Advertisement

Coronary Stents

  • Cecilia SvedmanEmail author
  • Magnus Bruze
Living reference work entry
  • 5 Downloads

Abstract

The evolution of minimally invasive endovascular technology, with PCI and stenting, has revolutionized patient care, leading to reduction in age-related cardiovascular deaths the last 25–30 years. Cardiovascular stents are made of different material and have different design. A complication to the intervention and especially to bare metal stents is in-stent restenosis. Neointimal proliferation and inflammation leading to restenosis have several causes, briefly discussed below. The use of foreign material in close association with/in the human body does as such implicate the possibility of a contact allergy and possible clinical symptoms, but often the association is difficult to prove, especially if the symptoms are not primarily engaging the skin. A possible association between stents and metal allergy has been investigated. With regard to stents, the studies that have been performed in this field are mainly retrospective studies, which is of course in itself a limitation, and show somewhat disparate results. Since the chapter will have focus on findings having been made and furthermore provide knowledge etc of stents as such and as to what happens during PCI and, finally, some practical advice on how to investigate, and when to investigate, a patient where the question of contact allergy to stent material is raised.

Keywords

PCI Bare metal stent Drug-eluting stent Restenosis Hypersensitivity reaction 

References

  1. 1.
    Bonfield CM, Kumar AR, Gerszten PC (2014) The history of military cranioplasty. Neurosurg Focus 36:E18PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Pacheco KA (2018) Allergy to surgical implants. Clin Rev Allergy Immunol 56:1–14.  https://doi.org/10.1007/s12016-018-8707-yCrossRefGoogle Scholar
  3. 3.
    Gimenez-Arnau A, Riambau V, Serra-Baldrich E et al (2000) Metal-induced generalized pruriginous dermatitis and endovascular surgery. Contact Dermatitis 43:35–40PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Guerra A, Kirkwood M (2017) Severe generalized dermatitis in a nickel-allergic patient with a popliteal artery nitinol stent. J Vasc Surg Cases Innov Tech 3:23–25PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Rigatelli G, Cardaioli P, Giordan M et al (2007) Nickel allergy in interatrial shunt device-based closure patients. Congenit Heart Dis 2:416–420PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Citerne O, Gomes S, Scanu P et al (2011) Painful eczema mimicking pocket infection in a patient with an ICD: a rare cause of skin allergy to nickel/cobalt alloy. Circulation 123:1241–1242PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Andrews ID, Scheinman P (2011) Systemic hypersensitivity reaction (without cutaneous manifestations) to an implantable cardioverter-defibrillator. Dermatitis 22:161–164PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Mori H, Kutys R, Romero M, Virmani R, Finn AV (2017) Metallic coronary stents: is there a relationship between stent fracture and hypersensitivity? JACC Cardiovasc Interv 10:1175–1177PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Nakajima Y, Itoh T, Morino Y (2016) Metal allergy to everolimus-eluting cobalt chromium stents confirmed by positive skin testing as a cause of recurrent multivessel in-stent restenosis. Catheter Cardiovasc Interv 87:E137–E142PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Svedman C, Dunér K, Kehler M et al (2006) Lichenoid reactions to gold from dental restorations and exposure to gold through intracoronary implant of a gold-plated stent. Clin Res Cardiol 95:689–691PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Fuster V, Mearns B (2009) The CVD paradox: mortality vs prevalence. Nat Rev Cardiol 96:669CrossRefGoogle Scholar
  12. 12.
    Jorge C, Dubois C (2015) Clinical utility of platinum chromium bare-metal stents in coronary heart disease. Med Devices (Auckl) 8:359–367Google Scholar
  13. 13.
    Grüntzig A (1978) Transluminal dilatation of coronary-artery stenosis. Lancet 1:263PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Serruys PW, de Jaegere P, Kiemeneij F et al (1994) A comparison of balloon-expandable-stent-implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group. N Engl J Med 331:489–495CrossRefGoogle Scholar
  15. 15.
