Advertisement

Pheochromocytomas, Paragangliomas, and Pituitary Adenomas (3PAs) and Succinate Dehydrogenase Defects

  • Andrew P. Demidowich
  • Constantine A. StratakisEmail author
Living reference work entry
Part of the Endocrinology book series (ENDOCR)

Abstract

Mutations in the succinate dehydrogenase (SDH) complex (SDHx) lead to succinate accumulation, pseudohypoxic pathway upregulation, reactive oxygen species production, and ultimately oncogenesis. Although germline SDHx mutations are most frequently associated with pheochromocytoma and/or paraganglioma (PCC/PGL) formation, the tumorigenic potential of other tissues has become more readily appreciated. Recently the association of PCC/PGL and pituitary adenomas (the 3P association or 3PAs) was described in individuals with germline SDHx defects. Although rare, these adenomas seem to be more aggressive (commonly measuring greater than 1 cm in size), biochemically functional, and have unique features on histology. SDHx mutations are also associated with renal cell carcinoma, gastrointestinal stromal tumors, and papillary thyroid carcinoma, and thus 3PAs may be part of a multiple neoplasia syndrome due to SDH deficiency. In this chapter we review SDHx mutations and their associations with PCC/PGL, pituitary adenoma, and other tumors.

Keywords

Succinate dehydrogenase SDHx Pheochromocytoma Paraganglioma Pituitary adenoma Multiple endocrine neoplasia 

Notes

Acknowledgments

This work is funded through the intramural program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD).

