venous catheters used in hospitalized patients. Chest. 2005;128(2):489–95.CrossRefGoogle Scholar
  20. 20.
    Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15(2):167–93.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Raad II, Luna M, Khalil SA, Costerton JW, Lam C, Bodey GP. The relationship between the thrombotic and infectious complications of central venous catheters. JAMA. 1994;271(13):1014–6.CrossRefPubMedGoogle Scholar
  22. 22.
    Mehall JR, Saltzman DA, Jackson RJ, Smith SD. Fibrin sheath enhances central venous catheter infection. Crit Care Med. 2002;30(4):908–12.CrossRefPubMedGoogle Scholar
  23. 23.
    Hawser SP, Douglas LJ. Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect Immun. 1994;62(3):915–21.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Raad II, Hanna HA. Intravascular catheter-related infections: new horizons and recent advances. Arch Intern Med. 2002;162(8):871–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Weiner LM, Webb AK, Limbago B, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infect Control Hosp Epidemiol. 2016;37:1288–301.CrossRefPubMedGoogle Scholar
  26. 26.
    See I, Freifeld AG, Magill SS. Causative organisms and associated antimicrobial resistance in healthcare-associated, central line-associated bloodstream infections from oncology settings, 2009–2012. Clin Infect Dis. 2016;62(10):1203–9.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Mermel LA, Allon M, Bouza E, et al. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis. 2009;49(1):1–45.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    CDC, Oid, Ncezid, DHQP. National Healthcare Safety Network (NHSN) patient safety component manual. 2018.Google Scholar
  29. 29.
    Mermel LA, Farr BM, Sherertz RJ, et al. Guidelines for the management of intravascular catheter-related infections. Clin Infect Dis. 2001;32(9):1249–72.CrossRefPubMedGoogle Scholar
  30. 30.
    Raad I, Hanna H, Maki D. Intravascular catheter-related infections: advances in diagnosis, prevention, and management. Lancet Infect Dis. 2007;7(10):645–57.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Tomlinson D, Mermel LA, Ethier M-C, Matlow A, Gillmeister B, Sung L. Defining bloodstream infections related to central venous catheters in patients with cancer: a systematic review. Clin Infect Dis. 2011;53(7):697–710.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Raad I, Davis S, Becker M, et al. Low infection rate and long durability of nontunneled silastic catheters. A safe and cost-effective alternative for long-term venous access. Arch Intern Med. 1993;153(15):1791–6.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Yousif A, Chaftari A-M, Michael M, et al. The influence of using antibiotic-coated peripherally inserted central catheters on decreasing the risk of central line-associated bloodstream infections. Am J Infect Control. 2016;44:1037–40.CrossRefGoogle Scholar
  34. 34.
    Maki D, Mermel L. Infections due to infusion therapy. In: Bennett JV, Brachman PS, editors. Hospital infections. Philadelphia: Lippincott-Raven Publishers; 1998.Google Scholar
  35. 35.
    Maki DG, Weise CE, Sarafin HW. A semiquantitative culture method for identifying intravenous-catheter-related infection. N Engl J Med. 1977;296(23):1305–9.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Raad I, Costerton W, Sabharwal U, Sacilowski M, Anaissie E, Bodey GP. Ultrastructural analysis of indwelling vascular catheters: a quantitative relationship between luminal colonization and duration of placement. J Infect Dis. 1993;168(2):400–7.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Schmitt SK, Knapp C, Hall GS, Longworth DL, McMahon JT, Washington JA. Impact of chlorhexidine-silver sulfadiazine-impregnated central venous catheters on in vitro quantitation of catheter-associated bacteria. J Clin Microbiol. 1996;34(3):508–11.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Jamal MA, Rosenblatt JS, Hachem RY, et al. Prevention of biofilm colonization by gram-negative bacteria on minocycline-rifampin-impregnated catheters sequentially coated with chlorhexidine. Antimicrob Agents Chemother. 2014;58(2):1179–82.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ryan JA, Abel RM, Abbott WM, et al. Catheter complications in total parenteral nutrition. N Engl J Med. 1974;290(14):757–61.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Chatzinikolaou I, Hanna H, Hachem R, Alakech B, Tarrand J, Raad I. Differential quantitative blood cultures for the diagnosis of catheter-related bloodstream infections associated with short- and long-term catheters: a prospective study. Diagn Microbiol Infect Dis. 2004;50(3):167–72.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Capdevila JA, Planes AM, Palomar M, et al. Value of differential quantitative blood cultures in the diagnosis of catheter-related sepsis. Eur J Clin Microbiol Infect Dis. 1992;11(5):403–7.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Raucher HS, Hyatt AC, Barzilai A, et al. Quantitative blood cultures in the evaluation of septicemia in children with Broviac catheters. J Pediatr. 1984;104(1):29–33.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Douard MC, Arlet G, Longuet P, et al. Diagnosis of venous access port-related infections. Clin Infect Dis. 1999;29(5):1197–202.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Safdar N, Fine JP, Maki DG. Meta-analysis: methods for diagnosing intravascular device-related bloodstream infection. Ann Intern Med. 2005;142(6):451–66.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Blot F, Nitenberg G, Chachaty E, et al. Diagnosis of catheter-related bacteraemia: a prospective comparison of the time to positivity of hub-blood versus peripheral-blood cultures. Lancet (London). 1999;354(9184):1071–7.CrossRefGoogle Scholar
  46. 46.
