Advertisement

Advanced Treatment Technologies

  • Manviri Rani
  • Uma ShankerEmail author
Reference work entry

Abstract

Increasing population, rapid industrialization and extensive use of pesticides in agriculture caused the discharge of pesticide residues into surface water. Among, organochlorines (OCs) are critically noxious with half-lives of many years followed by organophosphorus (OPs) and carbamates etc. Owing to carcinogenic nature, most of OCs are banned worldwide and still existing in environment. Due to great persistence, toxicity and potential to bioaccumulation, their complete removal (including monitoring and regulatation) is highly imperative. In this direction, traditional techniques such as microbial, photolysis and conventional-adsorbents (commercial-activated-carbon, agricultural and natural-waste) were highly employed. Of late, nanomaterials (including nanocomposites and nano-biocomposite) with high surface-area come out as most economic, rapid and effective photocatalyst under artificial and sun-light irradiation. TiO2 and Fe0 by itself or with oxidizing agents are being used frequently and open the opportunities for exploring other nanoparticles as well. Further, their modified, doped or composites form showed improved properties via introduction of additional energy levels or upsurge of surface area. However, metal oxides also found to degrade OP pesticides by rapid reactive adsorption followed by cleavage of P-O bond via SN2 mechanism. Present chapter familiarize readers with comprehensive information on problem related to different types of pesticides (metabolites, environmental concentration, and need for degradation) and their removal using nanoparticles through adsorption, photocatalytic, redox and reactive degradation. In addition, importance of green synthesized nanoparticles in degradation of various organic-pollutants has been highlighted.

Keywords

Treatment technologies Nano-adsorbents Biopesticides Organophosphorus Degradation 

References

  1. Abdullah AH, Mun LK, Zainal Z, Hussein MZ (2013) Photodegradation of chlorophenoxyacetic acids by ZnO/γ-Fe2O3 nanocatalysts: a comparative study. Int J Chem 5:56–65CrossRefGoogle Scholar
  2. Affam AC, Chaudhuri M (2013) Degradation of pesticides chlorpyrifos, cypermethrin and chlorothalonil in aqueous solution by TiO2 photocatalysis. J Environ Manag 130:160–165CrossRefGoogle Scholar
  3. Affam AC, Chaudhuri M, Kutty SRM, Muda K (2016) Degradation of chlorpyrifos, cypermethrin and chlorothalonil pesticides in aqueous solution by FeGAC/H2O2 process. Desalination Water Treat 57(11):5146–5154CrossRefGoogle Scholar
  4. Agarwal SB (1993) A clinical, biochemical, neurobehavioural and socio psychological study of 190 patients admitted to hospital as a result of acute organophosphorus poisoning. Environ Res 62:63CrossRefGoogle Scholar
  5. Ahmad AL, Tan LS, Shukor SRA (2008) Dimethoate and atrazine retention from aqueous solution by nanofiltration membranes. J Hazard Mater 151:71–77CrossRefGoogle Scholar
  6. Ahmed S, Rasul MG, Martens WN, Brown R, Hashib MA (2010) Heterogenous photocatalytic degradation of phenols in wastewater: a review on current status and developments. Desalination 261:3–18CrossRefGoogle Scholar
  7. Ahmed A, Randhawa MA, Yusuf MJ, Khalid N (2011) Effect of processing on pesticide residues in food crops – a review. J Agric Res 49(3):379–390Google Scholar
  8. Akhtar M, Iqbal S, Bhanger MI, Zia-Ul-Haq M, Moazzam M (2009) Sorption of organophosphorous pesticides onto chickpea husk from aqueous solutions. Colloids Surf B Biointerfaces 69:63–70CrossRefGoogle Scholar
  9. Ali I, Aboul-Enein HY (2004) Chiral pollutants: distribution, toxicity and analysis by chromatography and capillary electrophoresis. Wiley Online Library pages 368Google Scholar
  10. Anipsitakis GP, Dionysiou ESDD (2003) Radical generation by the interaction of transition metals with common oxidants. J Phys Chem B 109:13052–13055CrossRefGoogle Scholar
  11. Aouada FA, Pan Z, Orts WJ, Mattoso LHC (2009) Removal of paraquat pesticide from aqueous solutions using a novel adsorbent material based on polyacrylamide and methylcellulose hydrogels. J Appl Polym Sci 114:2139–2148CrossRefGoogle Scholar
  12. Aungpradit T, Sutthivaiyakit P, Martens D, Sutthivaiyakit S, Kettrup AAF (2007) Photocatalytic degradation of triazophos in aqueous titanium dioxide suspension: Identification of intermediates and degradation pathways. J Hazard Mater 146:204–213CrossRefGoogle Scholar
  13. Averous L, Pollet E (2012) Green nano-biocomposites, Green energy and technology. Springer, London, pp 1–11Google Scholar
  14. Ayranci E, Hoda N (2005) Adsorption kinetics and isotherms of pesticides onto activated carbon-cloth. Chemosphere 60:1600–1607CrossRefGoogle Scholar
  15. Bach A, Semiat R (2011) The role of activated carbon as a catalyst in GAC/iron oxide/H2O2 oxidation process. Desalination 273:57–63CrossRefGoogle Scholar
  16. Baker EL, Warren MW, Zack M, Bobbin RD, Miles JW, Miller S (1978) Epidemic malathion poisoning in Pakistan malaria workers. Lancet 311:31–34CrossRefGoogle Scholar
  17. Baligar PN, Kaliwal BB (2001) Induction of gonadal toxicity to female rats after chronic exposure to mancozeb. Ind Health 39:235CrossRefGoogle Scholar
  18. Baligar PN, Kaliwal BB (2002) Reproductive toxicity of carbofuran to the female mice: effects on estrous cycle and follicles. Ind Health 40:345CrossRefGoogle Scholar
  19. Bandala ER, Gelover S, Leal MT, Arancibia-Bulnes C, Jimenez A, Estrada CA (2002) Solar photocatalytic degradation of Aldrin. Catal Today 76:189–199CrossRefGoogle Scholar
  20. Bandala ER, Andres-Octaviano J, Pastrana P, Torres LG (2007) Removal of aldrin, dieldrin, heptachlor, and heptachlor epoxide using activated carbon and/or pseudomonas fluorescens free cell cultures. J Environ Sci Health B 41:553–569CrossRefGoogle Scholar
  21. Barba-Bon A (2015) Towards the design of organocatalysts for nerve agents emediation: the case of the active hydrolysis of DCNP (a Tabun mimic) catalyzed by simple amine-containing derivatives. J Hazard Mater 298:73–82CrossRefGoogle Scholar
  22. Barcelo D, Hennion MC (1997) Trace determination of pesticides and their degradation products in water, vol 3. Elsevier, Amsterdam, p 1CrossRefGoogle Scholar
  23. Bhalerao TS, Puranik PR (2007) Biodegradation of organochlorine pesticide, endosulfan, by a fungal soil isolate. Aspergillusniger Int Biodeter Biodegrad 59:315–321CrossRefGoogle Scholar
  24. Black AL, Chiu YC, Fahmy MAH, Fukuto TR (1973) Selective toxicity of N -sulfenylated derivatives of insecticidal methylcarbamate esters. J Agric Food Chem 21:743–747CrossRefGoogle Scholar
  25. Blanco J (2003) Development of CPC solar collectors for application to photochemical degradation of persistent pollutants in water. Editorial CIEMAT, Madrid. (In Spanish)Google Scholar