References

  1. Alrezk R, Hannah-Shmouni F, Stratakis CA. MEN4 and CDKN1B mutations: the latest of the MEN syndromes. Endocr Relat Cancer. 2017;24(10):T195–208.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Andrews KA, Ascher DB, Pires DEV, Barnes DR, Vialard L, Casey RT, et al. Tumour risks and genotype–phenotype correlations associated with germline variants in succinate dehydrogenase subunit genes SDHB, SDHC and SDHD. J Med Genet. 2018;55(6):384–94.Google Scholar
  3. Bayley JP, Kunst HP, Cascon A, Sampietro ML, Gaal J, Korpershoek E, et al. SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma. Lancet Oncol. 2010;11(4):366–72.PubMedCrossRefGoogle Scholar
  4. Benn DE, Gimenez-Roqueplo AP, Reilly JR, Bertherat J, Burgess J, Byth K, et al. Clinical presentation and penetrance of pheochromocytoma/paraganglioma syndromes. J Clin Endocrinol Metab. 2006;91(3):827–36.PubMedCrossRefGoogle Scholar
  5. Bezawork-Geleta A, Rohlena J, Dong L, Pacak K, Neuzil J. Mitochondrial complex II: at the crossroads. Trends Biochem Sci. 2017;42(4):312–25.PubMedCrossRefGoogle Scholar
  6. Boikos SA, Stratakis CA. Pituitary pathology in patients with Carney Complex: growth-hormone producing hyperplasia or tumors and their association with other abnormalities. Pituitary. 2006;9(3):203–9.PubMedCrossRefGoogle Scholar
  7. Boikos SA, Xekouki P, Fumagalli E, Faucz FR, Raygada M, Szarek E, et al. Carney triad can be (rarely) associated with germline succinate dehydrogenase defects. Eur J Hum Genet. 2016;24(4):569–73.PubMedCrossRefGoogle Scholar
  8. Bravo EL, Gifford RW Jr, concepts C. Pheochromocytoma: diagnosis, localization and management. N Engl J Med. 1984;311(20):1298–303.PubMedCrossRefGoogle Scholar
  9. Castro-Vega LJ, Lepoutre-Lussey C, Gimenez-Roqueplo AP, Favier J. Rethinking pheochromocytomas and paragangliomas from a genomic perspective. Oncogene. 2016;35(9):1080–9.PubMedCrossRefGoogle Scholar
  10. Curras-Freixes M, Pineiro-Yanez E, Montero-Conde C, Apellaniz-Ruiz M, Calsina B, Mancikova V, et al. PheoSeq: a targeted next-generation sequencing assay for pheochromocytoma and paraganglioma diagnostics. J Mol Diagn. 2017;19(4):575–88.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Dahia PL. Pheochromocytoma and paraganglioma pathogenesis: learning from genetic heterogeneity. Nat Rev Cancer. 2014;14(2):108–19.PubMedCrossRefGoogle Scholar
  12. Daly AF, Castermans E, Oudijk L, Guitelman MA, Beckers P, Potorac I, et al. Pheochromocytomas and pituitary adenomas in three patients with MAX exon deletions. Endocr Relat Cancer. 2018;25(5):L37–42.PubMedCrossRefGoogle Scholar
  13. Denes J, Swords F, Rattenberry E, Stals K, Owens M, Cranston T, et al. Heterogeneous genetic background of the association of pheochromocytoma/paraganglioma and pituitary adenoma: results from a large patient cohort. J Clin Endocrinol Metab. 2015;100(3):E531–41.PubMedCrossRefGoogle Scholar
  14. Dwight T, Mann K, Benn DE, Robinson BG, McKelvie P, Gill AJ, et al. Familial SDHA mutation associated with pituitary adenoma and pheochromocytoma/paraganglioma. J Clin Endocrinol Metab. 2013;98(6):E1103–8.PubMedCrossRefGoogle Scholar
  15. Ezzat S, Asa SL, Couldwell WT, Barr CE, Dodge WE, Vance ML, et al. The prevalence of pituitary adenomas: a systematic review. Cancer. 2004;101(3):613–9.PubMedCrossRefGoogle Scholar
  16. Flynn A, Dwight T, Harris J, Benn D, Zhou L, Hogg A, et al. Pheo-type: a diagnostic gene-expression assay for the classification of pheochromocytoma and paraganglioma. J Clin Endocrinol Metab. 2016;101(3):1034–43.PubMedCrossRefGoogle Scholar
  17. Fritz A, Walch A, Piotrowska K, Rosemann M, Schaffer E, Weber K, et al. Recessive transmission of a multiple endocrine neoplasia syndrome in the rat. Cancer Res. 2002;62(11):3048–51.PubMedGoogle Scholar
  18. Gaal J, Stratakis CA, Carney JA, Ball ER, Korpershoek E, Lodish MB, et al. SDHB immunohistochemistry: a useful tool in the diagnosis of Carney–Stratakis and Carney triad gastrointestinal stromal tumors. Mod Pathol. 2011;24(1):147–51.PubMedCrossRefGoogle Scholar
