Microbial Oils as Nutraceuticals and Animal Feeds

  • Beatriz Galán
  • María Santos-Merino
  • Juan Nogales
  • Fernando de la Cruz
  • José L. GarcíaEmail author
Living reference work entry
Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)


Lipids and oils are produced by all single-cell organisms for essential structural and functional roles; however, the term single cell oils (SCOs) is mainly restricted to describe the lipids produced by a limited number of oleaginous microorganisms (archaea, bacteria, yeast, fungi, and microalgae) with oil contents higher than 20% of biomass weigh. SCOs have different fatty acid compositions from those of plant seed or fish oils and are nowadays considered as new sources of nutraceuticals and animal feeds. In spite of the current commercial success of some SCOs, the development of more efficient microbial fermentation processes and the possibility of manipulating by systems metabolic engineering the lipid composition of cells require new biotechnological strategies to obtain high yields of the desired SCOs. Understanding the synthesis and regulatory mechanisms involved in the production of SCOs is fundamental to eliminate the metabolic bottlenecks that impair achieving high oil yields.



This chapter is supported by grants from the Community of Madrid and the Structural Funds of the European Union (Ref: S2013/ABI2783 (INSPIRA1-CM)), the Ministry of Economy, the Industry and Competitiveness (Ref: RTC-2016-4860-2; Ref: BFU2014-55534-C2-1-P), and the Intramural Program of the CSIC (Ref: 201420E086) and the H2020 FET-OPEN program (LIAR: Ref 686585).


  1. Adeyo O, Horn PJ, Lee S, Binns DD, Chandrahas A, Chapman KD, Goodman JM (2011) The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets. J Cell Biol 192:1043–1055PubMedPubMedCentralCrossRefGoogle Scholar
  2. Akao T, Kusaka T (1976) Solubilization of diglyceride acyltransferase from the membrane of Mycobacterium smegmatis. J Biochem 80:723–728PubMedCrossRefPubMedCentralGoogle Scholar
  3. Aki T, Nagahata Y, Ishihara K et al (2001) Production of arachidonic acid by filamentous fungus, Mortierella alliacea strain YN-15. J Amer Oil Chem Soc 78:599CrossRefGoogle Scholar
  4. Altabe SG, Aguilar P, Caballero GM, de Mendoza D (2003) The Bacillus subtilis acyl lipid desaturase is a delta5 desaturase. J Bacteriol 185:3228–3231PubMedPubMedCentralCrossRefGoogle Scholar
  5. Alvarez HM, Steinbuchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376PubMedCrossRefPubMedCentralGoogle Scholar
  6. Alvarez HM, Mayer F, Fabritius D, Steinbüchel A (1996) Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol 165:377–386PubMedCrossRefPubMedCentralGoogle Scholar
  7. Alvarez HM, Kalscheuer R, Steinbüchel A (2000) Accumulation and mobilization of storage lipids by Rhodococcus opacus PD630 and Rhodococcus ruber NCIMB 40126. Appl Microbiol Biotechnol 54:218–223PubMedCrossRefPubMedCentralGoogle Scholar
  8. Alvarez HM, Souto MF, Viale A, Pucci OH (2001) Biosynthesis of fatty acids and triacylglycerols by 2,6,10,14-tetramethyl pentadecane-grown cells of Nocardia globerula 432. FEMS Micribiol 200:195–200CrossRefGoogle Scholar
  9. Alvarez HM, Silva RA, Herrero M, Hernández MH, Villalba MS (2013) Metabolism of triacylglycerols in Rhodococcus species: insights from physiology and molecular genetics. J Mol Biochem 2:69–78Google Scholar
  10. Amara S, Seghezzi N, Otani H, Diaz-Salazar C, Liu J, Eltis LD (2016) Characterization of key triacylglycerol biosynthesis processes in rhodococci. Sci Rep 6:24985PubMedPubMedCentralCrossRefGoogle Scholar
  11. Arao T, Yamada M (1994) Biosynthesis of polyunsaturated fatty acids in the marine diatom, Phaeodactylum tricornutum. Phytochemistry 35:1177–1181CrossRefGoogle Scholar
  12. Athenstaedt K, Weys S, Paltauf F, Daum G (1999) Redundant systems of phosphatidic acid biosynthesis via acylation of glycerol-3-phosphate or dihydroxyacetone phosphate in the yeast Saccharomyces cerevisiae. J Bacteriol 181:1458–1463PubMedPubMedCentralGoogle Scholar
  13. Bacchin P, Robertiello A, Viglia A (1974) Identification of n-decane oxidation products in Corynebacterium cultures by combined gas chromatography-mass spectrometry. Appl Microbiol 28:737–741PubMedPubMedCentralGoogle Scholar
  14. Banas W, Sanchez Garcia A, Banas A, Stymne S (2013) Activities of acyl-CoA:diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT) in microsomal preparations of developing sunflower and safflower seeds. Planta 237:1627–1636PubMedPubMedCentralCrossRefGoogle Scholar
  15. Barksdale L, Kim KS (1977) Mycobacterium. Bacteriol Rev 41:217–372PubMedPubMedCentralGoogle Scholar
  16. Bartz R, Zehmer JK, Zhu M, Chen Y, Serrero G, Zhao Y, Liu P (2007) Dynamic activity of lipid droplets: protein phosphorylation and GTP-mediated protein translocation. J Prot Res 6:3256–3265CrossRefGoogle Scholar
  17. Beacham TA, Ali ST (2016) Growth dependent silencing and resetting of DGA1 transgene in Nannochloropsis salina. Algal Res 14:65–71CrossRefGoogle Scholar
  18. Béligon V, Christophe G, Fontanille P, Larroche C (2016) Microbial lipids as potencial source to food supplements. Curr Opin Food Sci 7:35–42CrossRefGoogle Scholar
  19. Bellou S, Moustogianni A, Makri A et al (2012) Lipids containing polyunsaturated fatty acids synthesized by Zygomycetes grown on glycerol. Appl Biochem Biotechnol 166:146–158PubMedCrossRefGoogle Scholar
  20. Bellou S, Aggelis G (2013) Biochemical activities in Chlorella sp. and Nannochloropsis salina during lipid and sugar synthesis in a lab-scale open pond simulating reactor. Journal of biotechnology 164(2):318–329CrossRefGoogle Scholar
  21. Bellou S, Baeshen MN, Elazzazy AM, Aggeli D, Sayegh F, Aggelis G (2014) Microalgal lipids biochemistry and biotechnological perspectives. Biotechnol Adv 32:1476–1493PubMedCrossRefPubMedCentralGoogle Scholar
  22. Bellou S, Triantaphyllidou IE, Aggeli D, Elazzazy AM, Baeshen MN, Aggelis G (2016) Microbial oils as food additives: recent approaches for improving microbial oil production and its polyunsaturated fatty acid content. Curr Opin Biotechnol 37:24–35PubMedCrossRefPubMedCentralGoogle Scholar
  23. Beopoulos A, Mrozova Z, Thevenieau F, Le Dall MT, Hapala I, Papanikolaou S, Chardot T, Nicaud JM (2008) Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl Environ Microbiol 74:7779–7789PubMedPubMedCentralCrossRefGoogle Scholar