  26. Bolton JR, Cater SR (1994) Homogeneous photodegradation of pollutants in contaminated water: an introduction. In: Helz GR, Zepp RG, Crosby DG (eds) Aquatic and surface photochemistry. Lewis, Boca Raton, pp 467–490Google Scholar
  27. Bonnia NN, Kamaruddin MS, Nawawi MH, Ratim S, Azlina HN, Ali ES (2016) Green biosynthesis of silver nanoparticles using ‘Polygonum Hydropiper’ and study its catalytic degradation of methylene blue. Procedia Chemistry 19:594–602CrossRefGoogle Scholar
  28. Bootharaju MS, Pradeep T (2012) Understanding the degradation pathway of the pesticide chlorpyrifos by noble metal nanoparticles. Langmuir 28:2671−2679CrossRefGoogle Scholar
  29. Bottaro M, Frascarolo P, Gosetti F, Mazzucco E, Giatiotti V, Polati S, Pollici E, Piacentini L, Pavese G, Gennaro MC (2008) Hydrolytic and photoinduced degradation of tribenuron methyl studied by HPLC-DAD-MS/MS. J Am Soc Mass Spectrom 19:1221–1229CrossRefGoogle Scholar
  30. Broughton E (2005) The Bhopal disaster and its aftermath: a review. Environ Health Global Access Sci Source 4:6.  https://doi.org/10.1186/1476-069X-4-6CrossRefGoogle Scholar
  31. Burrows HD, Canle LM, Santaballa JA, Steenken S (2002) Invited review: reaction pathways and mechanisms of photodegradation of pesticides. J Photochem Photobiol B: Biol 67:71–108CrossRefGoogle Scholar
  32. Buttiglieri G, Peschka M, Fromel T et al (2009) Environmental occurrence and degradation of the herbicide n-chloridazon. Water Res 43(11):2865–2873CrossRefGoogle Scholar
  33. Cahill MG, Caprioli G, Stack M, Vittori S, James KJ (2011) Semi-automated liquid chromatography– mass spectrometry (LC–MS/MS) method for basic pesticides in wastewater effluents. AnalBioanal Chem 400:587–594CrossRefGoogle Scholar
  34. Calabrese EJ (1982) Human breast milk contamination in the United States and Canada by chlorinated hydrocarbon insecticides and industrial pollutants: current status. Int J Toxicol 1:91–98Google Scholar
  35. Chang CF, Chang CY, Hsu KE, Lee SC, Holl W (2008) Adsorptive removal of the pesticide methomyl using hypercrosslinked polymers. J Hazard Mater 155:295–304CrossRefGoogle Scholar
  36. Chapalamadugu S, Chaudhry GR (1992) Microbiological and biotechnological aspects of metabolism of carbamates and organophosphates. Crit Rev Biotechnol 12:357CrossRefGoogle Scholar
  37. Chen X, Burda C (2004) Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles. J Phys Chem B 108(40):15446–15449CrossRefGoogle Scholar
  38. Chen J, Gao J (1993) The Chinese total diet study in 1990. Part I. Chemical contaminants. J AOAC Int 76:1193–1205Google Scholar
  39. Chen DA, Ratliff JS, Hu XF, Gordon WO, Senanayake SD, Mullins DR (2010) Dimethyl methylphosphonate decomposition on fully oxidized and partially reduced ceria thin films. Surf Sci 604:574–587CrossRefGoogle Scholar
  40. Cortes DR, Hites RA (2000) Detection of statistically significant trends in atmospheric concentrations of semivolatile compounds. EnvSci Tec 34:2826–2829Google Scholar
  41. Costa LG (2006) Invited critical review: current issues in organophosphate toxicology. Clin Chim Acta 366:1–13CrossRefGoogle Scholar
  42. Cruz-Guzman M, Celis R, Hermosin MC, Koskinen WC, Cornejo J (2005) Adsorption of pesticides from water by functionalized organobentonites. J Agric Food Chem 53:7502–7511CrossRefGoogle Scholar
  43. Dai K, Ping T, Chen H, Liu J, Zan L (2009) Photocatalytic degradation of comercial phoxim over La- Doped TiO2 nanoparticles in aqueous suspension. Environ Sci Technol 43:1540–1545CrossRefGoogle Scholar
  44. Danish M, Sulaiman O, Rafatullah M, Hashim R, Ahmad A (2010) Kinetics for the removal of paraquat dichloride from aqueous solution by activated date (Phoenix dactylifera) stone carbon. J Dispers Sci Technol 31:248–259CrossRefGoogle Scholar
  45. Das RK (2007) Epidemiology of insecticide poisoning at A.I.I.M.S emergency services and role of its detection by gas liquid chromatography in diagnosis, Medico. Update 7:49Google Scholar
  46. De AK (1987) Environmental Chemistry. Wiley, New DelhiGoogle Scholar
  47. De AK (2010) Environmental Chemistry, 7th edn. New Age International Publisher, New DelhiGoogle Scholar
  48. de Figueredo-Sobrinho FAA, de Souza Lucas FW, Fill TP, Rodrigues-Filho E, Mascaro LH, da Silva Casciano PN, de LimaNeto P, Correia AN (2015) Electrochim Acta 154:278–286CrossRefGoogle Scholar
  49. de Flora S, Viganò L, D'Agostini F, Camoirano A, Bagnasco M, Bennicelli C, Melodia F, Arillo A (1993) Multiple genotoxicity biomarkers in fish exposed in situ to polluted river water. Mutation Research/Genetic Toxicol 319:167–177CrossRefGoogle Scholar
  50. de Urzedo APFM, Nascentes CC, Augusti R (2009) Degradation of the insecticides Thiamethoxam and Imidacloprid in aqueous solution as promoted by an innovative Fe8/Fe3O4 composite. J Braz Chem Soc 20(1):51–56CrossRefGoogle Scholar
  51. Dehaghi SM, Rahmanifar B, Moradi AM, Azar PA (2014) Removal of permethrin pesticide from water by chitosan-zinc oxide nanoparticles composite as an adsorbent. J Saudi Chem Soc 18:348–355CrossRefGoogle Scholar
  52. Deka AC, Sinha SK (2015) Mycogenic silver nanoparticle biosynthesis and its pesticide degradation potentials. Int J Technol Enhanc Emerg Eng Res 3:108–113Google Scholar
  53. Devipriya S, Yesodharan S (2005) Photocatalytic degradation of pesticide contaminants in water. Sol Energy Mater Sol Cells 86:309–348CrossRefGoogle Scholar
  54. Dixit V, Tewari JC, Obendorf SK (2009) Identification of degraded products of aldicarb due to the catalytic behavior of titanium dioxide/polyacrylonitrile nanofiber. J Chromatograph A 1216:6394–6399CrossRefGoogle Scholar
  55. Doddamani HP, Ninnekar HZ (2001) Biodegradation of carbaryl by a Micrococcus species. Curr Microbiol 43:69–73CrossRefGoogle Scholar
  56. Doong R, Chang W (1997) Photoassisted titanium dioxide mediated degradation of organophosphorus pesticides by hydrogen peroxide. J Photochem Photobiol A Chem 107: 239–244CrossRefGoogle Scholar
  57. Ecobichon DJ (1991) Pesticides. In: Amdur MO, Doull J, Klaassen CD (eds) Casarett and Doull’s toxicology: the basic science of poisons, 4th edn. Pergamon Press, New York, p 580Google Scholar
  58. El Bakouri H, Usero J, Morillo J, Rojas R, Ouassini A (2009) Drin pesticides removalfrom aqueous solutions using acid-treated date stones. Bioresour Technol 100:2676–2684CrossRefGoogle Scholar
  59. El-Aziz A, Said A, Ludwick AG, Aglan HA (2009) Usefulness of raw bagasse for oil absorption: a comparison of raw and acylated bagasse and their components. Bioresour Technol 100:2219–2222CrossRefGoogle Scholar
  60. Elliott DW, Lien HL, Zhang WX (2009) Degradation of Lindane by Zero-Valent Iron Nanoparticles. J Environ Eng 135:317–324CrossRefGoogle Scholar