  19. Gaston-Massuet C, Andoniadou CL, Signore M, Jayakody SA, Charolidi N, Kyeyune R, et al. Increased Wingless (Wnt) signaling in pituitary progenitor/stem cells gives rise to pituitary tumors in mice and humans. Proc Natl Acad Sci U S A. 2011;108(28):11482–7.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Gill AJ, Chou A, Vilain R, Clarkson A, Lui M, Jin R, et al. Immunohistochemistry for SDHB divides gastrointestinal stromal tumors (GISTs) into 2 distinct types. Am J Surg Pathol. 2010;34(5):636–44.PubMedGoogle Scholar
  21. Gill AJ, Hes O, Papathomas T, Sedivcova M, Tan PH, Agaimy A, et al. Succinate dehydrogenase (SDH)-deficient renal carcinoma: a morphologically distinct entity: a clinicopathologic series of 36 tumors from 27 patients. Am J Surg Pathol. 2014;38(12):1588–602.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Haller F, Moskalev EA, Faucz FR, Barthelmess S, Wiemann S, Bieg M, et al. Aberrant DNA hypermethylation of SDHC: a novel mechanism of tumor development in Carney triad. Endocr Relat Cancer. 2014;21(4):567–77.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Heesterman BL, Bayley JP, Tops CM, Hes FJ, van Brussel BT, Corssmit EP, et al. High prevalence of occult paragangliomas in asymptomatic carriers of SDHD and SDHB gene mutations. Eur J Hum Genet. 2013;21(4):469–70.PubMedCrossRefGoogle Scholar
  24. Jochmanova I, Pacak K. Pheochromocytoma: the first metabolic endocrine cancer. Clin Cancer Res. 2016;22(20):5001–11.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Jochmanova I, Pacak K. Genomic landscape of pheochromocytoma and paraganglioma. Trends Cancer. 2018;4(1):6–9.PubMedCrossRefGoogle Scholar
  26. Jochmanova I, Wolf KI, King KS, Nambuba J, Wesley R, Martucci V, et al. SDHB-related pheochromocytoma and paraganglioma penetrance and genotype–phenotype correlations. J Cancer Res Clin Oncol. 2017;143(8):1421–35.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Korpershoek E, Favier J, Gaal J, Burnichon N, van Gessel B, Oudijk L, et al. SDHA immunohistochemistry detects germline SDHA gene mutations in apparently sporadic paragangliomas and pheochromocytomas. J Clin Endocrinol Metab. 2011;96(9):E1472–6.PubMedCrossRefGoogle Scholar
  28. Lecoq AL, Zizzari P, Hage M, Decourtye L, Adam C, Viengchareun S, et al. Mild pituitary phenotype in 3- and 12-month-old Aip-deficient male mice. J Endocrinol. 2016;231(1):59–69.PubMedCrossRefGoogle Scholar
  29. Lenders JW, Duh QY, Eisenhofer G, Gimenez-Roqueplo AP, Grebe SK, Murad MH, et al. Pheochromocytoma and paraganglioma: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2014;99(6):1915–42.PubMedCrossRefGoogle Scholar
  30. Lloyd RV, Ruebel KH, Zhang S, Jin L. Pituitary hyperplasia in glycoprotein hormone alpha subunit-, p18(INK4C)-, and p27(kip-1)-null mice: analysis of proteins influencing p27(kip-1) ubiquitin degradation. Am J Pathol. 2002;160(3):1171–9.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Lopez-Jimenez E, de Campos JM, Kusak EM, Landa I, Leskela S, Montero-Conde C, et al. SDHC mutation in an elderly patient without familial antecedents. Clin Endocrinol. 2008;69(6):906–10.CrossRefGoogle Scholar
  32. McNichol AM. Differential diagnosis of pheochromocytomas and paragangliomas. Endocr Pathol. 2001;12(4):407–15.PubMedCrossRefGoogle Scholar
  33. Ngeow J, Mester J, Rybicki LA, Ni Y, Milas M, Eng C. Incidence and clinical characteristics of thyroid cancer in prospective series of individuals with Cowden and Cowden-like syndrome characterized by germline PTEN, SDH, or KLLN alterations. J Clin Endocrinol Metab. 2011;96(12):E2063–71.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Ni Y, He X, Chen J, Moline J, Mester J, Orloff MS, et al. Germline SDHx variants modify breast and thyroid cancer risks in Cowden and Cowden-like syndrome via FAD/NAD-dependent destabilization of p53. Hum Mol Genet. 2012;21(2):300–10.PubMedCrossRefGoogle Scholar