    Sugwart U, Puel J, Mirkovitch V et al (1987) Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. N Engl J Med 316:701–706CrossRefGoogle Scholar
  16. 16.
    Yousuf O, Bhatt DL (2011) The evolution of antiplatelet therapy in cardiovascular disease. Nat Rev Cardiol 8:547–559PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Bauters C, Meurice T, Hamon M et al (1996) Mechanisms and prevention of restenosis: from experimental models to clinical practice. Cardiovasc Res 31:835–846PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Serruys PW, Unger F, Sousa JE et al (2001) Comparison of coronary artery bypass surgery and stenting for the treatment of multivessel disease. N Engl J Med 344:1117–1124PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Lindholm D, Curr JS (2016) Bioresorbable stents in PCI. Curr Cardiol Rep 18:74PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Stettler C, Wandel S, Allemann S et al (2007) Outcomes associated with drug-eluting and bare-metal stents: a collaborative network meta-analysis. Lancet 370:937–948PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Simard T, Hibbert B, Ramirez FD et al (2014) The evolution of coronary stents: a brief review. Can J Cardiol 30:35–45PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Sarno G, Lagerqvist B, Nilsson J et al (2014) Stent thrombosis in new-generation drug-eluting stents in patients with STEMI undergoing primary PCI: a report from SCAAR. J Am Coll Cardiol 64:16–24PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Byrne RA, Colleran R, Kastrati A (2018) Strengths and limitations of real world data in patients treated with coronary stents. Circ Cardiovasc Interv 9:e007239.  https://doi.org/10.1161/CIRCINTERVENTIONS.118.007239CrossRefGoogle Scholar
  24. 24.
    Neumann FJ, Sousa-Uva M, Ahlsson A, Alfonso F, Banning AP, Benedetto U, Byrne RA, Collet JP, Falk V, Head SJ, Jüni P, Kastrati A, Koller A, Kristensen SD, Niebauer J, Richter DJ, Seferovic PM, Sibbing D, Stefanini GG, Windecker S, Yadav R, Zembala MO (2018) ESC Scientific Document Group. ESC/EACTS Guidelines on myocardial revascularization [published online August 25, 2018]. Eur Heart J.  https://doi.org/10.1093/eurheartj/ehy394. https://academic.oup.com/eurheartj/advance-article/doi/10.1093/eurheartj/ehy394/5079120CrossRefGoogle Scholar
  25. 25.
    Taniwaki M, Rau MD, Zaugg D et al (2016) Mechanisms of very late drug-eluting stent thrombosis assessed by optical coherence tomography. Circulation 133:650–660PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Cook S, Wenaweser P, Togni M et al (2007) Incomplete stent apposition and very late stent thrombosis after drug-eluting stent implantation. Circulation 115:2426–2434PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Joner M, Finn AV, Farb A et al (2006) Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol 4881:193–202CrossRefGoogle Scholar
  28. 28.
    Otsuka F, Vorphal M, Nakano M et al (2014) Pathology of second-generation everolimus-eluting stents versus first generation sirolimus-and paclitaxel-eluting stents in humans. Circulation 129:211–223PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Indolfi C, De Rosa S, Colombo A (2016) Bioresorbable vascular scaffolds – basic concepts and clinical outcome. Nat Rev Cardiol 13:719–729PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Rizik DG, Hermiller JB, Kereiakes DJ (2016) Bioresorbable vascular scaffolds for the treatment of coronary artery disease: clinical outcomes from randomized controlled trials. Catheter Cardiovasc Interv S1:21–30.  https://doi.org/10.1002/ccd.26810CrossRefGoogle Scholar
  31. 31.