  61. El-Temsah YS, Joner EJ (2012) Ecotoxicological effects on earthworms of fresh and aged nano-sized zero-valent iron (nZVI) in soil. Chemosphere 89:76–82CrossRefGoogle Scholar
  62. El-Temsah YS, Sevcu A, Bobcikova K, Cernik M, Joner EJ (2016) DDT degradation efficiency and ecotoxicological effects of two types of nano-sized zero-valent iron (nZVI) in water and soil. Chemosphere 144:2221–2228CrossRefGoogle Scholar
  63. Fernández-Pérez M, Garrido-Herrera FJ, González-Pradas E (2011) Alginate and lignin-based formulations to control pesticides leaching in a calcareous soil. J Hazard Mater 190:794–801CrossRefGoogle Scholar
  64. Foo KY, Hameed BH (2010) Detoxification of pesticide waste via activated carbon adsorption process. J Hazard Mater 175:1–11CrossRefGoogle Scholar
  65. Fouad DM, Mohamed MB (2011) Photodegradation of chloridazon using coreshell magnetic nanocompsites. J Nanotechnol 2011:1–7CrossRefGoogle Scholar
  66. Fouad DM, Mohamed MB (2012) Comparative study of the photocatalytic activity of semiconductor nanostructures and their hybrid metal nanocomposites on the photodegradation of malathion. J Nanomater 2012:1–8CrossRefGoogle Scholar
  67. Fugetsu B, Satoh S, Shiba T, Mizutani T, Lin Y, Terui N, Nodasaka Y, Sasa K, Shimizu K, Akasaka T (2004) Caged multiwalled carbon nanotubes as the adsorbents for affinity based elimination of ionic dyes. Environ Sci Technol 38:6890–6896CrossRefGoogle Scholar
  68. Galindo C, Jacques P, Kalt A (2001) Photooxidation of the phenylazonaphthol AO20 on TiO2: kinetic and mechanistic investigations. Chemosphere 45:997–1005CrossRefGoogle Scholar
  69. Gannur DG, Maka P, Reddy KSN (2008) Organophosphorus compound poisoning in Gulbarga region—a five year study. Indian J Forensic Med Toxicol 2:1–6Google Scholar
  70. Gao X, Jiang Y, Zhong Y, Luo ZY, Cen KF (2010) The activity and characterization of CeO2–TiO2 catalysts prepared by the sol–gel method for selective catalytic reduction of NO with NH3. J Hazard Mater 174:734–739CrossRefGoogle Scholar
  71. Gillham RW, O’Hannesin SF (1994) Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water 32(6):958–967CrossRefGoogle Scholar
  72. Gilliom RJ (2001) Pesticides in the hydrologic system-what do we know and what’s next? Hydrol Process 15:3197–3201CrossRefGoogle Scholar
  73. Goel A, Joseph S, Dutta TK (1998) Organophosphate poisoning: predicting the need for ventilatory support. J Assoc Physicians India 46:786–790Google Scholar
  74. Gomez S, Marchena CL, Renzini MS, Pizzio L, Pierella L (2015) In situ generated TiO2 over zeolitic supports as reusable photocatalysts for the degradation of dichlorvos. Appl Catal B Environ 162:167–173CrossRefGoogle Scholar
  75. Gruber SJ, Munn MD (1998) Organophosphate and carbamate insecticides in agricultural waters and cholinesterase (ChE) inhibition in common carp (Cyprinus carpio). Arch Environ Contam Toxicol 35:391–396CrossRefGoogle Scholar
  76. Gunnell D, Eddleston M, Phillips MR, Konradsen F (2007) The global distribution of fatal pesticide self-poisoning: systematic review. BMC Public Health 7(357)Google Scholar
  77. Gupta PK (2004) Pesticide exposure – Indian scene. Toxicology 198:83–90CrossRefGoogle Scholar
  78. Gupta B, Rani M, Kumar R, Dureja P (2011) Decay profile and metabolic pathways of quinalphos in water, soil and plants. Chemosphere 85:710–716Google Scholar
  79. Gupta B, Rani M, Kumar R (2012a) Degradation of thiram in water, soil and plants: a study by high-performance liquid chromatography. Biomed Chromatogr 26:69–75Google Scholar
  80. Gupta B, Rani M, Kumar R, Dureja P (2012b) Identification of degradation products of thiram in water, soil and plants using LC-MS technique. J Environ Sci Health Part B 47:823–831Google Scholar
  81. Gupta B, Rani M, Kumar R, Dureja P (2012c) In vitro and in vivo studies on degradation of quinalphos in rats. J Hazard Mat 213–214: 285–291Google Scholar
  82. Gupta SS, Chakraborty I, Maliyekkal SM, Mark TA, Pandey DK, Das SK, Pradeep T (2015) Simultaneous dehalogination and removal of persistent halocarbon pesticides from waste water using grapheme nanocomposites: a case study of lindane. Sustainable Chem Eng 3:1155–1163CrossRefGoogle Scholar
  83. Hameed BH, Salman JM, Ahmad AL (2009) Adsorption isotherm and kinetic modeling of 2, 4-D pesticide on activated carbon derived from date stones. J Hazard Mater 163:121–126CrossRefGoogle Scholar
  84. Han ST, Jing L, Xi HL, Xu DN, Zuo Y, Zhang JH (2009) Photocatalytic decomposition of acephate in irradiated TiO2 suspensions. J Hazard Mater 163:1165–1172CrossRefGoogle Scholar
  85. Henych J, Stengl V, Slusna M, Grygar TM, Janos P, Kuran P, Stastny M (2015) Degradation of organophosphorus pesticide parathion methyl on nanostructured titania–iron mixed oxides. Appl Surf Sci 344:9–16CrossRefGoogle Scholar
  86. Henych J, Janos P, Kormunda M, Tolasz J, Stengl V (2016) Reactive adsorption of toxic organophosphatesparathion methyl and DMMP on nanostructuredTi/Ce oxides and their composites. Arab J Chem.  https://doi.org/10.1016/j.arabjc.2016.06.002
  87. Houskova V, Stengl V, Bakardjieva S, Murafa N, Kalendova A, Oplustil F (2007) Zinc oxide prepared by homogeneous hydrolysis with thioacetamide, its destruction of warfare agents, and photocatalytic activity. J Phys Chem A 111:4215–4221CrossRefGoogle Scholar
  88. Hung HM, Hoffmann MR (1998) Kinetics and mechanism of the enhanced reductive degradation of CCl4 by elemental iron in the presence of ultrasound. Environ Sci Technol 32(19):3011–3016CrossRefGoogle Scholar
  89. Ibrahim KM, Jbara HA (2009) Removal of paraquat from synthetic wastewater using phillipsite-faujasite tuff from Jordan. J Hazard Mater 163:82–86CrossRefGoogle Scholar
  90. Ignatowicz K (2009) Selection of sorbent for removing pesticides during water treatment. J Hazard Mater 169:953–957CrossRefGoogle Scholar
  91. Isman MB (1994) Botanical insecticides, Pesticides. Outlook 5:26–31Google Scholar
  92. Isman MB (1997) Neem and Other Botanical Insecticides: barriers to Commercialization. Phytoparasitica 25:339–344CrossRefGoogle Scholar
  93. Jaiswal M, Chauhan D, Sankararamakrishnan N (2012) Copper chitosan nanocomposites: synthesis, characterization, and application in removal of organophosphorous pesticide from agricultural runoff. Environ Sci Pollut R 19:2005–2062CrossRefGoogle Scholar
  94. Janos P, Kuran P, Kormunda M, Stengl V, Grygar TM, Dosek M, Stastny M, Ederer J, Pilarova, V, Vrtoch L (2014) Cerium dioxide as a new reactive sorbent for fast degradation of parathion methyl and some other organophosphates. J Rare Earth 32:360–370CrossRefGoogle Scholar
  95. Jassal V, Shanker U, Kaith BS, Shankar S (2015a) Green synthesis of potassium zinc hexacyanoferratenanocubes and their potential application in photocatalytic degradation of organic dyes. RSC Adv 5:26141–26149CrossRefGoogle Scholar