  24. Beopoulos A, Haddouche R, Kabran P, Dulermo T, Chardot T, Nicaud JM (2012) Identification and characterization of DGA2, an acyltransferase of the DGAT1 acyl-CoA:diacylglycerol acyltransferase family in the oleaginous yeast Yarrowia lipolytica. New insights into the storage lipid metabolism of oleaginous yeasts. Appl Microbiol Biotechnol 93:1523–1537PubMedCrossRefPubMedCentralGoogle Scholar
  25. Bharathiraja B, Sridharan S, Sowmya V, Yuvaraj D, Praveenkumar R (2017) Microbial oil – a plausible alternate resource for food and fuel application. Bioresour Technol 233:423–432PubMedCrossRefPubMedCentralGoogle Scholar
  26. Blaby IK, Glaesener AG et al (2013) Systems-level analysis of nitrogen starvation-induced modifications of carbon metabolism in a Chlamydomonas reinhardtii starchless mutant. Plant Cell 25:4305–4323PubMedPubMedCentralCrossRefGoogle Scholar
  27. Boswell KDB, Gladue R, Prima B, Kyle DJ (1992) SCO production by fermentative microalgae. In: Kyle DJ, Ratledge C (eds) Industrial applications of single cell oils. AOCS Press, Champaign, pp 274–286Google Scholar
  28. Boyle NR, Page MD et al (2012) Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas. J Biol Chem 287:15811–15825PubMedPubMedCentralCrossRefGoogle Scholar
  29. Bozaquel-Morais BL, Madeira JB, Maya-Monteiro CM, Masuda CA, Montero-Lomeli M (2010) A new fluorescence-based method identifies protein phosphatases regulating lipid droplet metabolism. PLoS One 5:e13692PubMedPubMedCentralCrossRefGoogle Scholar
  30. Bredemeier R, Hulsch R, Metzger JO, Berthe-Corti L (2003) Submersed culture production of extracellular wax esters by the marine bacterium Fundibacter jadensis. Mar Biotechnol 5:579–583PubMedCrossRefGoogle Scholar
  31. Bredeweg EL, Pomraning KR, Dai Z, Nielsen J, Kerkhoven EJ, Baker SE (2017) A molecular genetic toolbox for Yarrowia lipolytica. Biotechnol Biofuels 10:2PubMedPubMedCentralCrossRefGoogle Scholar
  32. Breuer G, de Jaeger L, Artus VPG, Martens DE, Springer J, Draaisma RB, Eggink G, Wijffels RH, Lamers PP (2014) Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (II) evaluation of TAG yield and productivity in controlled photobioreactors. Biotechnol Biofuels 7:70PubMedPubMedCentralCrossRefGoogle Scholar
  33. Bryn K, Jantzen E, Bovre K (1977) Occurrence and patterns of waxes in Neisseriaceae. J Gen Microbiol 102:33–43PubMedCrossRefGoogle Scholar
  34. Cao Y, Cheng T, Zhao G, Niu W, Guo J, Xian M, Liu H (2016) Metabolic engineering of Escherichia coli for the production of hydroxy fatty acids from glucose. BMC Biotechnol 16:26PubMedPubMedCentralCrossRefGoogle Scholar
  35. Carman GM, Han GS (2009) Regulation of phospholipid synthesis in yeast. J Lipid Res 50(Suppl):S69–S73PubMedPubMedCentralCrossRefGoogle Scholar
  36. Chang RL, Ghamsari L, Manichaikul A, Hom EF, Balaji S, Fu W, Shen Y, Hao T, Palsson BØ, Salehi-Ashtiani K, Papin JA (2011) Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal metabolism. Mol Syst Biol 7:518PubMedPubMedCentralCrossRefGoogle Scholar
  37. Chauton MS, Kjell IR, Niels HN, Ragnar T, Hans TK (2015) A techno-economic analysis of industrial production of marine microalgae as a source of EPA and DHA-rich raw material for aquafeed: research challenges and possibilities. Aquaculture 436:95–103CrossRefGoogle Scholar
  38. Chen JW, Liu WJ, Hu DX, Wang X, Balamurugan S, Alimujiang A, Yang WD, Liu JS, Li HY (2017) Identification of a malonyl CoA-acyl carrier protein transacylase and its regulatory role in fatty acid biosynthesis in oleaginous microalga Nannochloropsis oceanica. Biotechnol Appl Biochem 64:620–626PubMedCrossRefGoogle Scholar
  39. Chi Z, Pyle D, Wen Z, Frear C, Chen S (2007) A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochem 42:1537–1545CrossRefGoogle Scholar
  40. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306PubMedCrossRefPubMedCentralGoogle Scholar
  41. Choudhary V, Jacquier N, Schneiter R (2011) The topology of the triacylglycerol synthesizing enzyme Lro1 indicates that neutral lipids can be produced within the luminal compartment of the endoplasmatic reticulum: implications for the biogenesis of lipid droplets. Comm Int Biol 4:781–784CrossRefGoogle Scholar
  42. Cronan JE, Thomas J (2009) Bacterial fatty acid synthesis and its relationships with polyketide synthetic pathways. Meth Enzymol 459:395–433PubMedPubMedCentralCrossRefGoogle Scholar
  43. Cultrone A, Scazzocchio C, Rochet M, Montero-Morán G, Drevet C, Fernández-Martín R (2005) Convergent evolution of hydroxylation mechanisms in the fungal kingdom: molybdenum cofactor-independent hydroxylation of xanthine via alpha-ketoglutarate-dependent dioxygenases. Mol Microbiol 57:276–290PubMedCrossRefPubMedCentralGoogle Scholar
  44. Dal’Molin CG, Quek LE, Palfreyman RW, Nielsen LK (2011) AlgaGEM – a genome-scale metabolic reconstruction of algae based on the Chlamydomonas reinhardtii genome. BMC Genomics 12:S5PubMedCrossRefPubMedCentralGoogle Scholar
  45. Damude HG, Gillies PJ, Macool DJ, Picatoaggio SK, Pollak DMW, Ragghianti JJ, Xue Z, Yadav NS, Zhang H, Zhu QQ (2011) High eicosapaentaenoic acid producing strains of Yarrowia lipolytica. US Patent 7,932,077 B2Google Scholar
  46. de Jaeger L, Verbeek RE, Draaisma RB, Martens DE, Springer J, Eggink G, Wijffels RH (2014) Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (I) mutant generation and characterization. Biotechnol Biofuels 7:69PubMedPubMedCentralCrossRefGoogle Scholar
  47. de Lorenzo V, Galperin M (2009) Microbial systems biology: bottom up and top down. FEMS Microbiol Rev 33:1–2PubMedCrossRefPubMedCentralGoogle Scholar
  48. De Swaaf M, Pronk JT, Sijtsma L (2003a) Fed-batch cultivation of docosahexaenoic-acid-producing marine alga Crypthecodinium cohniion ethanol. Appl Microbiol Biotechnol 61:40–43PubMedCrossRefPubMedCentralGoogle Scholar
  49. De Swaaf M, Sijtsma L, Pronk JT (2003b) High-cell-density fed-batch cultivation of the docosahexaenoic acid production marine alga Crypthecodinium cohnii. Biotechnol Bioeng 81:666–672PubMedCrossRefPubMedCentralGoogle Scholar
  50. Delong EF, Yayanos AA (1986) Biochemical function and ecological significance of novel bacterial lipids in deep-sea prokaryotes. Appl Environ Microbiol 51:730–737PubMedPubMedCentralGoogle Scholar
  51. Desbois AP, Lawlor KC (2013) Antibacterial activity of long-chain polyunsaturated fatty acids against Propionibacterium acnes and Staphylococcus aureus. Mar Drugs 11:4544–4557PubMedPubMedCentralCrossRefGoogle Scholar
