Advertisement

High-Temperature Environmental Degradation Behavior of Ultrahigh-Temperature Ceramic Composites

Case Examples of Zirconium and Hafnium Diboride
  • R. MitraEmail author
  • M. Mallik
  • Sunil Kashyap
Living reference work entry

Abstract

In recent years, there is a very strong interest for the development of zirconium and hafnium diboride-based ultrahigh-temperature composites (UHTCs) for use in nose cones and leading edges of hypersonic vehicles, which are subjected to high temperatures and ablative environment during reentry into the earth atmosphere. An overview of the literature on high-temperature environmental degradation behavior of zirconium and hafnium diboride-based UHTCs has been presented, with emphasis on their resistance to oxidation under non-isothermal, isothermal, and cyclic conditions, as well as under ablative conditions during reentry at ~2000 °C. It has been observed that using SiC and Si-bearing reinforcements such as Si3N4 and MoSi2 aids in the formation of a borosilicate scale on the surfaces, which is capable of protecting partially or fully against further damage under extreme environments, depending on the temperature. Formation of oxidation products at grain boundaries and interfaces during creep contributes to damage by grain boundary sliding and intergranular cracking. Both nature of oxidation products and mechanisms of their formation leading to degradation are found to vary significantly with the temperature regimes of exposure. On subjecting to ablative exposure at temperatures close to 2000 °C, active oxidation of SiC along with vaporization of B2O3 influences the kinetics and mechanisms of degradation. Formation of ZrO2-rich oxide scale at such temperatures is believed to play the role of an in situ formed thermal barrier coating, which protects the composite underneath from damage. The effects of reinforcements and their volume fractions on oxidation and ablative behavior have been discussed.

Keywords

Zirconium Diboride Hafnium Diboride Composite Oxidation behavior Non-isothermal oxidation Isothermal Oxidation Cyclic oxidation Borosilicate scale Ablation Creep 