    Joner M, Koppara T, Virmani R et al (2016) Improving vessel healing with fully bioresorbable drug-eluting stents: more than a pipe dream. Eur Heart J 37:241–244PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Iqbal J, Onuma Y, Ormiston J et al (2014) Bioresorbable scaffolds: rationale, current status, challenges, and future. Eur Heart J 35:765–776PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Rapetto C, Leoncini M (2017) Review Magmaris: a new generation metallic sirolimus-eluting fully bioresorbable scaffold: present status and future perspectives. J Thorac Dis 9(Suppl 9):S903–S913PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Sakamoto A, Jinnouchi H, Torii S, Virmani R, Finn AV (2018) Understanding the impact of stent and scaffold material and strut design on coronary artery thrombosis from the basic and clinical points of view. Bioengineering (Basel) 5(3):pii: E71.  https://doi.org/10.3390/bioengineering5030071CrossRefGoogle Scholar
  35. 35.
    Onuma Y, Serruys PW (2011) Bioresorbable scaffold: the advent of a new era in percutaneous coronary and peripheral revascularization? Circulation 123:779–797PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Indolfi C, De Rosa S, Colombo A (2016) Bioresorbable vascular scaffolds – basic concepts and clinical outcome. Lancet 387:537–544CrossRefGoogle Scholar
  37. 37.
    Cassese S, Byrne RA, Ndrepepa G et al (2016) Everolimus-eluting bioresorbable vascular scaffolds versus everolimus-eluting metallic stents: a meta-analysis of randomised controlled trials. Lancet 6(387):537–544CrossRefGoogle Scholar
  38. 38.
    Felix CM, van den Berg VJ, Hoeks SE et al (2018) Mid-term outcomes of the absorb BVS versus second-generation DES: a systematic review and meta-analysis. PLoS One 13:e0197119PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Sanchez OD, Yahagi K, Byrne RA et al (2015) Pathological aspects of bioresorbable stent implantation. EuroIntervention 11(Suppl V):V159–V165PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Schild HH, Strunk H (1997) Biological effects of metallic stents. In: Adam A, Dondelinger R, Mueller P (eds) Textbook of metallic stents. ISIS, Medical Media, OxfordGoogle Scholar
  41. 41.
    Rousseau H, Puel J, Joffre F et al (1987) Self expanding endovascular prosthesis: an experimental study. Radiology 164:709–714PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Chaabane C, Otsuka F, Virmani R et al (2013) Biological responses in stented arteries. Cardiovasc Res 15(99):353–363CrossRefGoogle Scholar
  43. 43.
    Consigny PM, Tulenko TN, Nicosia RF (1986) Immediate and long term effects of angioplasty on normal rabbit iliac artery. Arteriosclerosis 6:265–276PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Lindner V, Lappi D, Baird A et al (1991) Role of basic fibroblast growth factor in vascular lesion formation. Circ Res 68:106–113PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Palmaz FC, Tio FO, Schatz RA et al (1998) Early endothelialization of balloon expandable stents: experimental observations. J Intervent Radiol 3:119–124Google Scholar
  46. 46.
    Palmaz FC, Windeler SA, Garcia F et al (1986) Artheriosclerotic rabbit aortas: expandable intraluminal grafting. Radiology 160:723–726PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Van der Heiden K, Gijsen FJ, Narracott A et al (2013) The effects of stenting on shear stress: relevance to endothelial injury and repair. Cardiovasc Res 99:269–275PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Maass D, Demiere D, Deaton D et al (1983) Transluminal implantation of self-adjustable expanding prosthesis: principles, techniques and results. Prog Artif Organs 2:979Google Scholar
  49. 49.
    Beyar R, Shofti R, Grenedier F et al (1993) Coronary arterial histological response to the self expandable nitinol stent. J Am Coll Cardiol 21:336AGoogle Scholar
  50. 50.
    Beyar R, Shofti R, Grenedier F et al (1994) Self expandable nitinol stent for cardiovascular applications: canine and human experience. Catheter Cardiovasc Diagn 3:162–170CrossRefGoogle Scholar
  51. 51.