  52. Dewitt S, Ervin JL, Howes-Orchison D, Dalietos D, Neidleman SL, Geigert J (1982) Saturated and unsaturated wax esters produced by Acinetobacter sp. HO1-N grown on C16-C20 n-alkanes. J Am Oil Chem Chem Soc 59:69–74CrossRefGoogle Scholar
  53. Dong HP, Williams E, Wang DZ, Xie ZX, Hsia RC, Jenck A, Halden R, Li J, Chen F, Place AR (2013) Responses of Nannochloropsis oceanica IMET1 to long-term nitrogen starvation and recovery. Plant Physiol 162:1110–1126PubMedPubMedCentralCrossRefGoogle Scholar
  54. Dujon B, Sherman D et al (2004) Genome evolution in yeasts. Nature 430:35–44PubMedCrossRefPubMedCentralGoogle Scholar
  55. Dulermo T, Nicaud JM (2011) Involvement of the G3P shuttle and beta-oxidation pathway in the control of TAG synthesis and lipid accumulation in Yarrowia lipolytica. Metab Eng 13:482–491PubMedCrossRefPubMedCentralGoogle Scholar
  56. Eggers J, Steinbuchel A (2014) Impact of Ralstonia eutropha’s poly(3-Hydroxybutyrate) (PHB) depolymerases and phasins on PHB storage in recombinant Escherichia coli. Appl Environ Microbiol 80:7702–7709PubMedPubMedCentralCrossRefGoogle Scholar
  57. Eroshin VK, Satroutdinov AD, Dedyukhina EG, Christyakova TI (2000) Arachidonic acid production by Mortierella alpina with growth-coupled lipid synthesis. Process Biochem 35:1171–1175CrossRefGoogle Scholar
  58. Fakas S, Makri A, Mavromati M, Tselepi M, Aggelis G (2009) Fatty acid composition in lipid fractions lengthwise the mycelium of Mortierella isabellina and lipid production by solid state fermentation. Bioresour Technol 100:6118–6120PubMedCrossRefPubMedCentralGoogle Scholar
  59. Fan J, Andre C, Xu C (2011) A chloroplast pathway for the de novo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii. FEBS Let 585:1985–1991CrossRefGoogle Scholar
  60. FAO (2014) The state of world fisheries and aquaculture 2014. FAO, RomeGoogle Scholar
  61. Fickers P, Benetti PH, Waché Y, Marty A, Mauersberger S, Smit MS, Nicaud JM (2005) Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 5:527–543PubMedCrossRefPubMedCentralGoogle Scholar
  62. Finco AMO, Mamani LDG, Carvalho JC, de Melo Pereira GV, Thomaz-Soccol V, Soccol CR (2017) Technological trends and market perspectives for production of microbial oils rich in omega-3. Crit Rev Biotechnol 37:656–671PubMedCrossRefPubMedCentralGoogle Scholar
  63. Fixter LM, Fewson CA (1974) The accumulation of waxes by Acinetobacter calcoaceticus NCIB-8250. Biochem Soc Trans 2:944–945CrossRefGoogle Scholar
  64. Fixter LM, McCormack JG (1976) The effect of growth conditions on the wax content of various strains of Acinetobacter. Biochem Soc Trans 4:504–505PubMedCrossRefPubMedCentralGoogle Scholar
  65. FMI (2016) Market Research Report Polyunsaturated Fatty Acids (PUFAs) Market: Rising Demand for Omega-3 and Omega-6 Fatty Acids Fuelling Market Growth: Global Industry Analysis & Opportunity Assessment, 2018–2023Google Scholar
  66. Friedlander J, Tsakraklides V et al (2016) Engineering of a high lipid producing Yarrowia lipolytica strain. Biotechnol Biofuels 9:77PubMedPubMedCentralCrossRefGoogle Scholar
  67. Gallagher IH (1971) Occurrence of waxes in Acinetobacter. J Gen Microbiol 68:245–247PubMedCrossRefPubMedCentralGoogle Scholar
  68. Ganuza E, Izquierdo MS (2007) Lipid accumulation in Schizochytrium G13/2S produced in continuous culture. Appl Microbiol Biotechnol 76:985–990PubMedCrossRefPubMedCentralGoogle Scholar
  69. Garay LA, Boundy-Mills KL, German JB (2014) Accumulation of high-value lipids in single-cell microorganisms: a mechanistic approach and future perspectives. J Agric Food Chem 62:2709–2727PubMedPubMedCentralCrossRefGoogle Scholar
  70. Gong Y, Wan X, Jiang M, Hu C, Hu H, Huang F (2014) Metabolic engineering of microorganisms to produce omega-3 very long-chain polyunsaturated fatty acids. Prog Lipid Res 56:19–35PubMedCrossRefPubMedCentralGoogle Scholar
  71. Goodson C, Roth R, Wang ZT, Goodenough U (2011) Structural correlates of cytoplasmic and chloroplast lipid body synthesis in Chlamydomonas reinhardtii and stimulation of lipid body production with acetate boost. Eukaryot Cell 10:1592–1606PubMedPubMedCentralCrossRefGoogle Scholar
  72. Grage K, Jahns AC, Parlane N, Palanisamy R, Rasiah IA, Atwood JA, Rehm BH (2009) Bacterial polyhydroxyalkanoate granules: biogenesis, structure, and potential use as nano−/micro-beads in biotechnological and biomedical applications. Biomacromolecules 10:660–669PubMedCrossRefPubMedCentralGoogle Scholar
  73. Grand View Research (2014) Omega 3 market analysis and segment forecasts to 2020, pp 1–34. Available from:
  74. Griffiths MJ, van Hille RP, Harrison STL (2012) Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions. J Appl Phycol 24:989–1001CrossRefGoogle Scholar
  75. Guchhait RB, Polakis SE, Dimroth P, Stoll E, Moss J, Lane MD (1974) Acetyl coenzyme A carboxylase system of Escherichia coli. Purification and properties of the biotin carboxylase, carboxyltransferase, and carboxyl carrier protein components. J Biol Chem 249:6633–6645PubMedPubMedCentralGoogle Scholar
  76. Hamilton JJ, Reed JL (2012) Identification of functional differences in metabolic networks using comparative genomics and constraint-based models. PLoS ONE 7(4):e34670PubMedPubMedCentralCrossRefGoogle Scholar
  77. Hamilton ML, Haslam RP, Napier JA, Sayanova O (2014) Metabolic engineering of Phaeodactylum tricornutum for the enhanced accumulation of omega-3 long chain polyunsaturated fatty acids. Metab Eng 22:3–9PubMedPubMedCentralCrossRefGoogle Scholar
  78. Hamilton ML, Powers S, Napier JA, Sayanova O (2016) Heterotrophic production of omega-3 long-chain polyunsaturated fatty acids by trophically converted marine diatom Phaeodactylum tricornutum. Mar Drugs 14:pii:E53CrossRefGoogle Scholar
  79. Hayashi S, Satoh Y, Ujihara T, Takata Y, Dairi T (2016) Enhanced production of polyunsaturated fatty acids by enzyme engineering of tandem acyl carrier proteins. Sci Rep 6:35441PubMedPubMedCentralCrossRefGoogle Scholar
  80. Heath RJ, Rock CO (1996) Roles of the FabA and FabZ beta-hydroxyacyl-acyl carrier protein dehydratases in Escherichia coli fatty acid biosynthesis. J Biol Chem 271:27795–27801PubMedCrossRefPubMedCentralGoogle Scholar
  81. Hendry JI, Prasannan CB, Joshi A, Dasgupta S, Wangikar PP (2016) Metabolic model of Synechococcus sp. PCC 7002: prediction of flux distribution and network modification for enhanced biofuel production. Bioresour Technol 213:190–197PubMedCrossRefPubMedCentralGoogle Scholar