    Blot F, Schmidt E, Nitenberg G, et al. Earlier positivity of central-venous- versus peripheral-blood cultures is highly predictive of catheter-related sepsis. J Clin Microbiol. 1998;36(1):105–9.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Raad I, Hanna HA, Alakech B, Chatzinikolaou I, Johnson MM, Tarrand J. Differential time to positivity: a useful method for diagnosing catheter-related bloodstream infections. Ann Intern Med. 2004;140(1):18.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Collignon PJ, Soni N, Pearson IY, Woods WP, Munro R, Sorrell TC. Is semiquantitative culture of central vein catheter tips useful in the diagnosis of catheter-associated bacteremia? J Clin Microbiol. 1986;24(4):532–5.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Cercenado E, Ena J, Rodríguez-Créixems M, Romero I, Bouza E. A conservative procedure for the diagnosis of catheter-related infections. Arch Intern Med. 1990;150(7):1417–20.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Rello J, Gatell JM, Almirall J, Campistol JM, Gonzalez J, Puig de la Bellacasa J. Evaluation of culture techniques for identification of catheter-related infection in hemodialysis patients. Eur J Clin Microbiol Infect Dis. 1989;8(7):620–2.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Raad II, Sabbagh MF, Rand KH, Sherertz RJ. Quantitative tip culture methods and the diagnosis of central venous catheter-related infections. Diagn Microbiol Infect Dis. 1992;15(1):13–20.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Safdar N, Maki DG. The pathogenesis of catheter-related bloodstream infection with noncuffed short-term central venous catheters. Intensive Care Med. 2004;30(1):62–7.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Bjornson HS, Colley R, Bower RH, Duty VP, Schwartz-Fulton JT, Fischer JE. Association between microorganism growth at the catheter insertion site and colonization of the catheter in patients receiving total parenteral nutrition. Surgery. 1982;92(4):720–7.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Brun-Buisson C, Abrouk F, Legrand P, Huet Y, Larabi S, Rapin M. Diagnosis of central venous catheter-related sepsis. Critical level of quantitative tip cultures. Arch Intern Med. 1987;147(5):873–7.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Sherertz RJ, Raad II, Belani A, et al. Three-year experience with sonicated vascular catheter cultures in a clinical microbiology laboratory. J Clin Microbiol. 1990;28(1):76–82.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Bouza E, Alvarado N, Alcala L, et al. A prospective, randomized, and comparative study of 3 different methods for the diagnosis of intravascular catheter colonization. Clin Infect Dis. 2005;40(8):1096–100.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Frasca D, Dahyot-Fizelier C, Mimoz O. Prevention of central venous catheter-related infection in the intensive care unit. Crit Care. 2010;14(2):212.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Guerin K, Wagner J, Rains K, Bessesen M. Reduction in central line-associated bloodstream infections by implementation of a postinsertion care bundle. Am J Infect Control. 2010;38(6):430–3.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Chatzinikolaou I, Hanna H, Graviss L, et al. Clinical experience with minocycline and rifampin-impregnated central venous catheters in bone marrow transplantation recipients: efficacy and low risk of developing staphylococcal resistance. Infect Control Hosp Epidemiol. 2003;24(12):961–3.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Darouiche RO, Berger DH, Khardori N, et al. Comparison of antimicrobial impregnation with tunneling of long-term central venous catheters: a randomized controlled trial. Ann Surg. 2005;242(2):193–200.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Ramos ER, Reitzel R, Jiang Y, et al. Clinical effectiveness and risk of emerging resistance associated with prolonged use of antibiotic-impregnated catheters: more than 0.5 million catheter days and 7 years of clinical experience. Crit Care Med. 2011;39(2):245–51.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Timsit J-F, Dubois Y, Minet C, et al. New materials and devices for preventing catheter-related infections. Ann Intensive Care. 2011;1(1):34.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Raad I, Reitzel R, Jiang Y, Chemaly RF, Dvorak T, Hachem R. Anti-adherence activity and antimicrobial durability of anti-infective-coated catheters against multidrug-resistant bacteria. J Antimicrob Chemother. 2008;62(4):746–50.CrossRefGoogle Scholar
  64. 64.