  96. Jassal V, Shanker U, Gahlot S, Kaith BS, Kamaluddin MAI, Samuel P (2015b) Sapindus mukorossi mediated green synthesis of some manganese oxide nanoparticles interaction with aromatic amines. Appl Phys A Mater Sci Process 122:271–282CrossRefGoogle Scholar
  97. Jassal V, Shanker U, Shankar S (2015c) Synthesis, characterization and applications of nano-structured metal hexacyanoferrates. J Environ Anal Chem 2:1000128–1000141CrossRefGoogle Scholar
  98. Jassal V, Shanker U, Gahlot S (2016a) Green synthesis of some iron oxide nanoparticles and their interaction with 2-amino, 3-amino and 4-aminopyridines. Mater Today Proc 3:1874–1882CrossRefGoogle Scholar
  99. Jassal V, Shanker U, Kaith BS (2016b) Aegle marmelos mediated green synthesis of different nano-structured metal hexacyanoferrates: activity against photodegradation of harmful organic dyes. Scientifica 2016:1–13CrossRefGoogle Scholar
  100. Jeschke P, Nauen R, Schindler M et al (2011) Overview of the status and global strategy for neonicotinoids. J Agric Food Chem 59:2897–2908CrossRefGoogle Scholar
  101. Jing L, Yang C, Zongshan Z (2013) Effective organochlorine pesticides removal from aqueous systems by magnetic nanospheres coated with polystyrene. J Wuhan University Technol 29:168–173Google Scholar
  102. Jokanovic M (2001) Biotransformation of organophosphorus compounds. Toxicology 166:139–160CrossRefGoogle Scholar
  103. Joo SH, Zhao D (2008) Destruction of lindane and atrazine using stabilized iron nanoparticles under aerobic and anaerobic conditions: effects of catalyst and stabilizer. Chemosphere 70:418–425CrossRefGoogle Scholar
  104. Joo SH, Feitz AJ, Waite TD (2004) Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron. Environ Sci Technol 38:2242–2247CrossRefGoogle Scholar
  105. Kafilzadeh F (2015) Assessment of organochlorine pesticide residues in water, sediments and fish from Lake Tashk, Iran. Achiev Life Sci 9:107–111CrossRefGoogle Scholar
  106. Kannan K, Tanabe S, Giesy JP, Tatsukawa R (1997) Organochlorine pesticides and polychlorinated biphenyls in foodstuffs from Asian and Oceanian countries. Rev Environ Contam Toxicol 152:1–55Google Scholar
  107. Kaur P, Bansal P, Sud D (2013) Heterostructured nanophotocatalysts for degradation of organophosphate pesticides from aqueous streams. J Korean Chem Soc 57(3):382–388CrossRefGoogle Scholar
  108. Kaushik A, Sharma HR, Jain S, Dawra J, Kaushik CP (2010) Pesticide pollution of river Ghaggar in Haryana, India. Environ Monit Assess 160:61–69CrossRefGoogle Scholar
  109. Khaleel A, Kapoora PN, Klabunde KJ (1999) Nanocrystalline metal oxides as new adsorbents for air purification. Nanostruct Mater 11(4):459–468CrossRefGoogle Scholar
  110. Khan A, Haque MM, Mir NA, Muneer M, Boxall C (2010) Heterogeneous photocatalysed degradation of an insecticide derivative acetamiprid in aqueous suspensions of semiconductor. Desalination 261:169–174CrossRefGoogle Scholar
  111. Khan A, Mir NA, Faisal M, Muneer M (2012) Titanium dioxide-mediated photcatalysed degradation of two herbicide derivatives chloridazon and metribuzin in aqueous suspensions. Int J Chem Eng 6:1–8Google Scholar
  112. Khan SH, Suriyaprabha R, Pathak B, Fulekar MH (2015) Photocatalytic degradation of organophosphate pesticides (Chlorpyrifos) using synthesized zinc oxide nanoparticle by membrane filtration reactor under UV irradiation. Front Nanosci Nanotech 1:23–27CrossRefGoogle Scholar
  113. Kitous O, Cheikh A, Lounici H, Grib H, Pauss A, Mameri N (2009) Application of the electrosorption technique to remove metribuzin pesticide. J Hazard Mater 161:1035–1039CrossRefGoogle Scholar
  114. Klabunde KJ, Stark J, Koper O, Mohs C, Park DG, Decker S, Jiang Y, Lagadic ZD (1996) Nanocrystals as stoichiometric reagents with unique surface chemistry. J Phys Chem 100(30):12142–12153CrossRefGoogle Scholar
  115. Kolpin DW, Barbash JE, Gilliom RJ (1998) Occurrence of pesticides in shallow groundwater of the United States: initial results from the National Water-Quality Assessment Program. Environ Sci Technol 32:558–566CrossRefGoogle Scholar
  116. Konstantinou IK, Albanis TA (2003) Photocatalytic transformation of pesticides in aqueous titanium dioxide suspensions using artificial and solar light: intermediates and degradation pathways. Appl Catal B Environ 42:319–335CrossRefGoogle Scholar
  117. Konstantinou IK, Hela DG, Albanis TA (2006) The status of pesticide pollution in surface waters (rivers and lakes) of Greece. Part I. Review on occurrence and levels. Environ Pollut 141:555–570CrossRefGoogle Scholar
  118. Kralj MB, Cernigoj U, Franko M (2007) Comparison of photocatalysis and photolysis of malathion, isomalathion, malaoxon, and commercial malathion: products and toxicity studies. Water Res 41:4504–4514CrossRefGoogle Scholar
  119. Kuo WS, Ho PH (2001) Solar photocatalytic decolorization of methylene blue in water. Chemosphere 45:77–83CrossRefGoogle Scholar
  120. Kuroda K, Yamagachi Y, Endo G (1992) Mitotic toxicity, sister chromatid exchange and rec assay of pesticides. Arch Environ Contam Toxicol 23:13–18CrossRefGoogle Scholar
  121. Kusvuran E, Erbatur O (2004) Degradation of aldrin in adsorbed system using advanced oxidation processes: comparison of the treatment methods. J Hazard Mater 106B:115–125CrossRefGoogle Scholar
  122. Kwon GS, Sohn HY, Shin KS, Kim E, Seo BI (2005) Biodegradation of the organochlorine insecticide, endosulfan, and the toxic metabolite, endosulfan sulfate, by Klebsiellaoxytoca KE-8. Appl Microbiol Biotechnol 67:845–850CrossRefGoogle Scholar
  123. Kyriakopoulos G, Doulia D (2006) Adsorption of pesticides on carbonaceous and polymeric materials from aqueous solutions: a review. Sep Purif Rev 35:97–191CrossRefGoogle Scholar
  124. Lagadec AJM, Miller DJ, Lilke AV, Hawthorne SB (2000) Pilot-scale subcritical waterremediation of polycyclic aromatic hydrocarbons- and pesticide-contaminated soil. Environ Sci Technol 34:1542–1548CrossRefGoogle Scholar
  125. Laseter JL (1978) Environmental contamination of food in environmental contaminants in food, Chapter 2. Washington, DCGoogle Scholar
  126. Lavand AB, Malghe YS (2015) Visible light photocatalytic degradation of 4-chlorophenol using C/ZnO/CdS nanocomposites. J Saudi Chem Soc 19(5):471–478CrossRefGoogle Scholar
  127. Lazartigues E, Freslon JL, Tellioglu T, Brefel-Courbon C, Pelat M, Tran MA, Montastruc JL, Rascol O (1998) Pressor and bradycardic effects of tacrine and other acetylcholinesterase inhibitors in the rat. Eur J Pharmacol 361:61–71CrossRefGoogle Scholar
  128. Leeling NC, Caisida JE (1966) Metabolites of carbaryl (1-naphthyl methylcarmate) in mammals and enzymatic systems for their formation. J Agric Food Chem 14:281–290CrossRefGoogle Scholar
  129. Lellala K, Namratha K, Byrappa K (2016) Microwave assisted synthesis and characterization of nanostructure zinc oxide-graphene oxide and photo degradation of brilliant blue. Materials Today Proceedings 3:74–83CrossRefGoogle Scholar