  82. Hernandez MA, Gleixner G, Sachse D, Alvarez HM (2017) Carbon allocation in Rhodococcus jostii RHA1 in response to disruption and overexpression of nlpR regulatory gene, based on (13)C-labeling analysis. Front Microbiol 8:1992PubMedPubMedCentralCrossRefGoogle Scholar
  83. Holdsworth JE, Ratledge C (1991) Triacylglycerol synthesis in the oleaginous yeast Candida curvata D. Lipids 26:111–118PubMedCrossRefPubMedCentralGoogle Scholar
  84. Holdsworth JE, Veenhuis M, Ratledge C (1988) Enzyme activities in oleaginous yeasts accumulating and utilizing exogenous or endogenous lipids. J Gen Microbiol 134:2907–2915PubMedPubMedCentralGoogle Scholar
  85. Hoskisson PA, Hobbs G, Sharples GP (2001) Antibiotic production, accumulation of intracellular carbon reserves, and sporulation in Micromonospora echinospora (ATCC 15837). Can J Microbiol 47:148–152PubMedCrossRefPubMedCentralGoogle Scholar
  86. Hou TY, Davidson LA, Kim E, Fan YY, Fuentes NR, Triff K, Chapkin RS (2016) Nutrient-gene interaction in colon cancer, from the membrane to cellular physiology. Annu Rev Nutr 36:543–570PubMedPubMedCentralCrossRefGoogle Scholar
  87. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639PubMedCrossRefPubMedCentralGoogle Scholar
  88. Huang C, Chen XF, Xiong L, Chen XD, Ma LL, Chen Y (2013) Single cell oil production from low-cost substrates: the possibility and potential of its industrialization. Biotechnol Adv 31:129–139PubMedCrossRefPubMedCentralGoogle Scholar
  89. Imam S, Schäuble S, Valenzuela J, López García de Lomana A, Carter W, Price ND, Baliga NS (2015) A refined genome-scale reconstruction of Chlamydomonas metabolism provides a platform for systems-level analyses. Plant J 84:1239–1256PubMedPubMedCentralCrossRefGoogle Scholar
  90. Iwai M, Hori K, Sasaki-Sekimoto Y, Shimojima M, Ohta H (2015) Manipulation of oil synthesis in Nannochloropsis strain NIES-2145 with a phosphorus starvation-inducible promoter from Chlamydomonas reinhardtii. Front Microbiol 6:912PubMedPubMedCentralCrossRefGoogle Scholar
  91. Jendrossek D (2009) Polyhydroxyalkanoate granules are complex subcellular organelles (carbonosomes). J Bacteriol 191:3195–3202PubMedPubMedCentralCrossRefGoogle Scholar
  92. Jiang Y, Chen F (2000) Effects of temperature and temperature shift on docosahexaenoic acid production by the marine microalge Crypthecodinium cohnii. J Amer Oil Chem Soc 77:613CrossRefGoogle Scholar
  93. Juneja A, Chaplen FWR, Murthy GS (2016) Genome scale metabolic reconstruction of Chlorella variabilis for exploring its metabolic potential for biofuels. Bioresour Technol 213:103–110PubMedCrossRefPubMedCentralGoogle Scholar
  94. Kajikawa M, Sawaragi Y, Shinkawa H, Yamano T, Ando A, Kato M, Hirono M, Sato N, Fukuzawa H (2015) Algal dual-specificity tyrosine phosphorylation-regulated kinase, triacylglycerol accumulation regulator1, regulates accumulation of triacylglycerol in nitrogen or sulfur deficiency. Plant Physiol 168:752–764PubMedPubMedCentralCrossRefGoogle Scholar
  95. Kalscheuer R, Stöveken T, Malkus U, Reichelt R, Golyshin PN, Sabirova JS, Ferrer M, Timmis KN, Steinbüchel A (2007) Analysis of storage lipid accumulation in Alcanivorax borkumensis: evidence for alternative triacylglycerol biosynthesis routes in bacteria. J Bacteriol 189:918–928PubMedCrossRefPubMedCentralGoogle Scholar
  96. Kavscek M, Bhutada G, Madl T, Natter K (2015) Optimization of lipid production with a genome-scale model of Yarrowia lipolytica. BMC Sys Biol 9:72CrossRefGoogle Scholar
  97. Kerkhoven EJ, Pomraning KR, Baker SE, Nielsen J (2016) Regulation of amino-acid metabolism controls flux to lipid accumulation in Yarrowia lipolytica. NPJ Sys Biol Appl 2:16005CrossRefGoogle Scholar
  98. Kikukawa H, Sakuradani E, Ando A, Okuda T, Shimizu S, Ogawa J (2016) Microbial production of dihomo-γ-linolenic acid by Δ5-desaturase gene-disruptants of Mortierella alpina 1S-4. J Biosci Bioeng 122:22–26PubMedCrossRefPubMedCentralGoogle Scholar
  99. Konishi T, Sasaki Y (1994) Compartmentalization of two forms of acetyl-CoA carboxylase in plants and the origin of their tolerance toward herbicides. Proc Natl Acad Sci U S A 91:3598–3601PubMedPubMedCentralCrossRefGoogle Scholar
  100. Kosa M, Ragauskas AJ (2011) Lipids from heterotrophic microbes: advances in metabolism research. Trends Biotechnol 29:53–61PubMedCrossRefPubMedCentralGoogle Scholar
  101. Koutinas AA, Vlysidis A, Pleissner D, Kopsahelis N, Lopez Garcia I, Kookos IK, Papanikolaou S, Kwan TH, Lin CS (2014) Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers. Chem Soc Rev 43:2587–2627PubMedCrossRefPubMedCentralGoogle Scholar
  102. Kuo J, Khosla C (2014) The initiation ketosynthase (FabH) is the sole rate-limiting enzyme of the fatty acid synthase of Synechococcus sp. PCC 7002. Metab Eng 22:53–59PubMedPubMedCentralCrossRefGoogle Scholar
  103. Leber R, Zinser E, Zellnig G, Paltauf F, Daum G (1994) Characterization of lipid particles of the yeast, Saccharomyces cerevisiae. Yeast 10:1421–1428PubMedCrossRefPubMedCentralGoogle Scholar
  104. Leber C, Polson B, Fernandez-Moya R, Da Silva NA (2015) Overproduction and secretion of free fatty acids through disrupted neutral lipid recycle in Saccharomyces cerevisiae. Metab Eng 28:54–62PubMedCrossRefPubMedCentralGoogle Scholar
  105. Ledesma-Amaro R (2015) Microbial oils: a customizable feedstock through metabolic engineering. Eur J Lipid Sci Technol 117:141–144CrossRefGoogle Scholar
  106. Ledesma-Amaro R, Dulermo R, Niehus X, Nicaud JM (2016) Combining metabolic engineering and process optimization to improve production and secretion of fatty acids. Metab Eng 38:38–46PubMedCrossRefPubMedCentralGoogle Scholar
  107. Lee SY, Lee DY, Kim TY (2005) Systems biotechnology for strain improvement. Trends Biotechnol 23:349–358PubMedCrossRefPubMedCentralGoogle Scholar
  108. Lee S, Park S, Park C, Pack SP, Lee J (2014) Enhanced free fatty acid production by codon-optimized Lactococcus lactis acyl-ACP thioesterase gene expression in Escherichia coli using crude glycerol. Enzym Microb Technol 67:8–16CrossRefGoogle Scholar
  109. Lee JM, Lee H, Kang S, Park WJ (2016) Fatty acid desaturases, polyunsaturated fatty acid regulation, and biotechnological advances. Nutrients 8:pii:E23CrossRefGoogle Scholar
  110. Lemoigne M (1926) Produits de deshydration et de polymerisation de lácide β-oxybutyrique. Bull Soc Chim Biol 8:770–782Google Scholar
  111. Lenihan-Geels G, Bishop KS, Ferguson LR (2013) Alternative sources of omega-3 fats: can we find a sustainable substitute for fish? Nutrients 5:1301–1315PubMedPubMedCentralCrossRefGoogle Scholar
