Advertisement

Management of Multidrug-Resistant Enterobacteriaceae in Critically Ill Cancer Patients

  • Juan David PlataEmail author
  • Ximena Castañeda
Reference work entry

Abstract

Multidrug-resistant bacterial infections in critical ill cancer patients has become a trending problem in the last years because of the challenge provided in treatment, of the limited tools in our disposal, and of the high mortality associated in these infections. This has also led to an increase in hospital expenses, and by 2050, it is predicted that the problem will reach excruciating instances with incredible high costs and a mortality higher than other diseases like stroke or diabetes mellitus complications.

It is important to provide strategies pharmacological and nonpharmacological for the success in the treatment of these infections and to prevent the dissemination of life-threatening pathogens before they overcome our available antibiotics.

The following chapter discusses the importance of multidrug-resistant Enterobacteriaceae, how resistance develops, epidemiology, definitions of multidrug resistance, and diverse strategies to treat these bacteria according to its acquired resistance from Ampc and ESBL to carbapenem-resistant Enterobacteriaceae.

Keywords

Enterobacteriaceae Multidrug resistance Beta-lactamase Carbapenemase Pandrug resistant 

References

  1. 1.
    Barber KE, Ortwine JK, Akins RL. Ceftazidime/avibactam: who says you can’t teach an old drug new tricks? J Pharm Pharm Sci. 2016;19:448–64.  https://doi.org/10.18433/J3X31R.CrossRefPubMedGoogle Scholar
  2. 2.
    Bassetti M, Pecori D, Sibani M, et al. Epidemiology and treatment of MDR Enterobacteriaceae. Curr Treat Options Infect Dis. 2015;7:291–316.  https://doi.org/10.1007/s40506-015-0065-1.CrossRefGoogle Scholar
  3. 3.
    Bassetti M, Pecori D, Peghin M. Multidrug-resistant gram-negative bacteria-resistant infections: epidemiology, clinical issues and therapeutic options. Ital J Med. 2016a;10:364–75.  https://doi.org/10.4081/itjm.2016.802.CrossRefGoogle Scholar
  4. 4.
    Bassetti M, Peghin M, Pecori D. The management of multidrug-resistant Enterobacteriaceae. Curr Opin Infect Dis. 2016b;29:583–94.  https://doi.org/10.1097/QCO.0000000000000314.CrossRefPubMedGoogle Scholar
  5. 5.
    Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States. 2013.Google Scholar
  6. 6.
    Daikos GL, Tsaousi S, Tzouvelekis LS, et al. Carbapenemase-producing Klebsiella pneumoniae bloodstream infections: lowering mortality by antibiotic combination schemes and the role of carbapenems. Antimicrob Agents Chemother. 2014;58:2322–8.  https://doi.org/10.1128/AAC.02166-13.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Davies SC. Annual Report of the Chief Medical Officer: infection and the rise of antimicrobial resistance. Lancet. 2013;381(9878):1606–9.  https://doi.org/10.1016/S0140-6736(13)60604-2.
  8. 8.
    De Pascale G, Martucci G, Montini L, et al. Double carbapenem as a rescue strategy for the treatment of severe carbapenemase-producing Klebsiella pneumoniae infections: a two-center, matched case-control study. Crit Care. 2017;21:1–10.  https://doi.org/10.1186/s13054-017-1769-z.CrossRefGoogle Scholar
  9. 9.
    Dharan BG, Lev B. Antibiotic resistance threats in the United States. J Acc Audit Financ. 1993;8:475–94. CS239559-B.Google Scholar
  10. 10.
    Dizbay M, Özger HS, Karaşahin Ö, Karaşahin EF. Treatment efficacy and superinfection rates in complicated urinary tract infections treated with ertapenem or piperacillin tazobactam. Turkish J Med Sci. 2016;46:1760–4.  https://doi.org/10.3906/sag-1506-157.CrossRefGoogle Scholar
  11. 11.
    Endimiani A, Luzzaro F, Perilli M, et al. Bacteremia due to Klebsiella pneumoniae isolates producing the TEM-52 extended-spectrum β-lactamase: treatment outcome of patients receiving imipenem or ciprofloxacin. Clin Infect Dis. 2004;38:243–51.  https://doi.org/10.1086/380645.CrossRefPubMedGoogle Scholar
  12. 12.