    Schwartz SM, Campbell GR, Campbell JH (1986) Replication of smooth muscle cells in vascular disease. Circ Res 58:427PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Farb A, Kolodgie FD, Hwang JY et al (2004) Extracellular matrix changes in stented human coronary arteries. Circulation 110:940–947PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Curcio A, Torella D, Indolfi C (2011) Mechanisms of smooth muscle cell proliferation and endothelial regeneration after vascular injury and stenting: approach to therapy. Circ J 75:1287–1296PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Mennuni MG, Pagnotta PA, Stefanini GG (2016) Coronary stents: the impact of technological advances on clinical outcomes. Ann Biomed Eng 44:488–496PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Sousa JE, Costa MA, Abizaid AC et al (2001) Sustained suppression of neointimal proliferation by sirolimus-eluting stents: one-year angiographic and intravascular ultrasound follow-up. Circulation 104:2007–2011CrossRefGoogle Scholar
  56. 56.
    Stone GW, Ellis SG, Cox DA, TAXUS-IV Investigators et al (2004) A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N Engl J Med 350:221–231PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Granada JF, Inami S, Aboodi MS et al (2010) Development of a novel prohealing stent designed to deliver sirolimus from a biodegradable abluminal matrix. Circ Cardiovasc Interv 3:257–266PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Iannaccone M, D’Ascenzo F, Templin C et al (2017) Optical coherence tomography evaluation of intermediate-term healing of different stent types: systemic review and meta-analysis. Eur Heart J Cardiovasc Imaging 18:159–166PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Whittaker DR, Fillinger MF (2006) The engineering of endovascular stent technology: a review. Vasc Endovasc Surg 40:85–94CrossRefGoogle Scholar
  60. 60.
    Foin N, Lee RD, Torii R et al (2014) Impact of stent strut design in metallic stents and biodegradable scaffolds. Int J Cardiol 177:800–808PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Honorari G, Ellis SG, Wilkoff BL et al (2008) Hypersensitivity reactions associated with endovascular devices. Contact Dermatitis 59:7–22CrossRefGoogle Scholar
  62. 62.
    O’Brien BJ, Stinson JS, Larsen SR, Eppihimer MJ, Carroll WM (2010) A platinum-chromium steel for cardiovascular stents. Biomaterials 31:3755–3761PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Gotman I (1997) Characteristics of metals used in implants. J Endourol 11:383–389PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Stefanini GG, Holmes DR (2013) Drug eluting coronary-artery stents. N Engl J Med 368:254–265PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Canfield J, Totary-Jain H (2018) 40 years of percutaneous coronary intervention: history and future directions. J Pers Med 1:8. pii: E33.  https://doi.org/10.3390/jpm8040033CrossRefGoogle Scholar
  66. 66.
    Lee DH, de la Torre Hernandez JM (2018) The newest generation of drug-eluting stents and beyond. Eur Cardiol 13:54–59PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Zhang Y, Bourantas CV, Farooq V et al (2016) Bioresorbable scaffolds in the treatment of coronary artery disease. BMC Cardiovasc Disord 16:38.  https://doi.org/10.1186/s12872-016-0207-5CrossRefGoogle Scholar
  68. 68.
    Picard F, Pighi M, de Hemptinne Q, et al (2018) Comparison of the biodegradable polymer everolimus-eluting stent with contemporary drug-eluting stents: a systematic review and meta-analysis. Int J Cardiol. pii: S0167-5273(18)31913-2Google Scholar
  69. 69.
    Byrne RA, Alfonso F, Schneider S et al (2018) Prospective, randomized trial of bioresorbable scaffolds vs. everolimus-eluting stents in patients undergoing coronary stenting for myocardial infarction: the Intracoronary Scaffold Assessment a Randomized evaluation of Absorb in Myocardial Infarction (ISAR-Absorb MI) trial. Eur Heart J.  https://doi.org/10.1093/eurheartj/ehy710. [Epub ahead of print]CrossRefGoogle Scholar
  70. 70.