  112. Lennen RM, Pfleger BF (2012) Engineering Escherichia coli to synthesize free fatty acids. Trends Biotechnol 30:659–667PubMedCrossRefGoogle Scholar
  113. Lennen RM, Kruziki MA, Kumar K, Zinkel RA, Burnum KE, Lipton MS, Hoover SW, Ranatunga DR, Wittkopp TM, Marner WD II (2011) Membrane stresses induced by overproduction of free fatty acids in Escherichia coli. Appl Environ Microbiol 77:8114–8128PubMedPubMedCentralCrossRefGoogle Scholar
  114. Levering J, Broddrick J, Dupont CL, Peers G, Beeri K, Mayers J, Gallina AA, Allen AE, Palsson BO, Zengler K (2016) Genome-scale model reveals metabolic basis of biomass partitioning in a model diatom. PLoS One 11:e0155038PubMedPubMedCentralCrossRefGoogle Scholar
  115. Li DW, Cen SY, Liu YH, Balamurugan S, Zheng XY, Alimujiang A, Yang WD, Liu JS, Li HY (2016) A type 2 diacylglycerol acyltransferase accelerates the triacylglycerol biosynthesis in heterokont oleaginous microalga Nannochloropsis oceanica. J Bacteriol 229:65–71Google Scholar
  116. Liang MH, Jiang JG (2013) Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog Lipid Res 52:395–408PubMedCrossRefPubMedCentralGoogle Scholar
  117. Liu B, Benning C (2013) Lipid metabolism in microalgae distinguishes itself. Curr Opin Biotechnol 24:300–309PubMedCrossRefPubMedCentralGoogle Scholar
  118. Liu H, Yu C, Feng D, Cheng T, Meng X, Liu W, Zou H, Xian M (2012) Production of extracellular fatty acid using engineered Escherichia coli. Microb Cell Factories 11:41CrossRefGoogle Scholar
  119. Loira N, Dulermo T, Nicaud JM, Sherman DJ (2012) A genome-scale metabolic model of the lipid-accumulating yeast Yarrowia lipolytica. BMC Syst Biol 6:35PubMedPubMedCentralCrossRefGoogle Scholar
  120. Loira N, Mendoza S, Paz Cortés M, Rojas N, Travisany D, Genova AD, Gajardo N, Ehrenfeld N, Maass A (2016) Reconstruction of the microalga Nannochloropsis salina genome-scale metabolic model with applications to lipid production. BMC Syst Biol 11:66CrossRefGoogle Scholar
  121. Lombard J, Moreira D (2011) Early evolution of the biotin-dependent carboxylase family. BMC Evol Biol 11:232PubMedPubMedCentralCrossRefGoogle Scholar
  122. Maia P, Rocha M, Rocha I (2016) In silico constraint-based strain optimization methods: the quest for optimal cell factories. Microbiol Mol Biol Rev 80:45–67PubMedCrossRefGoogle Scholar
  123. Makri A, Bellou S, Birkou M, Papatrehas K, Dolapsakis NP, Bokas D, Papanikolaou S, Aggelis G (2011) Lipid synthesized by micro-algae grown in laboratory and industrial-scale bioreactors. Eng Life Sci 11:52–58CrossRefGoogle Scholar
  124. Makula RA, Lockwood PJ, Finnerty WR (1975) Comparative analysis of the lipids of Acinetobacter species grown on hexadecane. J Bacteriol 121:250–258PubMedPubMedCentralGoogle Scholar
  125. Marketsandmarkets (2016) Omega-3 PUFA Market by Type (DHA, EPA, ALA), Application (Dietary Supplements, Functional Foods & Beverages, Pharmaceuticals, Infant Formula), Source (Marine, Plant), Sub-source), & Region – Global Forecasts to 2020Google Scholar
  126. Marrakchi H, Choi KH, Rock CO (2002) A new mechanism for anaerobic unsaturated fatty acid formation in Streptococcus pneumoniae. J Biol Chem 277:44809–44816PubMedCrossRefGoogle Scholar
  127. Meng X, Yang J, Cao Y, Li L, Jiang X, Xu X, Liu W, Xian M, Zhang Y (2011) Increasing fatty acid production in E. coli by simulating the lipid accumulation of oleaginous microorganisms. J Ind Microbiol Biotechnol 38:919–925PubMedCrossRefGoogle Scholar
  128. Meng X, Shang H, Zheng Y, Zhang Z (2013) Free fatty acid secretion by an engineered strain of Escherichia coli. Biotechnol Lett 35:2099–2103PubMedCrossRefGoogle Scholar
  129. Metz JG, Roessler P et al (2001) Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 293:290–293PubMedCrossRefGoogle Scholar
  130. Michinaka Y, Shimauchi T, Aki T, Nakajima T, Kawamoto S, Shigeta S, Suzuki O, Ono K (2003) Extracellular secretion of free fatty acids by disruption of a fatty acyl-CoA synthetase gene in Saccharomyces cerevisiae. J Biosci Bioeng 95:435–440PubMedCrossRefGoogle Scholar
  131. Mishra P, Park GY, Lakshmanan M, Lee HS, Lee H, Chang MW, Ching CB, Ahn J, Lee DY (2016) Genome-scale metabolic modeling and in silico analysis of lipid accumulating yeast Candida tropicalis for dicarboxylic acid production. Biotechnol Bioeng 113:1993–2004PubMedCrossRefPubMedCentralGoogle Scholar
  132. Mishra P, Lee NR, Lakshmanan M, Kim M, Kim BG, Lee DY (2018) Genome-scale model-driven strain design for dicarboxylic acid production in Yarrowia lipolytica. BMC Syst Biol 12:12PubMedPubMedCentralCrossRefGoogle Scholar
  133. Mordor Intelligence (2017) Global arachidonic acid market – market shares, forecasts and trends (2017–2022)Google Scholar
  134. Mueller TJ, Ungerer JL, Pakrasi HB, Maranas CD (2017) Identifying the metabolic differences of a fast-growth phenotype in Synechococcus UTEX 2973. Sci Rep 7:41569PubMedPubMedCentralCrossRefGoogle Scholar
  135. Niu YF, Zhang MH, Li DW, Yang WD, Liu JS, Bai WB, Li HY (2013) Improvement of neutral lipid and polyunsaturated fatty acid biosynthesis by overexpressing a type 2 diacylglycerol acyltransferase in marine diatom Phaeodactylum tricornutum. Mar Drugs 11:4558–4569PubMedPubMedCentralCrossRefGoogle Scholar
  136. Nogales J, Gudmundsson S, Knight EM, Palsson BO, Thiele I (2012) Detailing the optimality of photosynthesis in cyanobacteria through systems biology analysis. Proc Natl Acad Sci U S A 109:2678–2683PubMedPubMedCentralCrossRefGoogle Scholar
  137. O’Brien EJ, Monk JM, Palsson BO (2015) Using genome-scale models to predict biological capabilities. Cell 161:971–987PubMedPubMedCentralCrossRefGoogle Scholar
  138. Ochsenreither K, Glück C, Stressler T, Fischer L, Syldatk C (2016) Production strategies and applications of microbial single cell oils. Front Microbiol 7:1539PubMedPubMedCentralCrossRefGoogle Scholar
  139. Okuda T, Ando A, Negoro H, Kikukawa H, Sakamoto T, Sakuradani E, Shimizu S, Ogawa J (2015) Omega-3 eicosatetraenoic acid production by molecular breeding of the mutant strain S14 derived from Mortierella alpina 1S-4. J Biosci Bioeng 120:299–304PubMedCrossRefPubMedCentralGoogle Scholar
  140. Olukoshi ER, Packter NM (1994) Importance of stored triacylglycerols in Streptomyces: possible carbon source for antibiotics. Microbiology 140:931–943PubMedCrossRefPubMedCentralGoogle Scholar