    Logghe C, Van Ossel C, D’Hoore W, Ezzedine H, Wauters G, Haxhe JJ. Evaluation of chlorhexidine and silver-sulfadiazine impregnated central venous catheters for the prevention of bloodstream infection in leukaemic patients: a randomized controlled trial. J Hosp Infect. 1997;37(2):145–56.CrossRefGoogle Scholar
  65. 65.
    Lai NM, Chaiyakunapruk N, Lai NA, O’Riordan E, Pau WSC, Saint S. Catheter impregnation, coating or bonding for reducing central venous catheter-related infections in adults. Cochrane Database Syst Rev. 2016;3:CD007878.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Raad II, Fang X, Keutgen XM, Jiang Y, Sherertz R, Hachem R. The role of chelators in preventing biofilm formation and catheter-related bloodstream infections. Curr Opin Infect Dis. 2008;21(4):385–92.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Bleyer AJ, Mason L, Russell G, Raad II, Sherertz RJ. A randomized, controlled trial of a new vascular catheter flush solution (minocycline-EDTA) in temporary hemodialysis access. Infect Control Hosp Epidemiol. 2005;26(6):520–4.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Campos RP, do Nascimento MM, Chula DC, Riella MC. Minocycline-EDTA lock solution prevents catheter-related bacteremia in hemodialysis. J Am Soc Nephrol. 2011;22(10):1939–45.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Chatzinikolaou I, Zipf TF, Hanna H, et al. Minocycline-ethylenediaminetetraacetate lock solution for the prevention of implantable port infections in children with cancer. Clin Infect Dis. 2003;36(1):116–9.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Raad I, Rosenblatt J, Reitzel R, Jiang Y, Dvorak T, Hachem R. Chelator-based catheter lock solutions in eradicating organisms in biofilm. Antimicrob Agents Chemother. 2013;57(1):586–8.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Rosenblatt J, Reitzel R, Dvorak T, Jiang Y, Hachem RY, Raad II. Glyceryl trinitrate complements citrate and ethanol in a novel antimicrobial catheter lock solution to eradicate biofilm organisms. Antimicrob Agents Chemother. 2013;57(8):3555–60.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Reitzel RA, Rosenblatt J, Hirsh-Ginsberg C, et al. In vitro assessment of the antimicrobial efficacy of optimized nitroglycerin-citrate-ethanol as a nonantibiotic, antimicrobial catheter lock solution for prevention of central line-associated bloodstream infections. Antimicrob Agents Chemother. 2016;60(9):5175–81.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Chaftari A-M, Hachem R, Szvalb A, et al. Correction for Chaftari et al., “a novel nonantibiotic nitroglycerin-based catheter lock solution for prevention of intraluminal central venous catheter infections in cancer patients”. Antimicrob Agents Chemother. 2017;61(8):e01324–17.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Maki DG, Kluger DM, Crnich CJ. The risk of bloodstream infection in adults with different intravascular devices: a systematic review of 200 published prospective studies. Mayo Clin Proc. 2006;81(9):1159–71.CrossRefGoogle Scholar
  75. 75.