References

  1. 1.
    Jackson TA, Eklund DR, Fink AJ (2004) High speed propulsion: performance advantage of advanced materials. J Mater Sci 39:5905–5913CrossRefGoogle Scholar
  2. 2.
    Vanwie DM, Drewary DG Jr, King DE, Hudson CM (2004) The hypersonic environment: required operating conditions and design challenges. J Mater Sci 39:5915–5924CrossRefGoogle Scholar
  3. 3.
    Kolodziej P (1997) Aerothermal performance constraints for hypervelocity small radius unswept leading edges and nose-tips, vol 112204. Ames Research Centre, Moffett Field, California, USA: NASA Technical MemorandumGoogle Scholar
  4. 4.
    Cutler RA (1992) Engineering properties of borides. In: Schneider SJ (ed) Ceramics and glasses, Engineered materials handbook, vol 4. ASM International, Materials Park, pp 787–803Google Scholar
  5. 5.
    Opeka MM, Talmy IG, Wuchina EJ, Zaykoski JA, Causey SJ (1999) Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds. J Eur Ceram Soc 19:2405–2414CrossRefGoogle Scholar
  6. 6.
    Levine SR, Opila EJ, Halbig MC, Kiser JD, Singh M, Salem JA (2002) Evaluation of ultra high temperature ceramics for aeropropulsion use. J Eur Ceram Soc 22:2757–3276CrossRefGoogle Scholar
  7. 7.
    Talmy IG, Zaykoski JA, Opeka MM (2008) High- temperature chemistry and oxidation of ZrB2 ceramics containing SiC, Si3N4, Ta5Si3 and TaSi2. J Am Ceram Soc 91:2250–2257CrossRefGoogle Scholar
  8. 8.
    Sciti D, Brach M, Bellosi A (2005) Long-term oxidation behavior and mechanical strength degradation of a pressurelessly sintered ZrB2-MoSi2 ceramic. Scr Mater 53:1297–1302CrossRefGoogle Scholar
  9. 9.
    Bellosi A, Montevede F (2003) Ultra-refractory ceramics: the use of sintering aids to obtain microstructural control and properties improvement. Key Eng Mater 264–268:787–792Google Scholar
  10. 10.
    Monteverde F, Bellosi A (2005) The resistance to oxidation of an HfB2–SiC composite. J Eur Ceram Soc 25:1025–1031CrossRefGoogle Scholar
  11. 11.
    Meier GH, Pettit FS (1992) The oxidation behavior of intermetallic compounds. Mater Sci Eng A 153:548–560CrossRefGoogle Scholar
  12. 12.
    Kuriakose AK, Margrave JL (1964) The oxidation kinetics of zirconium diboride and zirconium carbide at high temperatures. J Electrochem Soc 111:827–831CrossRefGoogle Scholar
  13. 13.
    Berkowitz-Mattuck JB (1966) High-temperature oxidation III. Zirconium and hafnium Diboride. J Electrochem Soc 113(9):908–994CrossRefGoogle Scholar
  14. 14.
    Tripp WC, Graham HC (1971) Thermogravimetric study of the oxidation of ZrB2 in the temperature range of 800–1500 °C. J Electrochem Soc 118:1195–1199CrossRefGoogle Scholar
  15. 15.
    Fahrenholtz WG (2005) The ZrB2 volatility diagram. J Am Ceram Soc 88(12):3509–3512CrossRefGoogle Scholar
  16. 16.
    Levine SR, Opila EJ, Halbig MC, Kiser JD, Singh M, Salem JA (2002) Evaluation of ultra-high temperature ceramics for aeropropulsion use. J Eur Ceram Soc 22:2757–2767CrossRefGoogle Scholar
  17. 17.
    Monteverde F (2005) The thermal stability in air of hot-pressed diboride matrix composites for uses at ultra-high temperatures. Corr Sci 47:2020–2033CrossRefGoogle Scholar
  18. 18.
    Loehman RE (2004) Ultrahigh-temperature ceramics for hypersonic vehicle applications. Indus Heating Pittsburgh and Troy 71:36–38Google Scholar
  19. 19.
    Fahrenholtz WG, Hilmas GE, Chamberlain AL, Zimmermann JW (2004) Processing and characterization of ZrB2-based ultra-high temperature monolithic and fibrous monolithic ceramics. J Mater Sci 39:5951–5957CrossRefGoogle Scholar