  35. Ni Y, Seballos S, Ganapathi S, Gurin D, Fletcher B, Ngeow J, et al. Germline and somatic SDHx alterations in apparently sporadic differentiated thyroid cancer. Endocr Relat Cancer. 2015;22(2):121–30.PubMedPubMedCentralCrossRefGoogle Scholar
  36. O’Toole SM, Denes J, Robledo M, Stratakis CA, Korbonits M. 15 YEARS OF PARAGANGLIOMA: the association of pituitary adenomas and phaeochromocytomas or paragangliomas. Endocr Relat Cancer. 2015;22(4):T105–22.PubMedCrossRefGoogle Scholar
  37. Otsuka F, Miyoshi T, Murakami K, Inagaki K, Takeda M, Ujike K, et al. An extra-adrenal abdominal pheochromocytoma causing ectopic ACTH syndrome. Am J Hypertens. 2005;18(10):1364–8.PubMedCrossRefGoogle Scholar
  38. Papathomas TG, Gaal J, Corssmit EP, Oudijk L, Korpershoek E, Heimdal K, et al. Non-pheochromocytoma (PCC)/paraganglioma (PGL) tumors in patients with succinate dehydrogenase-related PCC–PGL syndromes: a clinicopathological and molecular analysis. Eur J Endocrinol. 2014;170(1):1–12.PubMedCrossRefGoogle Scholar
  39. Pasini B, McWhinney SR, Bei T, Matyakhina L, Stergiopoulos S, Muchow M, et al. Clinical and molecular genetics of patients with the Carney–Stratakis syndrome and germline mutations of the genes coding for the succinate dehydrogenase subunits SDHB, SDHC, and SDHD. Eur J Hum Genet. 2008;16(1):79–88.PubMedCrossRefGoogle Scholar
  40. Roszko KL, Blouch E, Blake M, Powers JF, Tischler AS, Hodin R, et al. Case report of a prolactinoma in a patient with a novel MAX mutation and bilateral pheochromocytomas. J Endocr Soc. 2017;1(11):1401–7.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Schimke RN, Collins DL, Stolle CA. Paraganglioma, neuroblastoma, and a SDHB mutation: resolution of a 30-year-old mystery. Am J Med Genet A. 2010;152A(6):1531–5.PubMedGoogle Scholar
  42. Srirangalingam U, Walker L, Khoo B, MacDonald F, Gardner D, Wilkin TJ, et al. Clinical manifestations of familial paraganglioma and phaeochromocytomas in succinate dehydrogenase B (SDH-B) gene mutation carriers. Clin Endocrinol. 2008;69(4):587–96.CrossRefGoogle Scholar
  43. Teramoto A, Hirakawa K, Sanno N, Osamura Y. Incidental pituitary lesions in 1,000 unselected autopsy specimens. Radiology. 1994;193(1):161–4.PubMedCrossRefGoogle Scholar
  44. Tufton N, Roncaroli F, Hadjidemetriou I, Dang MN, Denes J, Guasti L, et al. Pituitary carcinoma in a patient with an SDHB mutation. Endocr Pathol. 2017;28(4):320–5.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Vicha A, Taieb D, Pacak K. Current views on cell metabolism in SDHx-related pheochromocytoma and paraganglioma. Endocr Relat Cancer. 2014;21(3):R261–77.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Xekouki P, Stratakis CA. Succinate dehydrogenase (SDHx) mutations in pituitary tumors: could this be a new role for mitochondrial complex II and/or Krebs cycle defects? Endocr Relat Cancer. 2012;19(6):C33–40.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Xekouki P, Pacak K, Almeida M, Wassif CA, Rustin P, Nesterova M, et al. Succinate dehydrogenase (SDH) D subunit (SDHD) inactivation in a growth-hormone-producing pituitary tumor: a new association for SDH? J Clin Endocrinol Metab. 2012;97(3):E357–66.PubMedCrossRefGoogle Scholar
  48. Xekouki P, Szarek E, Bullova P, Giubellino A, Quezado M, Mastroyannis SA, et al. Pituitary adenoma with paraganglioma/pheochromocytoma (3PAs) and succinate dehydrogenase defects in humans and mice. J Clin Endocrinol Metab. 2015;100(5):E710–9.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Xekouki P, Brennand A, Whitelaw B, Pacak K, Stratakis CA. The 3PAs: an update on the association of pheochromocytomas, paragangliomas, and pituitary tumors. Horm Metab Res. 2018;  https://doi.org/10.1055/a-0661-0341. [Epub ahead of print].

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Andrew P. Demidowich
    • 1
  • Constantine A. Stratakis
    • 1
    Email author
  1. 1.Section on Genetics and EndocrinologyEunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH)BethesdaUSA

Personalised recommendations