    Guagliumi G, Capodanno D (2018) Drug-eluting stents are not alike – does it matter? Eur Heart J Qual Care Clin Outcomes.  https://doi.org/10.1093/ehjqcco/qcy052. [Epub ahead of print]CrossRefGoogle Scholar
  71. 71.
    World Health Organization. International programme on chemical safety, immunotoxicity, Harmonization Project Document No 10. Guidance for immunotoxicity Risk Assessments for Chemicals. This project was conducted within the WHO/International Programme on Chemical Safety project on the Harmonization of Approaches to the Assessment of Risk from Exposure to Chemicals, WHO Library Cataloguing-in-Publication Data ISBN 978 92 4 150330 3 Printed by the WHO Document Production Services, Geneva, Switzerland 2011. Available from: http://www.who.int/ipcs/methods/harmonization/areas/immunotoxicity/en/. Accessed 2018-12-11
  72. 72.
    Fischer A, Wieneke H, Brauer H et al (2001) Metallic biomaterials for coronary stents. Z Kardiol 90:251–262PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Halwani DO, Anderson PG, Lemons JE et al (2011) In-vivo corrosion and local release of metallic ions from vascular stents into surrounding tissue. J Invasive Cardiol 22:528–535Google Scholar
  74. 74.
    Svedman C, Möller H, Gruvberger B et al (2014) Implants and contact allergy: are sensitizing metals released as haptens from coronary stents? Contact Dermatitis 71:92–97PubMedCrossRefGoogle Scholar
  75. 75.
    Schmalz GP. Garhammer P, Reitinger T (1999) Metal content of biopsies from neighborhood of casting alloys. J Dent Res 7, abstract No 1048, 236Google Scholar
  76. 76.
    Dimic ID, Cvijovic-Alagic IL, Kostic IT et al (2014) Metallic ion release from biocompatible cobalt-based alloy. Chem Ind Chem Eng Q 20:571–577CrossRefGoogle Scholar
  77. 77.
    Scmidt M, Raghavan B, Muller V et al (2010) Crucial role for human toll-like receptor 4 in the development of contact allergy to nickel. Nat Immunol 11:814–819CrossRefGoogle Scholar
  78. 78.
    Raghavan B, Martin SF, Esser PR et al (2012) Metal allergens nickel and cobalt facilitate TLR4 homodimerization independently of MD2. EMBO Rep 13:1109–1115PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Rachmawati D (2016) Innate immune reactivity to dental alloys, thesis. Vrije Universiteit, AmsterdamGoogle Scholar
  80. 80.
    Gong Z, Li M, Guo X et al (2013) Stent implantation in patients with metal allergy: a systemic review and meta-analysis. Coron Artery Dis 24:684–689PubMedPubMedCentralGoogle Scholar
  81. 81.
    Koster R, Vieluf D, Kiehn M et al (2000) Nickel and molybdenum contact allergies in patients with coronary in-stent restenosis. Lancet 356:1895–1897PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Hillen U, Haude M, Erbel R et al (2002) Evaluation of metal allergies in patients with coronary stents. Contact Dermatitis 47:353–356PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Iijima R, Iakri Y, Amiya E, Tanimoto S, Nakazawa G et al (2005) The impact of metallic allergy on stent implantation: metal allergy and recurrence of in-stent restenosis. Int J Cardiol 104:319–325PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Norgaz T, Hobioglu G, Serdar ZA et al (2005) Is there a link between nickel allergy and coronary stent restenosis? Tohoku J Exp Med 206:243–246PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Saito T, Hokimoto S, Oshima S et al (2009) Metal allergic reaction in chronic refractory in-stent restenosis. Cardiovasc Revasc Med 10:17–22PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Svedman C, Ekqvist S, Möller H et al (2009) A correlation found between contact allergy to stent material and restenosis of the coronary arteries. Contact Dermatitis 60:158–164PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    El-Mawardy R, Fuad H, Abdel-Salam Z et al (2011) Does nickel allergy play a role in the development of in-stent restenosis? Eur Rev Med Pharmacol Sci 15:1235–1240PubMedPubMedCentralGoogle Scholar
  88. 88.