  141. Pan P, Hua Q (2012) Reconstruction and in silico analysis of metabolic network for an oleaginous yeast, Yarrowia lipolytica. PLoS One 7:e51535PubMedPubMedCentralCrossRefGoogle Scholar
  142. Park JH, Lee SY (2008) Towards systems metabolic engineering of microorganisms for amino acid production. Curr Opin Biotechnol 19:454–460PubMedCrossRefPubMedCentralGoogle Scholar
  143. Park JJ, Wang H, Gargouri M, Deshpande RR, Skepper JN, Holguin FO, Juergens MT, Shachar-Hill Y, Hicks LM, Gang DR (2015) The response of Chlamydomonas reinhardtii to nitrogen deprivation: a systems biology analysis. Plant J 81:611–624PubMedCrossRefPubMedCentralGoogle Scholar
  144. Park BG, Kim M, Kim J, Yoo H, Kim BG (2017) Systems biology for understanding and engineering of heterotrophic oleaginous microorganisms. Biotenhnol J 12(1):1600104CrossRefGoogle Scholar
  145. Peng KT, Zheng CN, Xue J, Chen XY, Yang WD, Liu JS, Bai W, Li HY (2014) Delta 5 fatty acid desaturase upregulates the synthesis of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum. J Agric Food Chem 62:8773–8776PubMedCrossRefPubMedCentralGoogle Scholar
  146. Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82:233–247CrossRefGoogle Scholar
  147. Poirier Y, Nawrat C, Somerville C (1995) Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants. Bio/Technology 13:142–150PubMedPubMedCentralGoogle Scholar
  148. Qi B, Beaudoin F, Fraser T, Stobart AK, Napier JA, Lazarus CM (2002) Identification of a cDNA encoding a novel C18-Delta(9) polyunsaturated fatty acid-specific elongating activity from the docosahexaenoic acid (DHA)-producing microalga, Isochrysis galbana. FEBS Lett 510:159–165PubMedCrossRefPubMedCentralGoogle Scholar
  149. Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–815PubMedCrossRefPubMedCentralGoogle Scholar
  150. Ratledge C (2006) Microbial production of gamma-linolenic acid. In: Akoh AA (ed) Handbook of functional lipids. Taylor & Francis, Baco Raton, pp 19–45Google Scholar
  151. Ratledge C (2013) Microbial oils: an introductory overview of current status and future prospects. OCL 20:D602CrossRefGoogle Scholar
  152. Ratledge C, Wynn J (1974) Microbial production of oils and fats. Food from waste. Applied Science Publishers, Selby, North Yorkshire, pp 98–113Google Scholar
  153. Ratledge C, Kanagachandran K, Anderson AJ, Grantham DJ, Stephenson JC (2001) Production of docosahexaenoic acid by Crypthecodinium cohnii grown in a pH-auxostat culture with acetic acid as principal carbon source lipids. Lipids 36:1241–1246PubMedCrossRefPubMedCentralGoogle Scholar
  154. Raymond RL, Davis JB (1960) N-alkane utilization and lipid formation by a Nocardia. Appl Microbiol 8:329–334PubMedPubMedCentralGoogle Scholar
  155. Rigouin C, Gueroult M, Croux C, Dubois G, Borsenberger V, Barbe S, Marty A, Daboussi F, André I, Bordes F (2017) Production of medium chain fatty acids by Yarrowia lipolytica: combining molecular design and TALEN to engineer the fatty acid synthase. ACS Synth Biol 6:1870–1879PubMedCrossRefPubMedCentralGoogle Scholar
  156. Roessler PG (1988) Effects of silicon deficiency on lipid composition and metabolism in the diatom in Cyclotella cryptica. J Phycol 24:394–400CrossRefGoogle Scholar
  157. Russell NJ, Volkman JK (1980) The effect of growth temperature on wax ester composition in the psychrophilic bacterium Micrococcus cryophilus ATCC 15174. Microbiology 118:131–141CrossRefGoogle Scholar
  158. Ryan A, Zeller S, Nelson EB (2010) Safety evaluation of single cell oils and the regulatory requirements for use as food ingredients. In: Cohen Z, Ratledge C (eds) Single Cell Oils, 2nd edn. AOCS Press, Champaign, pp 317–350CrossRefGoogle Scholar
  159. Ryckebosch E, Bermúdez SPC, Termote-Verhalle R, Bruneel C, Muylaert K, Parra-Saldivar R, Foubert I (2014a) Influence of extraction solvent system on the extractability of lipid components from the biomass of Nannochloropsis gaditana. J Appl Phycol 26:1501–1510CrossRefGoogle Scholar
  160. Ryckebosch E, Bruneel C, Termote-Verhalle R, Goiris K, Muylaert K, Foubert I (2014b) Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil. Food Chem 160:393–400PubMedCrossRefPubMedCentralGoogle Scholar
  161. Saha R, Verseput AT, Berla BM, Mueller TJ, Pakrasi HB, Maranas CD (2012) Reconstruction and comparison of the metabolic potential of cyanobacteria Cyanothece sp. ATCC 51142 and Synechocystis sp. PCC 6803. PLoS One 7:e48285PubMedPubMedCentralCrossRefGoogle Scholar
  162. Sahena F, Zaidul ISM, Jinap S, Karim AA, Abbas KA, Norulaini NAN et al (2009) Application of supercritical CO2 in lipid extraction – a review. J Food Eng 95:240–253CrossRefGoogle Scholar
  163. Sakuradani E, Ando A, Shimizu S, Ogawa J (2013) Metabolic engineering for the production of polyunsaturated fatty acids by oleaginous fungus Mortierella alpina 1S-4. J Biosci Bioeng 116:417–422PubMedCrossRefPubMedCentralGoogle Scholar
  164. Sancholle M, Lösel D (1995) Lipids in fungal biotechnology. In: Kuck U (ed) The Mycota, Genetics and biotechnology, vol 11. Springer, Berlin, pp 339–367Google Scholar
  165. Schmollinger S, Muhlhaus T et al (2014) Nitrogen-sparing mechanisms in Chlamydomonas affect the transcriptome, the proteome, and photosynthetic metabolism. Plant Cell 26:1410–1435PubMedPubMedCentralCrossRefGoogle Scholar
  166. Schweizer E, Hofmann J (2004) Microbial type I fatty acid synthases (FAS): major players in a network of cellular FAS systems. Microbiol Mol Biol Rev 68:501–517PubMedPubMedCentralCrossRefGoogle Scholar
  167. Scott CC, Finnerty WR (1976) Characterization of intracytoplasmic hydrocarbon inclusions from the hydrocarbon-oxidizing Acinetobacter species HO1-N. J Bacteriol 127:481–489PubMedPubMedCentralGoogle Scholar
  168. Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21:277–286PubMedCrossRefPubMedCentralGoogle Scholar
  169. Seip J, Jackson R, He H, Zhu Q, Hong SP (2013) Snf1 is a regulator of lipid accumulation in Yarrowia lipolytica. Appl Environ Microbiol 79:7360–7370PubMedPubMedCentralCrossRefGoogle Scholar
  170. Senanayake SPJN, Fichtali J (2006) Single-celloils as sources of nutraceutical and specialty lipids: processing technologies and applications. In: Shahidi F (ed) Nutraceutical and specialty lipids and their co-products. CRC Press, Boca Raton, pp 251–280Google Scholar
  171. Serrano L (2007) Synthetic biology: promises and challenges. Mol Syst Biol 3:158PubMedPubMedCentralCrossRefGoogle Scholar
  172. Shi S, Zhao H (2017) Metabolic engineering of oleaginous yeasts for production of fuels and chemicals. Front Microbiol 8:2185PubMedPubMedCentralCrossRefGoogle Scholar