  20. 20.
    Rezaie A, Fahrenholtz WG, Hilmas GE (2007) Effect of hot pressing time and temperature on the microstructure and mechanical properties of ZrB2–SiC. J Mater Sci 42:2735–2744CrossRefGoogle Scholar
  21. 21.
    Chemberlain A, Fahrenholtz W, Hilmas G, Ellerby D (2005) Oxidation of ZrB2-SiC ceramics under atmospheric and re-entry conditions. Refract Appl Trans 1(2):1–8Google Scholar
  22. 22.
    Chase MW Jr (1998) NIST-JANAF thermochemical tables, 4th edn. American Chemical Society and the American Institute of Physics, WoodburyGoogle Scholar
  23. 23.
    Barin I (1995) Therrnochernical data of pure substances, 3rd edn. VCH Publishers, Inc., New YorkCrossRefGoogle Scholar
  24. 24.
    Raj SV (1995) An evaluation of the properties of Cr3Si alloyed with Mo. Mater Sci Eng A 201:229–241CrossRefGoogle Scholar
  25. 25.
    Nesbitt JM, Lowell CE (1993) High temperature oxidation of intermetallics. In: High temperature ordered intermetallic alloys V. MRS Symposium Proceedings, vol 288, pp 107–118Google Scholar
  26. 26.
    Rockett TJ, Foster WR (1965) Phase relations in the system boron oxide-silica. J Am Ceram Soc 48(2):75–80CrossRefGoogle Scholar
  27. 27.
    Monteverde F, Bellosi A (2003) Oxidation of ZrB2-based ceramics in dry air. J Electrochem Soc 150:B552–B559CrossRefGoogle Scholar
  28. 28.
    Mitra R, Upender S, Mallik M, Chakraborty S, Ray KK (2009) Mechanical, thermal, and oxidation behaviour of zirconium diboride based ultra-high temperature ceramic composites. Key Eng Mater 395:55–68CrossRefGoogle Scholar
  29. 29.
    Mallik M, Ray KK, Mitra R (2011) Oxidation behavior of hot pressed ZrB2–SiC and HfB2–SiC composites. J Eur Ceram Soc 31(1–2):199–215CrossRefGoogle Scholar
  30. 30.
    Tripp WC, Davis HH, Graham HC (1973) Effect of an SiC addition on the oxidation of ZrB2. Am Ceram Soc Bull 52:612–616Google Scholar
  31. 31.
    Shimada S, Ishil T (1990) Oxidation kinetics of zirconium carbide at relatively low temperatures. J Am Ceram Soc 73(10):2804–2808CrossRefGoogle Scholar
  32. 32.
    Sciti D, Medri V, Silvestroni L (2010) Oxidation behaviour of HfB2–15 vol.% TaSi2 at low, intermediate and high temperatures. Scr Mater 63:601–604CrossRefGoogle Scholar
  33. 33.
    Monteverde F (2009) The addition of SiC particles into a MoSi2-doped ZrB2 matrix: effects on densification, microstructure and thermo-physical properties. Mater Chem Phy 113:626–633CrossRefGoogle Scholar
  34. 34.
    Guo WM, Zhang GJ (2010) Oxidation resistance and strength retention of ZrB2–SiC ceramics. J Eur Ceram Soc 30:2387–2395CrossRefGoogle Scholar
  35. 35.
    Opila E, Levine S, Lorincz J (2004) Oxidation of ZrB2- and HfB2-based ultra-high temperature ceramics: effect of Ta additions. J Mater Sci 39:5969–5977CrossRefGoogle Scholar
  36. 36.
    Li X, Zhang X, Han J, Hong C, Han W (2008) A technique for ultrahigh temperature oxidation studies of ZrB2-SiC. Mater Let 62(17–18):2848–2850CrossRefGoogle Scholar
  37. 37.
    Carney CM (2009) Oxidation resistance of hafnium diboride–silicon carbide from 1400 to 2000 °C. J Mater Sci 44:5673–5681CrossRefGoogle Scholar
  38. 38.
    Sciti D, Balbo A, Bellosi A (2009) Oxidation behaviour of a pressureless sintered HfB2–MoSi2 composite. J Eur Ceram Soc 29(9):1809–1815CrossRefGoogle Scholar
  39. 39.
    Monteverde F (2005) Progress in the fabrication of ultra-high-temperature ceramics, “in situ” synthesis, microstructure and properties of a reactive hot-pressed HfB2–SiC composite. Comp Sci Tech 65:1869–1879CrossRefGoogle Scholar
  40. 40.
    Han J, Hu P, Zhang X, Meng S (2007) Oxidation behavior of zirconium diboride–silicon carbide at 1800 °C. Scr Mater 57:825–828CrossRefGoogle Scholar
  41. 41.
    Han W, Hu P, Zhang X, Han J, Meng S (2008) High-temperature oxidation at 1900 °C of ZrB2–xSiC ultrahigh-temperature ceramic composites. J Am Ceram Soc 91(10):3328–3334CrossRefGoogle Scholar
  42. 42.
    Han J, Hu P, Zhang X, Meng S, Han W (2008b) Oxidation-resistant ZrB2–SiC composites at 2200 °C. Comp Sci Tech 68:799–806CrossRefGoogle Scholar
  43. 43.
    Hu P, Zhang X, Han J, Luo DS (2010) Effect of various additives on the oxidation behavior of ZrB2–based ultra-high-temperature ceramics at 1800 °C. J Am Ceram Soc 93(2):345–349CrossRefGoogle Scholar
  44. 44.
    Peng F, Speyer RF (2008) Oxidation resistance of fully dense ZrB2 with SiC, TaB2, and TaSi2 additives. J Am Ceram Soc 91(5):1489–1494CrossRefGoogle Scholar
  45. 45.
    Zhang SC, Hilmas GE, Fahrenholtz WG (2008) Improved oxidation resistance of zirconium diboride by tungsten carbide additions. J Am Ceram Soc 91(11):3530–3535CrossRefGoogle Scholar
  46. 46.
    Mallik M, Mitra R, Ray KK (2009) Oxidation behavior of three ZrB2 based ultra-high temperature ceramic composites. In: Sampe Europe 30th international jubilee conference and forum session, vol 7B, pp 467–474Google Scholar
  47. 47.
    Mallik M, Ray KK, Mitra R (2017) Effect of Si3N4 addition on oxidation resistance of ZrB2-SiC composites. Coatings 7:92.  https://doi.org/10.3390/coatings7070092CrossRefGoogle Scholar
  48. 48.
    Opeka MM, Talmy IG, Zaykoski JA (2004) Oxidation-based materials selection for 2000 °C + hypersonic aerosurfaces: theoretical considerations and historical experience. J Mater Sci 39:5887–5904CrossRefGoogle Scholar
  49. 49.
    Mallik M (2014) Structure-property relations in zirconium and hafnium diboride based ultra high temperature ceramic composites. Ph.D dissertation, Indian Institute of Technology Kharagpur, Kharagpur 721302, West BengalGoogle Scholar
  50. 50.
    Talmy IG, Zaykoski JA, Opeka MM, Dallek S (2001) Oxidation of ZrB2 ceramics modified with SiC and group IV-VI transition metal borides. In: McNallan M, Opila E (eds) High temperature corrosion and materials chemistry III. The Electrochemical Society, Inc., Pennington, pp 144–158Google Scholar
  51. 51.
    Parthasarathy TA, Rapp RA, Opeka M, Kerans RJ (2009) Effects of phase change and oxygen permeability in oxide scales on oxidation kinetics of ZrB2 and HfB2. J Am Ceram Soc 92(5):1079–1086CrossRefGoogle Scholar
  52. 52.
    Krishnamurty R, Srolovitz DJ (2003) Stress distributions in growing oxide films. Acta Mater 51(8):2171–2190CrossRefGoogle Scholar
  53. 53.
    Chatterjee UK, Bose SK, Roy SK (2001) Environmental degradation of metals. Marcel Dakker Inc., New YorkCrossRefGoogle Scholar
  54. 54.
    Mallik M, Ray KK, Mitra R (2014) Effect of Si3N4 addition on compressive creep behavior of hot pressed ZrB2-SiC composites. J Am Ceram Soc 97(9):2957–2964CrossRefGoogle Scholar
  55. 55.
    Kashyap SK, Mitra R (2019) Effect of LaB6 additions on densification, microstructure, and creep with oxide scale formation in ZrB2-SiC composites sintered by spark plasma sintering. J Eur Ceram Soc 39:2782–2793CrossRefGoogle Scholar
  56. 56.