    Thyssen JP, Engkilde K, Menné et al (2011) No association between metal allergy and cardiac in-stent restenosis in patients with dermatitis-results from a linkage study. Contact Dermatitis 64:138–141PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Aliağaoğlu C, Turan H, Erden I et al (2012) Relation of nickel allergy with in-stent restenosis in patients treated with cobalt chromium stents. Ann Dermatol 24:426–429PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Slodownik D, Danenberg C, Merkin D et al (2018) Coronary stent restenosis and the association with allergy to metal content of 316L stainless steel. Cardiovasc J Afr 29:43–45PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Ekqvist S, Svedman C, Möller H et al (2007) High frequency of contact allergy to gold in patients with endovascular coronary stents. Br J Dermatol 157:730–738PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Ekqvist S, Svedman C, Lundh T et al (2008) A correlation found between gold concentration in blood and patch test reactions in patients with coronary stents. Contact Dermatitis 59:137–142PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Nakazawa G, Tanabe K, Aoki J (2008) Sirolimus-eluting stents suppress neointimal formation irrespective of metallic allergy. Circ J 72:893–896PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Shokri M, Bagheri B, Garjani A (2015) Everolimus-eluting stents reduce monocyte expression of toll-like receptor 4. Adv Pharm Bull 5:643–647PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Daemen J, Wenaweser P, Tsuchida K et al (2007) Early and late coronary stent thrombosis of sirolimus-eluting and paclitaxel-eluting stents in routine clinical practice: data from a large two-institutional cohort study. Lancet 369:667–678PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Wenaweser P, Daemen J, Zwahlen M et al (2008) Incidence and correlates of drug-eluting stent thrombosis in routine clinical practice. 4-year results from a large 2-institutional cohort study. J Am Coll Cardiol 52:1134–1140PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Chatterjee S, Pandey (2008) Drug eluting stents: friend or foe? A review of cellular mechanisms behind the effects of paclitaxel and sirolimus eluting stents. Curr Drug Metab 9:554–566PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Virmani R, Guagliumi G, Farb A et al (2004) Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent: should we be cautious? Circulation 109:701–705PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Nebeker JR, Virmani R, Bennett CL et al (2006) Hypersensitivity cases associated with drug eluting coronary stents. JACC 47:175–181PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Yamaji K, Kubo S, Inoue K et al (2014) Association of localized hypersensitivity and in-stent neoatherosclerosis with the very late drug-eluting stent thrombosis. PLoS One 9:e113870PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Cook S, Ladich E, Nakazawa G et al (2009) Correlation of intravascular ultrasound findings with histopathological analysis of thrombus aspirates in patients with very late drug-eluting stent thrombosis. Circulation 120:391–399PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Kounis NG (2016) Kounis syndrome: an update on epidemiology, pathogenesis, diagnosis and therapeutic management. Clin Chem Lab Med 54:1545–1559PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Fassio F, Losappio L, Antolin-Amerigo D et al (2016) Kounis syndrome: a concise review with focus on management. Eur J Intern Med 30:7–10PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Akinapelli A, Chen JP, Roy K et al (2017) Current state of bioabsorbable polymer-coated drug-eluting stents. Curr Cardiol Rev 13:139–154PubMedPubMedCentralGoogle Scholar
  105. 105.