  173. Shi S, Chen Y, Siewers V, Nielsen J (2014) Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of Acc1. MBio 5:e01130–e01114PubMedPubMedCentralGoogle Scholar
  174. Shi H, Chen H, Gu Z, Zhang H, Chen W, Chen YQ (2016) Application of a delta-6 desaturase with α-linolenic acid preference on eicosapentaenoic acid production in Mortierella alpina. Microb Cell Factories 15:117CrossRefGoogle Scholar
  175. Sijtsma L, de Swaaf ME (2004) Biotechnological production and applications of the omega-3 polyunsaturated fatty acid docosahexaenoic acid. Appl Microbiol Biotechnol 64:146–153PubMedCrossRefPubMedCentralGoogle Scholar
  176. Silverman AM, Qiao K, Xu P, Stephanopoulos G (2016) Functional overexpression and characterization of lipogenesis-related genes in the oleaginous yeast Yarrowia lipolytica. Appl Microbiol Biotechnol 100:3781–3798PubMedCrossRefPubMedCentralGoogle Scholar
  177. Sinclair AJ, Jayasooriya A (2010) Nutritional aspects of single cell oils: applications of arachidonic acid and docosahexaenoic acid oils. In: Cohen Z, Ratledge C (eds) Single Cell Oils. AOCS Press, Champaign, pp 351–368CrossRefGoogle Scholar
  178. Singer ME, Tyler SM, SM FWR (1985) Growth of Acinetobacter sp. strain HO1-N on n-hexadecanol: physiological and ultrastructural characteristics. J Bacteriol 162:162–169PubMedPubMedCentralGoogle Scholar
  179. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. Journal of bioscience and bioengineering 101(2):87–96PubMedCrossRefPubMedCentralGoogle Scholar
  180. Sprague M, Dick JR, Tocher DR (2016) Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006-2015. Sci Rep 6:21892PubMedPubMedCentralCrossRefGoogle Scholar
  181. Sprague M, Betancor MB, Tocher DR (2017) Microbial and genetically engineered oils as replacements for fish oil in aquaculture feeds. Biotechnol Lett 39:1599–1609PubMedPubMedCentralCrossRefGoogle Scholar
  182. Steinbüchel A (2001) Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromol Biosci 1:1–24CrossRefGoogle Scholar
  183. Stöveken T, Kalscheuer R, Malkus U, Reichelt R, Steinbüchel A (2005) The wax ester synthase/acyl coenzyme a:diacylglycerol acyltransferase from Acinetobacter sp. strain ADP1: characterization of a novel type of acyltransferase. J Bacteriol 187:1369–1376PubMedPubMedCentralCrossRefGoogle Scholar
  184. Stracka D, Jozefczuk S, Rudroff F, Sauer U, Hall MN (2014) Nitrogen source activates TOR (target of rapamycin) complex 1 via glutamine and independently of Gtr/rag proteins. J Biol Chem 289:25010–25020PubMedPubMedCentralCrossRefGoogle Scholar
  185. Tajparast M, Frigon D (2015) Genome-scale metabolic model of Rhodococcus jostii RHA1 (iMT1174) to study the accumulation of storage compounds during nitrogen-limited condition. BMC Syst Biol 9:43PubMedPubMedCentralCrossRefGoogle Scholar
  186. Tapia VE, Anschau A, Coradini AL, T Franco T, Deckmann AC (2012) Optimization of lipid production by the oleaginous yeast Lipomyces starkeyi by random mutagenesis coupled to cerulenin screening. AMB Express 2:64CrossRefGoogle Scholar
  187. Tee TW, Chowdhury A, Maranas CD, Shanks JV (2014) Systems metabolic engineering design: fatty acid production as an emerging case study. Biotechnol Bioeng 111:849–857PubMedPubMedCentralCrossRefGoogle Scholar
  188. Thevenieau F, Nicaud JM (2013) Microorganisms as sources of oils. OCL 20:1–8CrossRefGoogle Scholar
  189. Totani N, Watanabe A, Oba K (1987) An improved method of arachidonic acid production by Mortierella sp. S-17. J Jpn Oil Chem Soc 36:328–331CrossRefGoogle Scholar
  190. Tran TH, Hsiao YS, Jo J, Chou CY, Dietrich LE, Walz T, Tong L (2015) Structure and function of a single-chain, multi-domain long-chain acyl-CoA carboxylase. Nature 518:120–124PubMedCrossRefPubMedCentralGoogle Scholar
  191. Triana J, Montagud A, Siurana M, Fuente D, Urchueguía A, Gamermann D, Torres J, Tena J, de Córdoba PF, Urchueguía JF (2014) Generation and evaluation of a genome-scale metabolic network model of Synechococcus elongatus PCC7942. Meta 4:680–698Google Scholar
  192. Uematsu Y, Hirata K, Suzuki K, Iida K, Kamata K (2002) Survey of residual solvents in natural food additives by standard addition head-space GC. Food Addit Contam 19:335–342PubMedCrossRefPubMedCentralGoogle Scholar
  193. Uemura H (2012) Synthesis and production of unsaturated and polyunsaturated fatty acids in yeast: current state and perspectives. Appl Microbiol Biotechnol 95:1–12PubMedCrossRefPubMedCentralGoogle Scholar
  194. Uttaro AD (2006) Biosynthesis of polyunsaturated fatty acids in lower eukaryotes. IUBMB Life 58:563–571PubMedCrossRefPubMedCentralGoogle Scholar
  195. Vongsangnak W, Klanchui A, Tawornsamretkit I, Tatiyaborwornchai W, Laoteng K, Meechai A (2016) Genome-scale metabolic modeling of Mucor circinelloides and comparative analysis with other oleaginous species. Gene 583:121–129PubMedCrossRefPubMedCentralGoogle Scholar
  196. Vu TT, Stolyar SM, Pinchuk GE, Hill EA, Kucek LA et al (2012) Genome-scale modeling of light-driven reductant partitioning and carbon fluxes in diazotrophic unicellular cyanobacterium Cyanothece sp. ATCC 51142. PLoS Comp Biol 8:e1002460CrossRefGoogle Scholar
  197. Vu TT, Hill EA, Kucek LA, Konopka AE, Beliaev AS, Reed JL (2013) Computational evaluation of Synechococcus sp. PCC 7002 metabolism for chemical production. Biotechnol J 8:619–630PubMedCrossRefPubMedCentralGoogle Scholar
  198. Wallis JG, Browse J (1999) The Delta8-desaturase of Euglena gracilis: an alternate pathway for synthesis of 20-carbon polyunsaturated fatty acids. Arch Biochem Biophys 365:307–316PubMedCrossRefPubMedCentralGoogle Scholar
  199. Wältermann M, Steinbüchel A (2005) Neutral lipid bodies in prokaryotes: recent insights into structure, formation, and relationship to eukaryotic lipid depots. J Bacteriol 187:3607–3619PubMedPubMedCentralCrossRefGoogle Scholar
  200. Wältermann M1, Hinz A, Robenek H, Troyer D, Reichelt R, Malkus U, Galla HJ, Kalscheuer R, Stöveken T, von Landenberg P, Steinbüchel A (2005) Mechanism of lipid-body formation in prokaryotes: how bacteria fatten up. Mol Microbiol 55:750–763PubMedCrossRefPubMedCentralGoogle Scholar
  201. Wang H, Cronan JE (2004) Functional replacement of the FabA and FabB proteins of Escherichia coli fatty acid synthesis by Enterococcus faecalis FabZ and FabF homologues. J Biol Chem 279:34489–34495PubMedCrossRefPubMedCentralGoogle Scholar