    Zakhour R, Chaftari A-M, Raad II. Catheter-related infections in patients with haematological malignancies: novel preventive and therapeutic strategies. Lancet Infect Dis. 2016;16(11):e241–50.CrossRefGoogle Scholar
  76. 76.
    Chee L, Brown M, Sasadeusz J, MacGregor L, Grigg AP. Gram-negative organisms predominate in Hickman line-related infections in non-neutropenic patients with hematological malignancies. J Inf Secur. 2008;56(4):227–33.Google Scholar
  77. 77.
    Park K-H, Cho O-H, Lee S-O, et al. Outcome of attempted Hickman catheter salvage in febrile neutropenic cancer patients with Staphylococcus aureus bacteremia. Ann Hematol. 2010;89(11):1163–9.CrossRefGoogle Scholar
  78. 78.
    Coyle VM, McMullan R, Morris TCM, Rooney PJ, Hedderwick S. Catheter-related bloodstream infection in adult haematology patients: catheter removal practice and outcome. J Hosp Infect. 2004;57(4):325–31.CrossRefGoogle Scholar
  79. 79.
    Chaftari AM, Hachem R, Raad S, et al. Unnecessary removal of central venous catheters in cancer patients with bloodstream infections. Infect Control Hosp Epidemiol. 2018;39(2):222–5.CrossRefGoogle Scholar
  80. 80.
    Chaftari A-M, Kassis C, El Issa H, et al. Novel approach using antimicrobial catheters to improve the management of central line-associated bloodstream infections in cancer patients. Cancer. 2011;117(11):2551–8.CrossRefGoogle Scholar
  81. 81.
    Chaftari A-M, El Zakhem A, Jamal MA, Jiang Y, Hachem R, Raad I. The use of minocycline-rifampin coated central venous catheters for exchange of catheters in the setting of staphylococcus aureus central line associated bloodstream infections. BMC Infect Dis. 2014;14(1):518.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Jamal MA, Rosenblatt J, Jiang Y, Hachem R, Chaftari A-M, Raad II. Prevention of transmission of multidrug-resistant organisms during catheter exchange using antimicrobial catheters. Antimicrob Agents Chemother. 2014;58(9):5291–6.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    O’Horo JC, Silva GLM, Safdar N. Anti-infective locks for treatment of central line-associated bloodstream infection: a systematic review and meta-analysis. Am J Nephrol. 2011;34(5):415–22.CrossRefGoogle Scholar
  84. 84.
    Raad I, Buzaid A, Rhyne J, et al. Minocycline and ethylenediaminetetraacetate for the prevention of recurrent vascular catheter infections. Clin Infect Dis. 1997;25(1):149–51.CrossRefGoogle Scholar
  85. 85.
    Krishnasami Z, Carlton D, Bimbo L, et al. Management of hemodialysis catheter-related bacteremia with an adjunctive antibiotic lock solution. Kidney Int. 2002;61(3):1136–42.CrossRefGoogle Scholar
  86. 86.
    Longuet P, Douard MC, Arlet G, Molina JM, Benoit C, Leport C. Venous access port – related bacteremia in patients with acquired immunodeficiency syndrome or cancer: the reservoir as a diagnostic and therapeutic tool. Clin Infect Dis. 2001;32(12):1776–83.CrossRefGoogle Scholar
  87. 87.
    Rijnders BJ, Van Wijngaerden E, Vandecasteele SJ, Stas M, Peetermans WE. Treatment of long-term intravascular catheter-related bacteraemia with antibiotic lock: randomized, placebo-controlled trial. J Antimicrob Chemother. 2005;55(1):90–4.CrossRefGoogle Scholar
  88. 88.
    Evans RC, Holmes CJ. Effect of vancomycin hydrochloride on Staphylococcus epidermidis biofilm associated with silicone elastomer. Antimicrob Agents Chemother. 1987;31(6):889–94.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Farber BF, Kaplan MH, Clogston AG. Staphylococcus epidermidis extracted slime inhibits the antimicrobial action of glycopeptide antibiotics. J Infect Dis. 1990;161(1):37–40.CrossRefGoogle Scholar
  90. 90.