    Van der Giessen WJ, Lincoff AM, Schwartz RS et al (1996) Marked inflammatory sequelae to implantation of biodegradable and non biodegradable polymers in porcine coronary arteries. Circulation 94:1690–1697PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Tenekecioglu E, Farooq V, Bourantas CV et al (2016) Bioresorbable scaffolds: a new paradigm in percutaneous coronary intervention. BMC Cardiovasc Disord 16:38PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Otsuka F, Yahagi K, Ladich E et al (2015) Hypersensitivity reaction in the US Food and Drug Administration-approved second-generation drug-eluting stents: histopathological assessment with ex vivo optical coherence tomography. Circulation 13:322–324CrossRefGoogle Scholar
  108. 108.
    Nikam N, Steinberg TB, Steinberg DH (2015) Advances in stent technologies and their effect on clinical efficacy and safety. J Allergy Clin Immunol Pract 3:683–695CrossRefGoogle Scholar
  109. 109.
    Canfield J, Totary-Jain H (2018) 40 years of percutaneous coronary intervention: history and future directions. J Pers Med 8. pii: E33.  https://doi.org/10.3390/jpm8040033PubMedCentralCrossRefGoogle Scholar
  110. 110.
    Muramatsu T, Onuma Y, Zhang YJ et al (2013) Progress in treatment by percutaneous coronary intervention: the stent of the future. Rev Esp Cardiol (Engl Ed) 66:483–496CrossRefGoogle Scholar
  111. 111.
    Kalra A, Rehman H, Khera S et al (2017) New-generation coronary stents: current data and future directions. Curr Atheroscler Rep 19:14PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Thyssen JP, Menné T, Schalock PC et al (2011) Pragmatic approach to the clinical work-up of patients with putative allergic disease to metallic orthopedic implants before and after surgery. Br J Dermatol 164:473–478PubMedPubMedCentralGoogle Scholar
  113. 113.
    Schalock PC, Menné T, Johansen JD (2012) Hypersensitivity reactions to metallic implants-diagnostic algorithm and suggested patch test series for clinical use. Contact Dermatitis 66:4–19PubMedCrossRefGoogle Scholar
  114. 114.
    Liden C, Bruze M (2016) Kontaktallergi mot ortopediska metallimplantat är svårbedömd. Lakartidningen 113:D6L9PubMedPubMedCentralGoogle Scholar
  115. 115.
    Rosner GA, Fonacier LS (2017) Hypersensitivity to biomedical implants: prevention and diagnosis. Allergy Asthma Proc 38:177–183PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Kieffer M (1979) Nickel sensitivity: relationship between history and patch test reaction. Contact Dermatitis 5:398–401PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Ahnlide I, Ahlgren C, Björkner B et al (2002) Gold concentration in blood in relation to the number of gold restorations and contact allergy to gold. Acta Odontol Scand 60:301–305PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Ekqvist S, Lundh T, Svedman C et al (2009) Does gold concentration in blood influence the result of patch testing to gold? Br J Dermatol 160:1016–1021PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Lai DW, Saver JL, Araujo JA et al (2005) Pericarditis associated with nickel hypersensitivity to Amplatzer occluder device: a case report. Catheter Cardiovasc Interv 66:424–426PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Johansen JD, Aalto-Korte K, Agner T et al (2015) European Society of Contact Dermatitis guideline for diagnostic patch testing – recommendations on best practice. Contact Dermatitis 73:195–221PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Fall S, Bruze M, Isaksson M et al (2015) Contact allergy trends in Sweden – a retrospective comparison of patch test data from 1992, 2000, and 2009. Contact Dermatitis 72:297–304PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Thyssen JP, Linneberg A, Menné T et al (2009) Contact allergy to allergens of the TRUE-test (panels 1 and 2) has decreased modestly in the general population. Br J Dermatol 161:1124–1129PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Fischer LA, Johansen JD, Menné T (2007) Nickel allergy: relationship between patch test and repeated open application test thresholds. Br J Dermatol 157:723–729PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Occupational and Environmental DermatologySkåne University Hospital, University of LundMalmöSweden

Personalised recommendations