  130. Li YF, Cai DJ, Singh A (1998) Technical hexachlorocyclohexane use trends in China and their impact on the environment. Arch Environ ContamToxicol 35:688–697CrossRefGoogle Scholar
  131. Li YF (1999) Global technical hexachlorocyclohexane usage and its contamination consequences in environment: from 1947 to 1997. Sci Total Environ 232:123–160CrossRefGoogle Scholar
  132. Liévremont D, Seigle-murandi F, Benoit-guyod JL (1998) Removal of PCNB from aqueous solution by a fungal adsorption process. Water Res 32:3601–3606CrossRefGoogle Scholar
  133. Lin JH, Kao WC, Tsai KP, Chen CY (2005) A novel algal toxicity testing technique forassessing the toxicity of both metallic and organic toxicants. Water Res 39:1869–1877CrossRefGoogle Scholar
  134. Long RQ, Yang RT (2001) Carbon nanotubes as superior sorbent for dioxin removal. J Am Chem Soc 123:2058–2059CrossRefGoogle Scholar
  135. Lopes RP, De Urzedo APFM, Nascentes CC, Augusti R (2008) Degradation of the insecticides thiamethoxam and imidacloprid by zero-valent metals exposed to ultrasonic irradiation in water medium: electrospray ionization mass spectrometry monitoring. Rapid Commun Mass Spectrom 22:3472–3480CrossRefGoogle Scholar
  136. Lucas EM, Klabunde KJ (1999) Nanocrystals as destructive absorbants for mimcs of chemical warfare agents. Nanostruct Mater 12:179–182CrossRefGoogle Scholar
  137. Luo F, Yang D, Chen Z, Megharaj M, Naidu R (2016) One-step green synthesis of bimetallic Fe/Pd nanoparticles used to degrade Orange II. J Hazard Mater 303:145–153CrossRefGoogle Scholar
  138. Majumdar K, Singh N (2007) Effect of soil amendments on sorption and mobility of metribuzin in soils. Chemosphere 66:630–637CrossRefGoogle Scholar
  139. Malato S, Blanco J, Vidal A, Richter C (2000) Photocatalysis with solar energy at a pilot plant-scale: an overview. Appl Catal B Environ 37:1–15CrossRefGoogle Scholar
  140. Maldonado MI, Malato S, Pérez-Estrada LA, Gernjak W, Oller I, Doménech X, Peral J (2006) Partial degradation of five pesticides and an industrial pollutant by ozonationin a pilot-plant scale reactor. J Hazard Mater 38:363–369CrossRefGoogle Scholar
  141. Mangalampalli V, Sharma P, Sadanandam G, Ratnamala A, Kumari VD, Subrahmanyam M (2009) An efficient and novel porous nanosilica supported TiO2 photocatalyst for pesticide degradation using solar light. J Hazard Mater 171:626–633CrossRefGoogle Scholar
  142. Martin MMB, Sanchez Perez JA, Sanchez JLG, Montes de Oca L, Casas Lopez JL, Oller I, Rodrıguez SM (2008) Degradation of alachlor and pyrimethanil by combinedphoto-fenton and biological oxidation. J Hazard Mater 155:342–349CrossRefGoogle Scholar
  143. Martinez DB, Galera MM, Vazquez PP, Garcia MDG (2007) Simple and rapid determination of benzoylphenylurea pesticides in river water and vegetables by LC-ESI-MS. Chromatographia 66:533–538CrossRefGoogle Scholar
  144. Masselon C, Krier G, Muller JF, Nelieu S, Einhorn J (1996) Laser desorption Fourier transformation cyclotron resonance mass spectrometry of selected pesticides extracted on C18 silica solid-phase extraction membranes. Analyst 121:1429–1433CrossRefGoogle Scholar
  145. Masuda Y, Kawamura A (2003) Acetylcholinesterase inhibitor (donepezil hydrochloride) reduces heart rate variability. J Cardiovasc Pharmacol 41(Suppl 1):S67–S71Google Scholar
  146. Mathur SC (1999) Future of Indian pesticides industry in next millennium. Pestic Inf 24:9–23Google Scholar
  147. Matsui Y, Knappe DRU, Takagi R (2002) Pesticide adsorption by granular activated carbon adsorbers. 2. Effects of pesticide and natural organic matter characteristics on pesticide breakthrough curves. Environ Sci Technol 36:3432–3434CrossRefGoogle Scholar
  148. Matsumura F (1985) Toxicology of insecticides, 2nd edn. Plenum Press, New YorkCrossRefGoogle Scholar
  149. Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42:5843–5859CrossRefGoogle Scholar
  150. Mehrpour O, Alfred S, Shadnia S, Keyler DE, Soltaninejad K, Chalaki N et al (2008) Hyperglycemia in acute aluminum phosphide poisoning as a potential prognostic factor. Hum Exp Toxicol 27(7):591–595CrossRefGoogle Scholar
  151. Meng Q, Doetschman DC, Rizos AK, Lee M-H, Schulte JT, Spyros A, Kanyi CW (2011) Adsorption of organophosphates into microporous and mesoporous NaX zeolites and subsequent chemistry. Environ Sci Technol 45(7):3000–3005CrossRefGoogle Scholar
  152. Mir NA, Khan A, Muneer M, Vijayalakhsmi S (2013) Photocatalytic degradation of a widely used insecticide Thiamethoxam in aqueous 2 suspension of TiO2: adsorption, kinetics, product analysis and toxicity assessment. Sci Total Environ 458:388–398CrossRefGoogle Scholar
  153. Mishra PC, Patel RK (2008) Removal of endosulfan by sal wood charcoal. J Hazard Mater 152:730–736CrossRefGoogle Scholar
  154. Mitchell MB, Sheinker VN, Cox WW, Gatimu EN, Tesfamichael AB (2004) The room temperature decomposition mechanism of dimethyl methylphosphonate (DMMP) on alumina- supported cerium oxide – participation of nano-sized cerium oxide domains. J Phys Chem B 108:1634–1645CrossRefGoogle Scholar
  155. Mitra D, Varshney L (2013) Remediation of pesticide endosulfan in solution by ionizing radiation, advanced oxidation process and copper nano particle interaction a comparative studies using GC-MS analysis. IOSR-JESTFT 7:8–11CrossRefGoogle Scholar
  156. Moctezumaa E, Leyva E, Palestino G, de Lasa H (2007) Photocatalytic degradation of methyl parathion: Reaction pathways and intermediate reaction products. J Photochem Photobiol A Chem 186:71–84CrossRefGoogle Scholar
  157. Morasch B et al (2010) Occurrence and fate of micropollutants in the Vidy Bay of Lake Geneva, Switzerland. Part II: micropollutant removal between wastewater and raw drinking water. Environ Toxicol Chem 29:1658–1668Google Scholar
  158. Moura FCC, Araujo MH, Costa RCC, Fabris JD, Ardisson JD, Macedo WAA, Lago RM (2005) Efficient use of Fe metal as an electron transfer agent inheterogeneous Fenton system based on Fe0/Fe3O4 composites. Chemosphere 60:1118–1123CrossRefGoogle Scholar
  159. Moura FCC, Oliviera GC, Araujo MH, Ardisson JD, Macedo WAA, Lago RM (2006) Highly reactive species formed by interface reaction between Fe0-ironoxides particles: an efficient electron transfer system for environmental applications. Appl Catal A 307:195–204CrossRefGoogle Scholar
  160. Muccio AD, Fidente P, Barbini DA, Dommarco R, Seccia S, Morrica P (2006) Application of solid-phase extraction and liquid chromatography-mass spectrometry to the determination of neonicotinoid pesticide residues in fruit and vegetables. J Chromatogr A 1108(1):1–6CrossRefGoogle Scholar
  161. Nagami H (2010) Historical perspective of pesticide poisoning in Japan and measures taken by the Japanese Association of Rural Medicine. J Rural Med 5(1):129–133CrossRefGoogle Scholar