    Falagas ME, Kastoris AC, Kapaskelis AM, Karageorgopoulos DE. Fosfomycin for the treatment of multidrug-resistant, including extended-spectrum β-lactamase producing, Enterobacteriaceae infections: a systematic review. Lancet Infect Dis. 2010;10:43–50.  https://doi.org/10.1016/S1473-3099(09)70325-1.CrossRefPubMedGoogle Scholar
  13. 13.
    Frank T, Arlet G, Gautier V, et al. Extended-spectrum β-lactamase–producing Enterobacteriaceae, Central African Republic. Emerg Infect Dis. 2006;12:863–5.  https://doi.org/10.3201/eid1205.050951.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Garau J. Other antimicrobials of interest in the era of extended-spectrum β-lactamases: fosfomycin, nitrofurantoin and tigecycline. Clin Microbiol Infect. 2008;14:198–202.  https://doi.org/10.1111/j.1469-0691.2007.01852.x.CrossRefPubMedGoogle Scholar
  15. 15.
    Giamarellou H, Poulakou G. Pharmacokinetic and pharmacodynamic evaluation of tigecycline. Expert Opin Drug Metab Toxicol. 2011;7:1459–70.  https://doi.org/10.1517/17425255.2011.623126.CrossRefPubMedGoogle Scholar
  16. 16.
    Giannella M, Trecarichi EM, Giacobbe DR, et al. Effect of combination therapy containing a high-dose carbapenem on mortality in patients with carbapenem-resistant Klebsiella pneumoniae bloodstream infection. Int J Antimicrob Agents. 2018;51:244–8.  https://doi.org/10.1016/j.ijantimicag.2017.08.019.CrossRefPubMedGoogle Scholar
  17. 17.
    Guh AY, Limbago BM, Kallen AJ. Epidemiology and prevention of carbapenem-resistant Enterobacteriaceae in the United States. Expert Rev Anti-Infect Ther. 2014;12:565–80.  https://doi.org/10.1586/14787210.2014.902306.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Guh AY, Bulens SN, Mu Y, et al. Epidemiology of carbapenem-resistant enterobacteriaceae in 7 US communities, 2012–2013. JAMA. 2015;314:1479–87.  https://doi.org/10.1001/jama.2015.12480.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Harada Y, Morinaga Y, Kaku N, et al. In vitro and in vivo activities of piperacillin-tazobactam and meropenem at different inoculum sizes of ESBL-producing Klebsiella pneumoniae. Clin Microbiol Infect. 2014;20:O831–9.  https://doi.org/10.1111/1469-0691.12677.CrossRefPubMedGoogle Scholar
  20. 20.
    Harris PNA, Tambyah PA, Lye DC, et al. Effect of piperacillin-tazobactam vs meropenem on 30-day mortality for patients with E.coli or Klebsiella pneumoniae bloodstream infection and ceftriaxone resistance a randomized clinical trial. JAMA. 2018;320(10):984–994.  https://doi.org/10.1001/jama.2018.12163\.
  21. 21.
    Hirsch EB, Tam VH. Detection and treatment options for Klebsiella pneumoniae carbapenemases (KPCs): an emerging cause of multidrug-resistant infection. J Antimicrob Chemother. 2010;65:1119–25.  https://doi.org/10.1093/jac/dkq108.CrossRefPubMedGoogle Scholar
  22. 22.
    Hirsch EB, Guo B, Chang KT, et al. Assessment of antimicrobial combinations for Klebsiella pneumoniae carbapenemase-producing K. pneumoniae. J Infect Dis. 2013;207:786–93.  https://doi.org/10.1093/infdis/jis766.CrossRefPubMedGoogle Scholar
  23. 23.
    Jernigan MG, Press EG, Nguyen MH, et al. The combination of doripenem and colistin is bactericidal and synergistic against colistin-resistant, carbapenemase-producing Klebsiella pneumoniae. Antimicrob Agents Chemother. 2012;56:3395–8.  https://doi.org/10.1128/AAC.06364-11.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kuti JL. Optimizing antimicrobial pharmacodynamics: a guide for your stewardship program. Rev Méd Clín Las Condes. 2016;27:615–24.  https://doi.org/10.1016/j.rmclc.2016.08.001.CrossRefGoogle Scholar
  25. 25.
    Kuti JL, Dandekar PK, Nightingale CH, Nicolau DP. Use of Monte Carlo simulation to design an optimized pharmacodynamic dosing strategy for meropenem. J Clin Pharmacol. 2003;43:1116–23.  https://doi.org/10.1177/0091270003257225.CrossRefPubMedGoogle Scholar
  26. 26.
    Lee YR, Baker NT. Meropenem-vaborbactam: a carbapenem and beta-lactamase inhibitor with activity against carbapenem-resistant Enterobacteriaceae. Eur J Clin Microbiol Infect Dis. 2018;37:1411–9.  https://doi.org/10.1007/s10096-018-3260-4.CrossRefPubMedGoogle Scholar