    Raad I, Chatzinikolaou I, Chaiban G, et al. In vitro and ex vivo activities of minocycline and EDTA against microorganisms embedded in biofilm on catheter surfaces. Antimicrob Agents Chemother. 2003;47(11):3580–5.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Raad I, Hanna H, Dvorak T, Chaiban G, Hachem R. Optimal antimicrobial catheter lock solution, using different combinations of minocycline, EDTA, and 25-percent ethanol, rapidly eradicates organisms embedded in biofilm. Antimicrob Agents Chemother. 2007;51(1):78–83.CrossRefPubMedGoogle Scholar
  92. 92.
    Estes R, Theusch J, Beck A, Pitrak D, Mullane KM. Activity of daptomycin with or without 25 percent ethanol compared to combinations of minocycline, EDTA, and 25 percent ethanol against methicillin-resistant Staphylococcus aureus isolates embedded in biofilm. Antimicrob Agents Chemother. 2013;57(4):1998–2000.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Raad I, Chaftari A-M, Zakhour R, et al. Successful salvage of central venous catheters in patients with catheter-related or central line-associated bloodstream infections by using a catheter lock solution consisting of minocycline, EDTA, and 25% ethanol. Antimicrob Agents Chemother. 2016;60(6):3426–32.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Raad I, Kassar R, Ghannam D, Chaftari AM, Hachem R, Jiang Y. Management of the catheter in documented catheter-related coagulase-negative staphylococcal bacteremia: remove or retain? Clin Infect Dis. 2009;49(8):1187–94.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Zinkernagel AS, Zinkernagel MS, Elzi MV, et al. Significance of Staphylococcus lugdunensis bacteremia: report of 28 cases and review of the literature. Infection. 2008;36(4):314–21.CrossRefPubMedGoogle Scholar
  96. 96.
    Fowler VG, Sanders LL, Sexton DJ, et al. Outcome of Staphylococcus aureus bacteremia according to compliance with recommendations of infectious diseases specialists: experience with 244 patients. Clin Infect Dis. 1998;27(3):478–86.CrossRefPubMedGoogle Scholar
  97. 97.
    Fowler VG, Justice A, Moore C, et al. Risk factors for hematogenous complications of intravascular catheter-associated Staphylococcus aureus bacteremia. Clin Infect Dis. 2005;40(5):695–703.CrossRefPubMedGoogle Scholar
  98. 98.
    El Zakhem A, Chaftari A-M, Bahu R, et al. Central line-associated bloodstream infections caused by Staphylococcus aureus in cancer patients: clinical outcome and management. Ann Med. 2014;46(3):163–8.CrossRefGoogle Scholar
  99. 99.
    Mermel LA. What is the predominant source of intravascular catheter infections? Clin Infect Dis. 2011;52(2):211–2.CrossRefGoogle Scholar
  100. 100.
    Cairo J, Hachem R, Rangaraj G, Granwehr B, Raad I. Predictors of catheter-related gram-negative bacilli bacteraemia among cancer patients. Clin Microbiol Infect. 2011;17(11):1711–6.CrossRefPubMedGoogle Scholar
  101. 101.
    Hanna H, Afif C, Alakech B, et al. Central venous catheter-related bacteremia due to gram-negative bacilli: significance of catheter removal in preventing relapse. Infect Control Hosp Epidemiol. 2004;25(8):646–9.CrossRefPubMedGoogle Scholar
  102. 102.
    Lecciones JA, Lee JW, Navarro EE, et al. Vascular catheter-associated fungemia in patients with cancer: analysis of 155 episodes. Clin Infect Dis. 1992;14(4):875–83.CrossRefPubMedGoogle Scholar
  103. 103.
    Ramos ER, Hachem R, Youssef S, Fang X, Jiang Y, Raad I. The crucial role of catheters in micrococcal bloodstream infections in cancer patients. Infect Control Hosp Epidemiol. 2009;30(1):83–5.CrossRefPubMedGoogle Scholar
  104. 104.
    Ghide S, Jiang Y, Hachem R, Chaftari A-M, Raad I. Catheter-related Corynebacterium bacteremia: should the catheter be removed and vancomycin administered? Eur J Clin Microbiol Infect Dis. 2010;29(2):153–6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Infectious Diseases, Infection Control and Employee HealthThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations