Advertisement

SiC-Based Composites Through Liquid Infiltration Routes

  • Suresh KumarEmail author
  • Ashok Ranjan
  • L. M. Manocha
  • N. Eswara Prasad
Living reference work entry

Abstract

Carbon fiber-reinforced silicon carbide matrix composites (called C/SiC or C/C-SiC) represent a relatively new class of structural materials. These composites have emerged as one of the most promising materials for high-temperature applications in defense and aerospace sectors. They are fabricated via chemical vapor infiltration (CVI), polymer impregnation and pyrolysis (PIP), and liquid silicon infiltration (LSI) processing routes. Several new manufacturing processes have been developed during the last few years such as short fiber reinforcements’ based and cheap ceramic precursor polymer based. These composites possess high mass-specific properties, structural and dimensional stability at high temperature, low coefficient of thermal expansion, high thermal conductivity, and reasonable oxidation resistance. These properties have increased the importance of the C/SiC composites and thus make them as most preferred materials for the aerospace, defense, and civil/industrial applications like thrust vectoring control vanes, nozzles, brake disks and pads, clutches, furnace charging devices, etc. This chapter presents the processing and characterization of the C/SiC composite fabricated by liquid infiltration routes, viz., PIP and LSI. Typical properties of the C/SiC composites like mechanical, thermal, and ablative are presented. Few established and potential application of these composites are discussed briefly.

Keywords

Ceramics Composites C/SiC composites PIP LSI Mechanical properties 

References

  1. 1.
    Beyer S, Schmidth S, Maidi F et al (2006) Advanced composite materials for current and future propulsion and industrial applications. Adv Sci Technol 50:178–171CrossRefGoogle Scholar
  2. 2.
    Heidenreich B (2015) C/SiC and C/C-SiC composites, ceramic matrix composites: materials, modeling and technology. In: Bansal NP, Lamon J (eds) Ceramic Matrix Composites: Materials, Modeling and Technology, 1st edn. The American Ceramic Society, Wiley, p 147–216Google Scholar
  3. 3.
    Kumar S, Shekar KC, Jana B, Manocha LM, Eswara Prasad N (2017) C/C and C/SiC composites for aerospace applications. In: Prasad N, Wanhill R (eds) Aerospace materials and material technologies. Indian Institute of Metals Series. Springer, Singapore, pp 343–369CrossRefGoogle Scholar
  4. 4.
    Kumar S, Kumar A, Ramesh Babu M, Raghvendra Rao M (2015) Fabrication and ablation studies of 4D C/SiC composite nozzle under liquid propulsion. Int J Appl Ceram Tech 12(S3):E176–E190CrossRefGoogle Scholar
  5. 5.
    Kumar S, Kumar A, Sampath K, Bhanu Prasad VV, Chaudhary JC, Gupta AK, Rohini Devi G (2011) Fabrication and erosion studies of C–SiC composite jet vanes in solid rocket motor exhaust. J Eur Ceram Soc 31(13):2425–2431CrossRefGoogle Scholar
  6. 6.
    Weiß R (2001) Carbon fibre reinforced CMCs: manufacture, properties, oxidation protection. In: Krenkel W, Naslain R, Schneider H (eds) High temperature ceramic matrix composites. Wiley-VCH, Weinheim, pp 440–456Google Scholar
  7. 7.
    Meinhardt J, Woyke T, Raether F, Kienzle A (2006) Measurement and simulation of the oxidation of carbon fibers and C/SiC ceramic. Adv Sci Technol 45:1489–1494CrossRefGoogle Scholar
  8. 8.
    Naslain R (2004) Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Compos Sci Technol 64:155–170CrossRefGoogle Scholar
  9. 9.
    Berdoyes M (2006) Snecma propulsion solide advanced technology SRM nozzles. In: History and future, AIAA 2006–4596. California.  https://doi.org/10.2514/6.2006-4596
  10. 10.
    Kumar S, Misra MK, Mondal S, Gupta RK, Mishra R, Ranjan A, Saxena AK (2015) Polycarbosilane based UD C/SiC composites: effect of in-situ grown SiC nano-pins on mechanical properties. Ceram Int 41(10):12849–12860CrossRefGoogle Scholar
  11. 11.
    Kumar S, Bablu M, Ranjan A, Manocha LM, Eswara PN (2017) Fabrication of 2D C/C-SiC composites using PIP based hybrid process and investigation of mechanical properties degradation under cyclic heating. Ceram Int 43(3):3414–3423CrossRefGoogle Scholar
  12. 12.
    Kumar S, Bablu M, Janghela S, Misra MK, Mishra R, Ranjan A, Eswara PN (2018) Factorial design, processing, characterization and microstructure analysis of PIP-based C/SiC composites. Bull Mater Sci 41(17).  https://doi.org/10.1007/s12034-017-1535-5
  13. 13.
    Kumar S, Bablu M, Misra MK, Ranjan A, Eswara PN (2017) Fabrication and characterization of PIP based C/SiC composites having improved mechanical properties using high modulus M40J carbon fibre as reinforcement. Ceram Int 43(11):8153–8162CrossRefGoogle Scholar
  14. 14.
    Savage G (1993) Carbon-carbon composites. SPRINGER-SCIENCE+BUSINESS MEDIA, B.V.; pp 1–385. Springer Netherlands.  https://doi.org/10.1007/978-94-011-1586-5CrossRefGoogle Scholar
  15. 15.
    Kumar S, Kumar A, Rohini DG, Gupta AK (2011) Preparation of 3D orthogonal woven C-SiC composite and its characterization for thermo-mechanical properties. Mater Sci Eng A 528:6210–6216CrossRefGoogle Scholar
  16. 16.
    Kumar S, Kumar A, Shukla A, Rohini DG, Gupta AK (2009) Investigation of thermal expansion of 3D-stitched C–SiC composites. J Eur Ceram Soc 29(13):2849–2855CrossRefGoogle Scholar
  17. 17.
    Pradere C, Sauder C (2008) Transverse and longitudinal coefficient of thermal expansion of carbon fibers at high temperatures (300–2500 K). Carbon 46:1874–1884CrossRefGoogle Scholar
  18. 18.
    Kumar S, Kumar A, Shukla A, Rohini DG, Gupta AK (2009) Thermal-diffusivity measurement of 3D-stitched C–SiC composites. J Eur Ceram Soc 29(3):489–495CrossRefGoogle Scholar
  19. 19.
    Kamiya R, Cheeseman BA, Popper P et al (2000) Some recent advances in the fabrication and design of three dimensional textile preforms: a review. Compos Sci Technol 60:33–47CrossRefGoogle Scholar
  20. 20.
    Mouritz AP, Bannister MK, Falzon PJ et al (1999) Review of applications for advanced three dimensional fiber textile composites. Composites A 30:1445–1461CrossRefGoogle Scholar
  21. 21.
    Kadir B et al (2012) Multiaxis three-dimensional weaving for composites: a review. Text Res J 82(7):725–743Google Scholar
  22. 22.
    Lee JY, Kang TJ (2005) Thermal conductivity of needle punched preforms made of carbon and OxiPAN fibres. Polym Polym Compos 13(1):83–92Google Scholar
  23. 23.
    Evans MJ, Williams KA, Fisher R (1997) Manufacture of carbon fibre preform. US Patent 5599603, 1997Google Scholar
  24. 24.
    Evans MJ, Williams KA, Fisher R (1996) Ultra-high performance carbon composites. US Patent 5503893, 1996Google Scholar
  25. 25.
    Naslain R (1998) The design of the fibre-matrix interfacial zone in ceramic matrix composites. Compos 29A:1145–1155CrossRefGoogle Scholar
  26. 26.
    Kerans RJ, Hay RS, Parthasarathy TA, Cinibulk MK (2002) Interface design for oxidation-resistant ceramic composites. J Am Ceram Soc 85(11):2599–2632CrossRefGoogle Scholar
  27. 27.
    Naslain R, Dugne O, Guette A, Se’vely J, Robin-Brosse C, Rocher JP, Cotteret J (1991) Boron nitride interphase in ceramic matrix composites. J Am Ceram Soc 74:2482–2488CrossRefGoogle Scholar
  28. 28.
    Hutchinson JW, Jensen HM (1990) Models of fiber debonding and pullout in brittle composites with friction. Mech Mater, Elsevier 9:139–163CrossRefGoogle Scholar
  29. 29.
    Evans AG, Zok FW, Mackin TJ (1995) High temperature mechanical behavior of ceramic composites. Butterworth-Heinemann, Boston, pp 3–84CrossRefGoogle Scholar
  30. 30.
    Motz G, Schmidt S, Beyer S (2008) The PIP-process: precursor properties and applications in ceramic matrix composites, In: Krenkel W (ed) Ceramic Matrix Composites: Fiber Reinforced Ceramics and their Applications. Wiley-VCH Verlag, Weinheim, p 357–359Google Scholar
  31. 31.
    Whitmarsh CW, Interrante LV (1992) Carbosilane polymer precursors to silicon carbide ceramics. US Patent 5153295, 1992Google Scholar
  32. 32.
    Jian K, Chen ZH, Ma QS, Zheng WW (2005) Effects of pyrolysis processes on the microstructures and mechanical properties of Cf/SiC composites using polycarbosilane. Mater Sci Eng A 390:154–158CrossRefGoogle Scholar
  33. 33.
    Ly H, Taylor R, Day RJ, Heatley F (2001) Conversion of Polycarbosilane (PCS) to SiC-Based Ceramic Part 1. Characterisation of PCS and Curing Products. J Mater Sci 36:4037–4043.  https://doi.org/10.1023/A:1017942826657CrossRefGoogle Scholar
  34. 34.
    Sherwood WJ (2003) CMCs come down to earth. Am Ceram Soc Bull 82(8):25–27Google Scholar
  35. 35.
    Rak ZS (2001) A process for Cf/SiC composites using liquid polymer infiltration. J Am Ceram Soc 84:2235–2239CrossRefGoogle Scholar
  36. 36.
    Mishra MK, Barua SK, Kumar S (2018) Development of PIP based C/SiC UD composites. DRDO-DMSR-IPH-TCR-545-2018Google Scholar
  37. 37.
    Bablu SK (2018) Development of 2D C/SiC composites through PIP route. DRDO-DMSR-IPH-TCR-546-2018Google Scholar
  38. 38.
    Njoya D, Hajjaji M (2015) Quantification of the effects of manufacturing factors on ceramic properties using full factorial design. J Asian Ceramic Soc 3(1):32–37CrossRefGoogle Scholar
  39. 39.
    Ma C, Guo L, Li H, Tan W, Duan T, Liu N, Zhang M (2016) Effects of high-temperature annealing on the microstructures and mechanical properties of C/C–ZrC–SiC composites prepared by precursor infiltration and pyrolysis. Mater Des 90:373–378CrossRefGoogle Scholar
  40. 40.
    Zhao S, Zhou X, Yu J (2014) Effect of heat treatment on the mechanical properties of PIP–SiC/SiC composites fabricated with a consolidation process. Ceram Int 40(3):3879–3885CrossRefGoogle Scholar
  41. 41.
    Sreeja R, Swaminathan B, Painuly A, Sebastian TV, Packirisamy S (2010) Allylhydridopolycarbosilane (AHPCS) as matrix resin for C/SiC ceramic matrix composites. Mater Sci Eng B 168(1–3):204–220CrossRefGoogle Scholar
  42. 42.
    Lamouroux F, Bertrand S, Pailler R, Naslain R, Cataldi M (1999) Oxidation-resistant carbon-fiber-reinforced ceramic-matrix composites. Compos Sci Technol 59(7):1073–1085CrossRefGoogle Scholar
  43. 43.
    Langlais F (2000) In: Kelly A, Zweben C, Warren R (Eds) Comprehensive composite materials, carbon/carbon. Cement and ceramic matrix composites, vol 4. Elsevier, Amsterdam, p 611Google Scholar
  44. 44.
    Chawla KK (2003) Ceramic matrix composites, 2nd edn. Kluwer Academic Publishers, BostonCrossRefGoogle Scholar
  45. 45.
    Kumar S, Chandra R, Kumar A, Eswara PN, Manocha LM (2015) C/SIC composites for propulsion application. Compos Nanostruct 7:225–230Google Scholar
  46. 46.
    Kumar S, Kumar A, Rohini DG, Shukla A, Gupta AK (2009) Capillary infiltration studies of liquids into 3D-stitched C–C preforms: part B: kinetics of silicon infiltration. J Eur Ceram Soc 29(12):2651–2657CrossRefGoogle Scholar
  47. 47.
    Kumar S, Kumari S, Kumar A, Shukla A, Rohini DG, Gupta AK (2011) Investigation of effect of siliconization conditions on mechanical properties of 3D-stitched C–SiC composites. Mater Sci Eng A 528(3):1016–1022CrossRefGoogle Scholar
  48. 48.
    Srikanth I, Daniel A, Kumar S, Padmavathi N, Singh V, Ghosal P, Kumar A, Rohini DG (2010) Nano silica modified carbon–phenolic composites for enhanced ablation resistance. Scr Mater 63(2):200–203CrossRefGoogle Scholar
  49. 49.
    Krenkel W, Heidenreich B, Renz R (2002) C/C-SiC composites for advanced friction systems. Adv Eng Mater 4(7):427–436CrossRefGoogle Scholar
  50. 50.
    Krenkel W (2004) Carbon fiber reinforced CMC for high performance structures. Int J Appl Ceram Tech 1(2):188–200CrossRefGoogle Scholar
  51. 51.
    Handbook of Ceramic Composites (2005) In: Bansal NP (Eds) (2005)Google Scholar
  52. 52.
    Kumar S, Kushwaha J, Mondal S, Kumar A, Jain RK, Rohini DG (2013) Fabrication and ablation testing of 4D C/C composite at 10 MW/m2 heat flux under a plasma arc heater. Mater Sci Eng A 566:102–111CrossRefGoogle Scholar
  53. 53.
    Chen B, Litong Z, Laifei C, Xingang L (2009) Ablation behavior of a three-dimensional carbon/silicon carbide composite nozzle in an ethanol/oxygen combustion gas generator. Int J Appl Ceram Technol 6(2):182–189CrossRefGoogle Scholar
  54. 54.
    Fang D, Chen Z, Song Y, Sun Z (2009) Morphology and microstructure of 2.5 dimension C/SiC composites ablated by oxyacetylene torch. Ceram Int 35(3):1249–1253CrossRefGoogle Scholar
  55. 55.
    Opila EJ, Nguyen QGN (1998) Oxidation of chemically-vapor-deposited silicon carbide in carbon dioxide. J Am Ceram Soc 81(7):1949–1952CrossRefGoogle Scholar
  56. 56.
    Zhi-Qiao Y, Feng C, Xiang X, Peng X, Hong-Bo Z, Bai-Yun H (2010) Oxidation behavior of CVI, MSI and CVI+MSI C/SiC composites. Trans Nonferrous Met Soc China 20(4):590–596CrossRefGoogle Scholar
  57. 57.
    Geisler RL (1978) The relationship between solid-propellant formulation variables and nozzle recession rates. JANNAF Rocket Nozzle Technology Subcommittee Meeting, Lancaster, July, 1978Google Scholar
  58. 58.
    Swope LW, Berard MF (1964) Effects of solid-rocket propellant formulations and exhaust-gas chemistries on the erosion of graphite nozzles. In: AIAA solid propellant rocket conference, Palo AltoGoogle Scholar
  59. 59.
    Acharya R, Kuo KK (2006) Effect of chamber pressure & propellant composition on erosion rate of graphite rocket nozzle. In: Proceedings of 44th, AIAA aerospace sciences meeting and exhibit, Reno, NV, paper no. AIAA 2006–363, American Institute of Aeronautics and Astronautics, Reston, 1–15, 2006Google Scholar
  60. 60.
    Chen B, Zhang LT, Cheng LF, Luan XG (2009) Erosion resistance of needled carbon/carbon composites exposed to solid rocket motor plumes. Carbon 47(6):1474–1479CrossRefGoogle Scholar
  61. 61.
    Kuo KK, Keswani ST (1985) A comprehensive theoretical model for carbon–carbon composite nozzle recession. Compos Sci Technol 42(3–4):145–164Google Scholar
  62. 62.
    Maisonneuve Y (1997) Ablation of solid–fuel booster nozzle materials. Aerosp Sci Technol 1(4):277–289CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Suresh Kumar
    • 1
    Email author
  • Ashok Ranjan
    • 1
  • L. M. Manocha
    • 1
    • 2
  • N. Eswara Prasad
    • 1
  1. 1.Defence Materials and Stores Research and Development EstablishmentDRDOKanpurIndia
  2. 2.World Academy of CeramicsVallabh VidyanagarIndia

Section editors and affiliations

  • LM Manocha
    • 1
  1. 1.World Academy of CeramicsVallabh VidyanagarIndia

Personalised recommendations