  202. Wang L, Takayama K, Goldman DS, Schnoes HK (1972) Synthesis of alcohol and wax ester by a cell-free system in Mycobacterium tuberculosis. Biochim Biophys Acta 260:41–48PubMedCrossRefPubMedCentralGoogle Scholar
  203. Wang X, Liu Y, Wei W, Zhou X, Yuan W, Balamurugan S, Hao T, Yang W, Liu J, Li H (2017) Enrichment of long-chain polyunsaturated fatty acids by coordinated expression of multiple metabolic nodes in the oleaginous microalga Phaeodactylum tricornutum. J Agric Food Chem 65:7713–7720PubMedCrossRefPubMedCentralGoogle Scholar
  204. Wei H, Shi Y, Ma X, Pan Y, Hu H, Li Y, Luo M, Gerken H, Liu J (2017a) A type-I diacylglycerol acyltransferase modulates triacylglycerol biosynthesis and fatty acid composition in the oleaginous microalga, Nannochloropsis oceanica. Biotechnol Biofuels 10:174PubMedPubMedCentralCrossRefGoogle Scholar
  205. Wei S, Jian X, Chen J, Zhang C, Hua Q (2017b) Reconstruction of genome-scale metabolic model of Yarrowia lipolytica and its application in overproduction of triacylglycerol. Bioresour Bioprocess 4:51CrossRefGoogle Scholar
  206. White SW, Zheng J, Zhang YM, Rock (2005) The structural biology of type II fatty acid biosynthesis. Annu Rev Biochem 74:791–831PubMedCrossRefPubMedCentralGoogle Scholar
  207. Wu ST, Yu ST, Lin LP (2005) Effect of culture conditions on docosahexae-noic acid production by Schizochytrium sp. S31. Process Biochem 40(9):3103–3108CrossRefGoogle Scholar
  208. Wu H, San KY (2014) Efficient odd straight medium chain free fatty acid production by metabolically engineered Escherichia coli. Biotechnol Bioeng 111:2209–2219PubMedCrossRefPubMedCentralGoogle Scholar
  209. Xiao K, Yue XH, Chen WC, Zhou XR, Wang L, Xu L, Huang FH, Wan X (2018) Metabolic engineering for enhanced medium chain omega hydroxy fatty acid production in Escherichia coli. Front Microbiol 9:139PubMedPubMedCentralCrossRefGoogle Scholar
  210. Xin Y, Lu Y, Lee YY, Wei L, Jia J, Wang Q, Wang D, Bai F, Hu H, Hu Q, Liu J, Li Y, Xu J (2017) Producing designer oils in industrial microalgae by rational modulation of co-evolving type-2 diacylglycerol acyltransferases. Mol Plant 10:1523–1539PubMedCrossRefPubMedCentralGoogle Scholar
  211. Xu P, Qiao K, Stephanopoulos G (2017) Engineering oxidative stress defense pathways to build a robust lipid production platform in Yarrowia lipolytica. Biotechnol Bioeng 114:1521–1530PubMedCrossRefPubMedCentralGoogle Scholar
  212. Xue ZX, Sharpe PL, Hong SP, Yadav NS, Xie D, Short DR et al (2013) Sustainable source of omega-3 eicopentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nat Biotech 31:734–740CrossRefGoogle Scholar
  213. Xue J, Niu YF, Huang T, Yang WD, Liu JS, Li HY (2015) Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation. Metab Eng 27:1–9PubMedCrossRefPubMedCentralGoogle Scholar
  214. Xue J, Wang L, Zhang L, Balamurugan S, Li DW, Zeng H, Yang WD, Liu JS, Li HY (2016) The pivotal role of malic enzyme in enhancing oil accumulation in green microalga Chlorella pyrenoidosa. Microb Cell Factories 15:120CrossRefGoogle Scholar
  215. Yamada K (2017) Development of multifunctional foods. Biosci Biotechnol Biochem 81:849–853PubMedCrossRefPubMedCentralGoogle Scholar
  216. Yamada R, Kashihara T, Ogino H (2017) Improvement of lipid production by the oleaginous yeast Rhodosporidium toruloides through UV mutagenesis. World J Microbiol Biotechnol 33:99PubMedCrossRefPubMedCentralGoogle Scholar
  217. Yano Y, Nakayama A, Yoshida K (1997) Distribution of polyunsaturated fatty acids in bacteria present in intestines of deep-sea fish and shallow-sea poikilothermic animals. Appl Environ Microbiol 63:2572–2577PubMedPubMedCentralGoogle Scholar
  218. Ye C, Xu N, Chen H, Chen YQ, Chen W, Liu L (2015) Reconstruction and analysis of a genome-scale metabolic model of the oleaginous fungus Mortierella alpina. BMC Syst Biol 9:1PubMedPubMedCentralCrossRefGoogle Scholar
  219. Yoshida K, Hashimoto M, Hori R, Adachi T, Okuyama H, Orikasa Y, Nagamine T, Shimizu S, Ueno A, Morita N (2016) Bacterial long-chain polyunsaturated fatty acids: their biosynthetic genes, functions, and practical use. Mar Drugs 14:pii:E94CrossRefGoogle Scholar
  220. Zaman S, Lippman SI, Zhao X, Broach JR (2008) How Saccharomyces responds to nutrients. Annu Rev Genet 42:27–81PubMedCrossRefPubMedCentralGoogle Scholar
  221. Zhang J, Vaga S, Chumnanpuen P, Kumar R, Vemuri GN, Aebersold R, Nielsen J (2011) Mapping the interaction of Snf1 with TORC1 in Saccharomyces cerevisiae. Mol Syst Biol 7:545PubMedPubMedCentralCrossRefGoogle Scholar
  222. Zhu K, Choi KH, Schweizer HP, Rock CO, Zhang YM (2006) Two aerobic pathways for the formation of unsaturated fatty acids in Pseudomonas aeruginosa. Mol Microbiol 60:260–273PubMedCrossRefPubMedCentralGoogle Scholar
  223. Zhu Q, Jackson EN (2015) Metabolic engineering of Yarrowia lipolytica for industrial applications. Current opinion in biotechnology 36:65–72PubMedCrossRefPubMedCentralGoogle Scholar
  224. Zienkiewicz K, Zienkiewicz A, Poliner E, Du ZY, Vollheyde K, Herrfurth C, Marmon S, Farré EM, Feussner I, Benning C (2017) Nannochloropsis, a rich source of diacylglycerol acyltransferases for engineering of triacylglycerol content in different hosts. Biotechnol Biofuels 10:8PubMedPubMedCentralCrossRefGoogle Scholar
  225. Zuñiga C, Li CT, Huelsman T, Levering J, Zielinski DC, McConnell BO, Long CP, Knoshaug EP, Guarnieri MT, Antoniewicz MR, Betenbaugh MJ, Zengler K (2016) Genome-scale metabolic model for the green alga Chlorella vulgaris UTEX 395 accurately predicts phenotypes under autotrophic, heterotrophic, and mixotrophic growth conditions. Plant Physiol 172:589–602PubMedPubMedCentralCrossRefGoogle Scholar
  226. Zweytick D, Athenstaedt K, Daum G (2000) Intracellular lipid particles of eukaryotic cells. Biochim Biophys Acta 1469:101–120PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Beatriz Galán
    • 1
  • María Santos-Merino
    • 2
  • Juan Nogales
    • 1
    • 3
  • Fernando de la Cruz
    • 2
  • José L. García
    • 1
    • 4
    Email author
  1. 1.Department of Microbial and Plant BiotechnologyCentro de Investigaciones Biológicas (CIB) (CSIC)MadridSpain
  2. 2.Intergenomic Group. Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC) (UC-CSIC)SantanderSpain
  3. 3.Department of Systems BiologyCentro Nacional de Biotecnología (CNB) (CSIC)MadridSpain
  4. 4.Department of Applied Systems Biology and Synthetic BiologyInstituto de Biología Integrativa de Sistemas (I2Sysbio) (CSIC-UV)ValenciaSpain

Personalised recommendations