  162. Nagata Y, Futamura A, Miyauchi K, Takagi M (1999) Two different types of dehalogenases Lin A and Lin B involved in γ-HCH degradation Sphingomonaspaucimobilis UT26 are localized in the periplasmic space without molecular processing. J Bacteriol 181:5409–5413Google Scholar
  163. Navaratna D, Shu L, Jegatheesan V (2010) Existence, impacts, transport and treatments of herbicides in great barrier reef catchments in Australia. In: Virkutyte JV, Rajender S, Jegatheesan V (eds) Treatment of micropollutants in water and wastewater. IWA Publishing, London, pp 425–457Google Scholar
  164. Navarro A, Tauler R, Lacorte S, Barcelo D (2010) Occurrence and transport of pesticides and alkylphenols in water samples along the Ebro River Basin. J Hydrol 383:18–29CrossRefGoogle Scholar
  165. Nemerow NL, Dasgupta A (1991) Industrial and hazardous waste treatment. Van Nostrand Reinhold, New YorkGoogle Scholar
  166. O’Hannesin SF, Gillham RW (1998) Long-term performance of an in situ ‘iron wall’ for remediation of VOCs. Ground Water 36:164–170CrossRefGoogle Scholar
  167. Ofomaja AE (2008) Kinetic study and sorption mechanism of methylene blue and methyl violet onto mansonia wood sawdust. Chem Eng J 143:85–95CrossRefGoogle Scholar
  168. Ohnoa K, Minamia T, Matsuia Y, Magara Y (2008) Effects of chlorine on organophosphorus pesticides adsorbed on activated carbon: desorption and oxon formation. Water Res 42:1753–1759CrossRefGoogle Scholar
  169. Oncescu T, Stefan MI, Oancea P (2010) Photocatalytic degradation of dichlorvos in aqueous TiO2 suspensions. Environ Sci Pollut Res 17:1158–1166CrossRefGoogle Scholar
  170. Orth WS, Gillham RW (1996) Dechlorination of trichloroethene in aqueous solution using Fe(0). Environ Sci Technol 30:66–71CrossRefGoogle Scholar
  171. Padilla S, Wilson VZ, Bushnell PJ (1994) Studies on the correlation between blood cholinesterase inhibition and ‘target tissue’ inhibition inpesticide-treated rats. Toxicology 92:11–25CrossRefGoogle Scholar
  172. Paknikar KM, Nagpal V, Pethkar AV, Rajwade JM (2005) Degradation of lindane from aqueous solutions using iron sulfide nanoparticles stabilized by biopolymers. Sci Technol Adv Mater 6:370–374CrossRefGoogle Scholar
  173. Papoulias DM, Tillitt DE, Talykina MG, Whyte JJ, Richter CA (2014) Atrazine reduces reproduction in Japanese medaka (Oryziaslatipes). Aquat Toxicol 154:230–239CrossRefGoogle Scholar
  174. Pérez MF, Sánchez MV, Céspedes FF, García SP, Fernández ID (2010) Prevention of chloridazon and metribuzin pollution using lignin-based formulations. Environ Poll 158(5):1412–1419CrossRefGoogle Scholar
  175. Pesticides News No. 49 (2000) Diazinon. The Journal of Pesticide Action Network UK. Pesticides News No. 49, September 2000, p 20. Available at: http://www.pan-uk.org/pestnews/Actives/diazinon.htm. Accessed March 2016
  176. Pillai HPS, Kottekottil J (2016) Nano-phytotechnological remediation of endosulfan using zero valent iron nanoparticles. J Environ Prot 7:734–744CrossRefGoogle Scholar
  177. Pitarch E, Portoles T, Marin JM, Ibanez M, Albarran F, Hernandez F (2010) Analytical strategy based on the use of liquid chromatography and gas chromatography with triplequadrupole and time-of-flight MS analyzers for investigating organic contaminants in wastewater. Anal Bioanal Chem 397:2763–2776CrossRefGoogle Scholar
  178. Rajashekara Murthy HM, Manonmani HK (2007) Aerobic degradation of technical hexachlorocyclohexane by a defined microbial consortium. J Hazard Mater 149:18–25CrossRefGoogle Scholar
  179. Ramacharyulu PVRK, Kumar JP, Prasad GK, Dwivedi K (2014) Photoassisted remediation of toxic chemical warfare agents using titania nanomaterials. JSIR 73:308–312Google Scholar
  180. Ramakrishna K, Philip L (2008) Adsorption and desorption characteristics of lindane, carbofuran and methyl parathion on various Indian soils. J Hazard Mater 160(2–3):559–567CrossRefGoogle Scholar
  181. Ramos-Delgadoa NA, Gracia-Pinilla MA, Maya-Trevinoa L, Hinojosa-Reyesa L, Guzman-Mara JL, Hernandez-Ramirez A (2013) Solar photocatalytic activity of TiO2 modified with WO3 on the degradation of an organophosphorus pesticide. J Hazard Mater 263P:36–44CrossRefGoogle Scholar
  182. Rani M (2012) Studies on decay profiles of quinalphos and thiram pesticides. Ph.D Thesis, Indian Institute of Technology Roorkee, Roorkee, Chapter 1, 5Google Scholar
  183. Rani M, Shanker U (2017a) Degradation of traditional and new emerging pesticides in water by nanomaterials: Recent trends and future recommendations. Int J Environ Sci Technol.  https://doi.org/10.1007/s13762-017-1512-y
  184. Rani M, Shanker U (2017b) Removal of carcinogenic aromatic amines by metal hexacyanoferrates nanocubes synthesized via green process. J Environ Chem Eng 5(6):5298–5311Google Scholar
  185. Rani M, Shanker U, Jassal V (2017a) Recent strategies for removal and degradation of persistent and toxic organochlorine pesticides using nanoparticles: a review. J Environ Manage 190:208–222Google Scholar
  186. Rani M, Shanker U, Chaurasia A (2017b) Catalytic potential of laccase immobilized on transition metal oxides nanomaterials: degradation of alizarin red S dye. J Environ Chem Eng 5(3):2730–2739CrossRefGoogle Scholar
  187. Rehana Z, Malik A, Ahmad M (1995) Mutagenic activity of the ganges water with special reference to pesticide pollution in the river between Kachla to Kannauj (UP), India. Mutat Res 343:137–144CrossRefGoogle Scholar
  188. Rhim JW, Park HM, Ha CS (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38:1629–1652CrossRefGoogle Scholar
  189. Ricart M, Guasch H, Barcelo D, Brix R, Conceicao MH, Geiszinger A, de Alda MJL, Lopez-Doval JC, Munoz I, Postigo C, Romani AM, Villagrasa M, Sabater S (2010) Primary and complex stressors in polluted mediterranean rivers: Pesticide effects on biological communities. J Hydrol 383:52–61CrossRefGoogle Scholar
  190. Robertson P (1996) Semiconductor photocatalysis: an environmentally acceptable alternative production technique and effluent treatment process. J Clean Prod 4:203–212CrossRefGoogle Scholar
  191. Rodriguez E, Barrio RJ, Goicolea A, de Balugera ZG (1999) Determination of diflubenzuron and its main metabolites in forestry matrices by Liquid chromatography with on-line diode-array and electrochemical detection. Anal Chim Acta 384:63–70CrossRefGoogle Scholar
  192. Rodriguez EM, Fernandez G, Alvarez PM, Hernandez R, Beltran FJ (2011) Photocatalytic degradation of organics in water in the presence of iron oxides: effect of pH and light source. Appl Catal B Environ 102:572–583CrossRefGoogle Scholar
  193. Rodriguez-Cruz MS, Andrades MS, Parada AM, Sanchez-Martin MJ (2008) Effect of different wood pretreatments on the sorption-desorption of linuron and metalaxyl by woods. J Agric Food Chem 56:7339–7346CrossRefGoogle Scholar