  27. 27.
    Lee SO, Kim YS, Kim BN, et al. Impact of previous use of antibiotics on development of resistance to extended-spectrum cephalosporins in patients with Enterobacter bacteremia. Eur J Clin Microbiol Infect Dis. 2002;21:577–81.  https://doi.org/10.1007/s10096-002-0772-7.CrossRefPubMedGoogle Scholar
  28. 28.
    Luyt C-E, Bréchot N, Trouillet J-L, Chastre J. Antibiotic stewardship in the intensive care unit. Crit Care. 2014;18:480.  https://doi.org/10.1186/s13054-014-0480-6.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Solomkin J, Evans D, Slepavicius A, Lee P, Marsh A,Tsai L, Sutcliffe JA, Horn P. Assessing the efficacy and safety of eravacycline vs ertapenem in complicated intra-abdominal infections in the Investigating Gram-Negative Infections Treated With Eravacycline (IGNITE 1) trial: a randomized clinical trial. JAMA Surg. 2017;152:224–232.  https://doi.org/10.1001/jamasurg.2016.4237.
  30. 30.
    Magiorakos A, Srinivasan A, Carey RB, et al. Bacteria: an international expert proposal for interim standard definitions for acquired resistance. Microbiology. 2011;18:268–81.  https://doi.org/10.1111/j.1469-0691.2011.03570.x.CrossRefGoogle Scholar
  31. 31.
    Navarro-San Francisco C, Mora-Rillo M, Romero-Gómez MP, et al. Bacteraemia due to OXA-48-carbapenemase-producing Enterobacteriaceae: a major clinical challenge. Clin Microbiol Infect. 2013;19:E72–9.  https://doi.org/10.1111/1469-0691.12091.CrossRefPubMedGoogle Scholar
  32. 32.
    Ni W, Han Y, Liu J, et al. Tigecycline treatment for carbapenem-resistant enterobacteriaceae infections: a systematic review and meta-analysis. Med (United States). 2016;95:1–10.  https://doi.org/10.1097/MD.0000000000003126.CrossRefGoogle Scholar
  33. 33.
    Palacios-Baena ZR, Gutiérrez-Gutiérrez B, De Cueto M, et al. Development and validation of the INCREMENT-ESBL predictive score for mortality in patients with bloodstream infections due to extended-spectrum- β-lactamase-producing Enterobacteriaceae. J Antimicrob Chemother. 2017;72:dkw513.  https://doi.org/10.1093/jac/dkw513.CrossRefGoogle Scholar
  34. 34.
    Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health. 2015;109:309–18.  https://doi.org/10.1179/2047773215Y.0000000030.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Rodríguez-Baño J, Gutiérrez-Gutiérrez B, Machuca I, Pascual A. Treatment of infections caused by extended-spectrum-beta-lactamase-, AmpC-, and carbapenemase-producing Enterobacteriaceae. Clin Microbiol Rev. 2018;31:e00079-17.  https://doi.org/10.1128/CMR.00079-17.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Sader HS, Flamm RK, Jones RN. Antimicrobial activity of ceftaroline-avibactam tested against clinical isolates collected from U.S. Medical Centers in 2010–2011. Antimicrob Agents Chemother. 2013;57:1982–8.  https://doi.org/10.1128/AAC.02436-12.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Satlin MJ, Kubin CJ, Blumenthal JS, et al. Comparative effectiveness of aminoglycosides, polymyxin B, and tigecycline for clearance of carbapenem-resistant Klebsiella pneumoniae from urine. Antimicrob Agents Chemother. 2011;55:5893–9.  https://doi.org/10.1128/AAC.00387-11.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Siegel JD, Rhinehart E, Jackson M, Linda. Guideline for isolation precautions: preventing transmission of infectious agents in healthcare settings. Am J Infect Control. 2007;35(10 Suppl 2):S65–164.Google Scholar
  39. 39.
    Sorbera M, Chung E, Ho CW, Marzella N. Ceftolozane/tazobactam: a new option in the treatment of complicated gram-negative infections. P T. 2014;39:825–32.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Tängdén T, Hickman RA, Forsberg P, et al. Evaluation of double- and triple-antibiotic combinations for VIM- and NDM-producing klebsiella pneumoniae by in vitro time-kill experiments. Antimicrob Agents Chemother. 2014;58:1757–62.  https://doi.org/10.1128/AAC.00741-13.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Tenover FC, McGowan JE. Reasons for the emergence of antibiotic resistance. Am J Med Sci. 1996;311:9–16.  https://doi.org/10.1016/S0002-9629(15)41625-8.CrossRefPubMedGoogle Scholar