    Gasch M, Ellerby D, Irby E, Beckman S, Gusman M, Johson S (2004) Processing, properties and arc jet oxidation of hafnium diboride/silicon carbide ultra-high temperature ceramics. J Mater Sci 39(19):5925–5937CrossRefGoogle Scholar
  57. 57.
    Savino R, Fumo MDS, Silvestroni L, Sciti D (2008) Arc-jet testing on HfB2 and HfC-based ultra-high temperature ceramic materials. J Eur Ceram Soc 28:1899–1907CrossRefGoogle Scholar
  58. 58.
    Bull J, White MJ, Kaufman L (1998) Ablation resistant zirconium and hafnium ceramics. US Patent No 5 750 450Google Scholar
  59. 59.
    Zhang X, Hu P, Han J, Meng S (2008) Ablation behavior of ZrB2–SiC ultra-high temperature ceramics under simulated atmospheric re-entry conditions. Comp Sci Tech 68:1718–1726CrossRefGoogle Scholar
  60. 60.
    Wang C, Wang H, Huang Y, Fang D (2007) Preparation and flame ablation/oxidation behavior of ZrB2/SiC ultra-high temperature ceramic composites. Key Eng Mater 351:142–146CrossRefGoogle Scholar
  61. 61.
    Cheng Z, Zhou C, Tian T, Sun C, Shi Z, Fan J (2008) Pressureless sintering of ultra-high temperature ZrB2–SiC ceramics. Key Eng Mater 368-372:1746–1749CrossRefGoogle Scholar
  62. 62.
    Li G, Han W, Zhang X, Han J, Meng S (2009) Ablation resistance of ZrB2–SiC–AlN ceramic composites. J Alloys Comp 479:299–302CrossRefGoogle Scholar
  63. 63.
    Weng L, Zhang X, Han W, Han J (2009) Fabrication and evaluation on thermal stability of hafnium diboride matrix composite at severe oxidation condition. Int J Ref Met Hard Mater 27:711–717CrossRefGoogle Scholar
  64. 64.
    Wu H, Zhang W (2009) Mechanical properties and ablation behavior of machinable ZrB2-SiC-BN ceramics. Adv Mater Res 79-82:2011–2014CrossRefGoogle Scholar
  65. 65.
    Zhou S, Li W, Hu P, Hong C, Weng L (2009) Ablation behavior of ZrB2–SiC–ZrO2 ceramic composites by means of the oxyacetylene torch. Corr Sci 51:2071–2079CrossRefGoogle Scholar
  66. 66.
    Zhou C, Wang Y, Cheng Z, Wang C, Sun JC, Feng B (2010) Ablation resistance of pressureless sintered ZrB2-based ceramics. Adv Mater Res 105-106:199–202CrossRefGoogle Scholar
  67. 67.
    Mallik M, Kailath AJ, Ray KK, Mitra R (2017) Effect of SiC content on electrical, thermal, and ablative properties of pressureless sintered ZrB2-based ultrahigh temperature ceramic composites. J Eur Ceram Soc 37(2):559–572CrossRefGoogle Scholar
  68. 68.
    Rezaie A, Fahrenholtz WG, Hilmas GE (2007) Evolution of structure during the oxidation of zirconium diboride-silicon carbide in air up to 1500 °C. J Eur Ceram Soc 27:2495–2501CrossRefGoogle Scholar
  69. 69.
    Suzuki M, Sodeoka S, Inoue T (2005) Structure control of plasma sprayed zircon coating by substrate preheating and post heat treatment. Mater Trans JIM 46:669–674CrossRefGoogle Scholar
  70. 70.
    Nguyen QGN, Opila EJ, Robinson RC (2004) Oxidation of ultrahigh temperature ceramics in water vapor. J Electrochem Soc 151(8):B558–B562CrossRefGoogle Scholar
  71. 71.
    Guérineau V, Julian-Jankowiak A (2018) Oxidation mechanisms under water vapour conditions of ZrB2-SiC and HfB2-SiC based materials up to 2400 °C. J Eur Ceram Soc 38:421–432CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringIndian Institute of Technology KharagpurKharagpurIndia
  2. 2.Department of Metallurgical & Materials EngineeringNational Institute of Technology DurgapurDurgapurIndia

Section editors and affiliations

  • Rahul Mitra
    • 1
  1. 1.Dept. of Metallurgical and Materials EngineeringIndian Institute of TechnologyKharagpurIndia

Personalised recommendations