  194. Rosenbom AE, Kjaer J, Olsen P (2010) Long-term leaching of rimsulfuron degradation products through sandy agricultural soils. Chemosphere 79:830–838CrossRefGoogle Scholar
  195. Roy K, Sarkar CK, Ghosh CK (2015) Photocatalytic activity of biogenic silver nanoparticles synthesized using yeast (Saccharomyces cerevisiae) extract. Appl Nanosci 5:953–959CrossRefGoogle Scholar
  196. Rynkowski J, Farbotko J, Touroude R, Hilaire L (2000) Redox behaviour of ceria-titania mixed oxides. Appl Catal A – Gen 203:335–348CrossRefGoogle Scholar
  197. Saha S, Kulshrestha G (2008) Hydrolysis kinetics of the sulfonylurea herbicide Sulfosulfuron. Int J Environ Anal Chem 88:891–898CrossRefGoogle Scholar
  198. Sahithya K, Das D, Das N (2015) Effective removal of dichlorvos from aqueous solution using biopolymer modified MMT–CuO composites: equilibrium, kinetic and thermodynamic studies. J Mol Liq 211:821–830CrossRefGoogle Scholar
  199. Saifuddin N, Nian CY, Zhan LW, Ning KX (2011) Chitosan-silver nanoparticles composite as pointof-use drinking water filtration system for household to remove pesticides in water. Asian J Biochem 6:142–159CrossRefGoogle Scholar
  200. Sanchez-Martin MJ, Rodriguez-Cruz MS, Andrades MS, Sanchez-Camazano M (2006) Efficiency of different clay minerals modified with a cationic surfactant in the adsorption of pesticides: influence of clay type and pesticide hydrophobicity. Appl Clay Sci 31:216–228CrossRefGoogle Scholar
  201. Sankar R, Manikandan P, Malarvizhi V, Fathima T, Shivashangari KS, Ravikumar V (2014) Spectrochim Acta Mol Biomol Spectrosc 121:746–750CrossRefGoogle Scholar
  202. Sari AA, Tachibana S, Itoh K (2012) Determination of co-metabolism for1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) degradation withenzymes from Trametesversicolor U97. J Biosci Bioeng 114:176–181CrossRefGoogle Scholar
  203. Sarkar B, Venkateswralu N, Rao RN, Bhattacharjee C, Kale V (2007) Treatment of pesticide contaminated surface water for production of potable water by a coagulation–adsorption–nanofiltration approach. Desalination 212:129–140CrossRefGoogle Scholar
  204. Sathish M, Viswanathan B, Viswanath RP (2007) Characterization and photocatalytic activity of N-doped TiO2 prepared by thermal decomposition of Ti–melamine complex. Appl Catal B Environ 74:307–312CrossRefGoogle Scholar
  205. Senthilnanthan M, Ho DP, Vigneswaran S, Ngo HH, Shon HK (2010) Visible light responsive ruthenium-doped titanium dioxide for the removal of metsulfuron-methyl herbcide in aqueous phase. SeparPurif Technol 75:415–419Google Scholar
  206. Senthilnathan J, Philip L (2010) Photocatalytic degradation of lindane under UV and visible light using N-doped TiO2. Chem Eng J 161:83–92CrossRefGoogle Scholar
  207. Shanker U, Jassal V, Rani M, Kaith BS (2016a) Towards green synthesis of nanoparticles: From bio-assisted sources to benign solvents. A review. Int J Environ Anal Chem 96:801–835Google Scholar
  208. Shanker U, Jassal V, Rani M (2016b) Catalytic removal of organic colorants from water using some transition metal oxide nanoparticles synthesized under sunlight RSC Adv. 6:94989–94999Google Scholar
  209. Shanker U, Jassal V, Rani M (2017a) Degradation of hazardous organic dyes in water by nanomaterials. Environ Chem Lett.  https://doi.org/10.1007/s10311-017-0650-2
  210. Shanker U, Jassal V, Rani M (2017b) Green synthesis of iron hexacyanoferrate nanoparticles: Potential candidate for the degradation of toxic PAHs. J Env Chem Eng 5:4108–4120Google Scholar
  211. Shanker U, Jassal V, Rani M (2017c) Degradation of toxic PAHs in water and soil using potassium zinc hexacyanoferrate nanocubes. J. Environ. Manage 204:337–348Google Scholar
  212. Sharma RK, Kumar A, Joseph PE (2008) Removal of atrazine from water by low cost adsorbents derived from agricultural and industrial waste. Bull Environ Contamin Toxi 80:461–464CrossRefGoogle Scholar
  213. Sharma MVP, Sadanandam G, Ratnamala A, Kumari VD, Subrahmanyam M (2009) An efficient and novel porous nanosilica supported TiO2 photocatalyst for pesticide degradation using solar light. J Hazard Mater 171:626–633CrossRefGoogle Scholar
  214. Shet A, Shetty VK (2015) Photocatalytic degradation of phenol using Ag core-TiO2 shell (Ag@TiO2) nanoparticles under UV light irradiation. Environ Sci Pollut Res.  https://doi.org/10.1007/s11356-015-5579-z
  215. Shifu C, Gengyu C (2005) Study on the photocatalytic reductionof dichromate and photocatalytic oxidation of dichlorvos. Chemosphere 60:1308–1315CrossRefGoogle Scholar
  216. Shih Y, Hsu C, Su Y (2011) Reduction of hexachlorobenzene by nanoscalezero-valent iron: kinetics, pH effect, and degradation mechanism. Sep Purif Technol 76:268–274CrossRefGoogle Scholar
  217. Shoiful A, Fujita H, Watanabe I, Honda K (2013) Concentrations of organochlorine pesticides (OCPs) residues in foodstuffs collected from traditional markets in Indonesia. Chemosphere 90:1742–1750CrossRefGoogle Scholar
  218. Shoiful A, Ueda Y, Nugroho R, Honda K (2016) Degradation of organochlorine pesticides (OCPs) in water by iron (Fe)-based materials. J Water Proc Eng 11:110–117CrossRefGoogle Scholar
  219. Si YB, Zhang LG, Takagi K (2005) Application of coupled liquid chromatography massspectrometry in hydrolysis studies of the herbicide ethametsulfuron-methyl. Int J Environ Anal Chem 85:73–88CrossRefGoogle Scholar
  220. Singh SP, Gupta K, Kumar S (2014) Judicious use of pesticides in sustainable crop production and PGR management. National Bureau of Plant Genetic Resources. Pusa Campus, New DelhiGoogle Scholar
  221. Singhal RK, Gangadhar B, Basu H, Manisha V, Naidu GRK, Reddy AVR (2012) Remediation of malathion contaminated soil using zero valent iron nano-particles. Am J Anal Chem 3:76–82CrossRefGoogle Scholar
  222. Stamate M, Lazar G (2007) Application of titanium dioxide photocatalysis to create self-cleaning materials, MOCM 13. Romanian Technical Sciences Academy 3:280–285Google Scholar
  223. Stastny M, Stengl V, Henych J, Tolasz J, Voma PC, Ederer J (2015) Mesoporous manganese oxide for the degradation of organophosphates pesticides. J Mater Sci 51:2634–2642CrossRefGoogle Scholar
  224. Štengl V, Henych J, Janoš P, Skoumal M (2016) Nanostructured metal oxides for stoichiometric degradation of chemical warfare agents. Rev Environ Contam Toxicol 236:239–258Google Scholar
  225. Sud D, Kaur P (2012) Heterogeneous photocatalytic degradation of selected organophosphate pesticides: a review. Crit Rev Environ Sci Technol 42:2365–2407CrossRefGoogle Scholar
  226. Sudaryanto A, Kunisue T, Kajiwara N, Iwata H, Adibroto TA, Hartono P, Tanabe S (2006) Specific accumulation of organochlorines in human breast milk from Indonesia: levels, distribution, accumulation kinetics and infant health risk. Environ Pollut 139:107–117CrossRefGoogle Scholar