  42. 42.
    Thomson KS, Moland ES. Cefepime, piperacillin- tazobactam, and the inoculum effect in tests with extended-spectrum β-lactamase-producing Enterobcateriaceae. Antimicrob Agents Chemother. 2001;45:3548–54.  https://doi.org/10.1128/AAC.45.12.3548.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Thorpe KE, Joski P, Johnston KJ. Antibiotic-resistant infection treatment costs have doubled since 2002, now exceeding $2 billion annually. Health Aff. 2018;37:662–9.  https://doi.org/10.1377/hlthaff.2017.1153.CrossRefGoogle Scholar
  44. 44.
    Tumbarello M, Sanguinetti M, Montuori E, et al. Predictors of mortality in patients with bloodstream infections caused by extended-spectrum-??-lactamase-producing Enterobacteriaceae: importance of inadequate initial antimicrobial treatment. Antimicrob Agents Chemother. 2007;51:1987–94.  https://doi.org/10.1128/AAC.01509-06.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Van Duin D, Kaye KS, Neuner EA, Bonomo RA. Carbapenem-resistant Enterobacteriaceae: a review of treatment and outcomes. Diagn Microbiol Infect Dis. 2013;75:115–20.  https://doi.org/10.1016/j.diagmicrobio.2012.11.009.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Vardakas KZ, Tansarli GS, Rafailidis PI, Falagas ME. Carbapenems versus alternative antibiotics for the treatment of bacteraemia due to enterobacteriaceae producing extended-spectrum β-lactamases: a systematic review and meta-analysis. J Antimicrob Chemother. 2012;67:2793–803.  https://doi.org/10.1093/jac/dks301.CrossRefPubMedGoogle Scholar
  47. 47.
    Vidal L, Gafter-Gvili A, Borok S, et al. Efficacy and safety of aminoglycoside monotherapy: systematic review and meta-analysis of randomized controlled trials. J Antimicrob Chemother. 2007;60:247–57.  https://doi.org/10.1093/jac/dkm193.CrossRefPubMedGoogle Scholar
  48. 48.
    Wagenlehner FM, Sobel JD, Newell P, et al. Ceftazidime-avibactam versus doripenem for the treatment of complicated urinary tract infections, including acute pyelonephritis: RECAPTURE, a phase 3 randomized trial program. Clin Infect Dis. 2016;63:754–62.  https://doi.org/10.1093/cid/ciw378.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Xu Y, Gu B, Huang M, et al. Epidemiology of carbapenem resistant Enterobacteriaceae (CRE) during 2000–2012 in Asia. J Thorac Dis. 2015;7:376–85.  https://doi.org/10.3978/j.issn.2072-1439.2014.12.33.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Yahav D, Lador A, Paul M, Leibovici L. Efficacy and safety of tigecycline: a systematic review and meta-analysis. J Antimicrob Chemother. 2011;66:1963–71.  https://doi.org/10.1093/jac/dkr242.CrossRefPubMedGoogle Scholar
  51. 51.
    Yoon YK, Kim JH, Sohn JW, et al. Role of piperacillin/tazobactam as a carbapenem-sparing antibiotic for treatment of acute pyelonephritis due to extended-spectrum β-lactamase-producing Escherichia coli. Int J Antimicrob Agents. 2017;49:410–5.  https://doi.org/10.1016/j.ijantimicag.2016.12.017.CrossRefPubMedGoogle Scholar
  52. 52.
    Zhanel GG, Lawson CD, Zelenitsky S, et al. Comparison of the next- generation aminoglycoside plazomicin to gentamicin, tobramycin and amikacin. Expert Rev Anti Infect Ther. 2014;10:459–73.  https://doi.org/10.1586/eri.12.25.CrossRefGoogle Scholar
  53. 53.
    Zhanel GG, Lawrence CK, Adam H, et al. Imipenem–relebactam and meropenem–vaborbactam: two novel carbapenem-β-lactamase inhibitor combinations. Drugs. 2018;78(1):65–98.  https://doi.org/10.1007/s40265-017-0851-9.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of Medicine and Health SciencesMeDeri University HospitalBogotáColombia
  2. 2.Los Cobos Medical CenterBogotáColombia
  3. 3.Rosario UniversityBogotáColombia

Personalised recommendations