  227. Sullivan LJ, Eldridge JM, Knaak JB, Tallant MJ (1972) 5,6-dihydro-5,6-dihydroxycarbaryl glucuronide as a significant metabolite of carbaryl in the rat. J Agric Food Chem 20:980–985CrossRefGoogle Scholar
  228. Talmage SS, Watson AP, Hauschild V, Munro NB, King J (2007) Chemical warfare agent degradation and contamination. Curr Org Chem 11(3):285–298CrossRefGoogle Scholar
  229. Tang WZ, An H (1995) UV/TiO2 photocatalytic oxidation of commercial dyes in aqueous solutions. Chemosphere 31:4157–4170CrossRefGoogle Scholar
  230. Tchobanoglous G, Franklin LB (1991) Wastewater engineering: treatment, disposal and reuse. McGraw Hill Inc, New YorkGoogle Scholar
  231. Teixeira H, Proença P, Alvarenga M, Oliveira M, Marques SP, Vieira DN (2004) Pesticide intoxications in the centre of Portugal: three years analysis. Forensic Sci Int 143:199–204CrossRefGoogle Scholar
  232. Tian H, Li J, Mu Z, Li L, Hao Z (2009) Effect of pH on DDT degradation in aqueous solution using bimetallic Ni/Fe nanoparticles. Sep Purif Technol 66:84–89CrossRefGoogle Scholar
  233. Tien CJ, Lin MC, Chiu WH, Chen CS (2013) Biodegradation of carbamate pesticides by natural river biofilms in different seasons and their effects on biofilm community structure. Environ Pollut 179:95–104CrossRefGoogle Scholar
  234. Tiwari DK, Behari J, Sen P (2008) Application of nanoparticles in waste water treatment. World Appl Sci J 3:417–433Google Scholar
  235. Tomasevic A, Kiss E, Petovic S, Mijin D (2010) Study on the photocatalytic degradation of insecticide methomyl in water. Desalination 262:228–234CrossRefGoogle Scholar
  236. Vanaja M, Paulkumar K, Baburaja M, Rajeshkumar S, Gnanajobitha G, Malarkodi C, Sivakavinesan M, Annadurai G (2014) Degradation of methylene blue using biologically synthesized silver nanoparticles. Bioinorg Chem Appl 2014:742346–742353CrossRefGoogle Scholar
  237. Varanasi P, Fullana A, Sidhu S (2007) Remediation of PCB contaminated soils using iron nano-particles. Chemosphere 66:1031–1038CrossRefGoogle Scholar
  238. Varma R, Varma DR (2005) The Bhopal disaster of 1984, Bulletin of Science, Technology and SocietyGoogle Scholar
  239. Vasilic Z, Drevenkar V, Rumenjak V, Stengl B, Frobe Z (1992) Urinary excretion of diethylphosphorus metabolites in persons poisoned by quinalphos or chlorpyrifos. Arch Environ Contam Toxicol 22:351–357CrossRefGoogle Scholar
  240. Viswanathan PN (1985) Environmental toxicology in India. Biol Membr 11:88–97Google Scholar
  241. Wang C, Zhang WX (1997) Nanoscale iron particles for reductive dechlorination of PCE and PCBs. Environ Sci Technol 31(7): 2154–2156CrossRefGoogle Scholar
  242. Wang Z, Peng P, Huang W (2009) Dechlorination of γ-hexachlorocyclohexane by zero-valent metallic iron. J Hazard Mater 166:992–997CrossRefGoogle Scholar
  243. Wang YS, Chen WC, Lin LC, Yen JH (2010) Dissipation of herbicides chlorsulfuron and imazosulfuron in the soil and the effects on the soil bacterial community. J Environ Sci Health Part B 45:449–455CrossRefGoogle Scholar
  244. Winter M, Hamal D, Yang XX, Kwen H, Jones D, Rajagopalan S, Klabunde KJ (2009) Defining reactivity of solid sorbents: what is the most appropriate metric? Chem Mater 21:2367–2374CrossRefGoogle Scholar
  245. Wolfe DA, Champ MA, Cross FA, Kester DR, Park PK, Swanson RL (1984) Marine pollution research facilities in the People’s Republic of China. Mar Pollut Bull 15:207–212CrossRefGoogle Scholar
  246. World Health Organization (1990) Public health impact of pesticides used in agriculture. 0 edn. WHO, GenevaGoogle Scholar
  247. Wu RJ, Chen CC, Chen MH, Lua CS (2009) Titanium dioxide mediated heterogeneous photocatalytic degradation of terbufos: Parameter study and reaction pathways. J Hazard Mater 162:945–953CrossRefGoogle Scholar
  248. Xu AW, Gau Y, Liu HQ (2002) The preparation, characterization and their photocatalytic activities of rar-earth-doped TiO2 nanoparticles. J Catal 207(2):151–157CrossRefGoogle Scholar
  249. Yamada S, Naito Y, Funakawa M, Nakai S, Hosomi M (2008) Photodegradation fates of cis-chlordane, trans-chlordane, and heptachlor in ethanol. Chemosphere 70:1669–1675CrossRefGoogle Scholar
  250. Yan XM, Shi BY, Lu JJ, Feng CH, Wang DS, Tang HX (2008) Adsorption and desorption of atrazine on carbon nanotubes. J Colloid Interface Sci 321:30–38CrossRefGoogle Scholar
  251. Yang YC, Baker JA, Ward JR (1992) Decontaminationof chemical warfare agents. Chem Rev 92:1729–1743CrossRefGoogle Scholar
  252. Yasmina M, Mourad K, Mohammed SH, Khaoula C (2014) Treatment heterogenous photocatalysis; Factors influencing the photocatalytic degradation by TiO2. Energy Procedia 50:559–566CrossRefGoogle Scholar
  253. Yu B, Zeng J, Gong L, Zhang M, Zhang L, Chen X (2007) Investigation of the photocatalytic degradation of organochlorine pesticides on a nano-TiO2 coated film. Talanta 72:1667–1674CrossRefGoogle Scholar
  254. Yu B, Zeng J, Gong L, Yang XQ, Zhang L, Chen X (2008) Photocatalytic degradation investigation of dicofol. Chin Sci Bull 53: 27–32CrossRefGoogle Scholar
  255. Yu H, Wang X, Sun H, Huo M (2010) Photocatalytic degradation of malathion in aqueous solution using an Au–Pd–TiO2 nanotube film. J Hazard Mater 184:753–758CrossRefGoogle Scholar
  256. Zabar R, Komel T, Fabjan J, Kralj M, Trebse P (2012) Photocatalytic degradation with immobilised tio2 of three selected neonicotinoid insecticides: imidacloprid, thiamethoxam and clothianidin. Chemosphere 89(3):293–301CrossRefGoogle Scholar
  257. Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 53(4):323–332CrossRefGoogle Scholar
  258. Zhang L, Yan F, Wang Y (2006) Photocatalytic degradation of methamidophos by UV irradiation in the presence of nano-TiO2. J Inorg Mater 42:1379–1387CrossRefGoogle Scholar
  259. Zhang WJ, Jiang FB, Ou JF (2011) Global pesticide consumption and pollution: with China as a focus. Proc Int Acad Ecol Environ Sci 1:125–144Google Scholar
  260. Zhenwu T, Huang Q, Yang Y, Zhu X, Haihui F (2013) Organochlorine pesticides in the lower reaches of Yangtze River: occurrence, ecological risk and temporal trends. Ecotoxicol Environ Saf 87:89–97CrossRefGoogle Scholar
  261. Zhou JL, Maskaoui K, Qiu YW, Hong HS, Wang ZD (2001) Polychlorinated biphenyl congeners and organochlorine insecticides in the water column and sediments of Daya Bay, China. Environ Pollut 113:373–384CrossRefGoogle Scholar
  262. Zhou JK, Liu RY, Song G, Zhang MC (2009) Determination of carbamate and benzoylurea insecticides in peach juice drink by floated organic drop microextraction-high performance liquid chromatography. Anal Lett 42:1805–1819CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryDr B R Ambedkar National Institute of TechnologyJalandharIndia

Section editors and affiliations

  • Chaudhery Mustansar Hussain
    • 1
  1. 1.Department of Chemistry and Environmental SciencesNew Jersey Institute of TechnologyNewarkUSA

Personalised recommendations