Chemical Methods for Detection of Allergens and Skin Exposure

  • Jakob Dahlin
  • Cecilia SvedmanEmail author
  • Birgitta Gruvberger
  • Magnus Bruze
  • Carola Lidén
  • Sigfrid Fregert
Living reference work entry

Latest version View entry history



Many allergens are widely used in both consumer and occupational products. In many cases, it is difficult to know all the ingredients of a product since most products are not sufficiently labelled. To diagnose and prevent allergic contact dermatitis, the demonstration of allergens in the products from the patient’s environment is important. Chemical analysis of a product can make it possible to demonstrate the presence or absence of known allergens. Simple spot tests or documented analytical methods such as thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), gas chromatography (GC), atomic absorption spectrophotometry (AAS), and inductively coupled plasma-mass spectrometry (ICP-MS) can be used. Moreover, with chemical methods, the purity of a substance can be checked and new allergens can be isolated and identified. Advanced methods such as mass spectrometry (MS), nuclear magnetic resonance spectroscopy (NMR), and infrared spectrophotometry (IR) are often required to identify isolated allergens.


Chemical analysis Spot test Thin layer chromatography Extract Liquid chromatography Gas chromatography Mass spectrometry Atomic absorption Spectrophotometry UV IR NMR Nickel Cobalt Chromate Formaldehyde Epoxy Skin exposure assessment Fluorescent tracer Tape stripping Acid wipe sampling Bag rinsing Surrogate skin sampling 


  1. 1.
    Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/ECGoogle Scholar
  2. 2.
    Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006]Google Scholar
  3. 3.
    Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic productsGoogle Scholar
  4. 4.
    Fregert S, Gruvberger B, Sandahl E (1979) Reduction of chromate in cement by iron sulfate. Contact Dermatitis 5:39–42PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Isaksson M, Persson L (2015) 'Mislabelled' make-up remover wet wipes as a cause of severe, recalcitrant facial eczema. Contact Dermatitis 73:56–59PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Bruze M, Gruvberger B, Fregert S (2006) Chemical skin burns. In: Chew A, Maibach HI, Lepoittevin JP (eds) Irritant dermatitis. Springer, BerlinGoogle Scholar
  7. 7.
    Bruze M, Engfeldt M (2014) Chemical skin burns and hand eczema. In: Alikhan A, Lachapelle J-M, Maibach HI (eds) Textbook of hand eczema. Springer, Berlin, HeidelbergGoogle Scholar
  8. 8.
    Feigl F, Anger V (1966) Spot tests in organic analysis, 7th edn. Elsevier, AmsterdamGoogle Scholar
  9. 9.
    Feigl F, Anger V (1972) Spot tests in inorganic analysis, 6th edn. Elsevier, AmsterdamGoogle Scholar
  10. 10.
    Thyssen JP, Menné T, Johansen JD et al (2010) A spot test for detection of cobalt release – early experience and findings. Contact Dermatitis 63:63–69PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Blohm SG (1959) Formaldehyde contact dermatitis. I. A simple method for determination of small amounts of formaldehyde. Acta Derm Venereol 39:450–453PubMedPubMedCentralGoogle Scholar
  12. 12.
    Bruze M (2014) The use of ultrasonic bath extracts in the diagnostics of contact allergy and allergic contact dermatitis. Recommendations from the ICDRG, Patch Testing TipsCrossRefGoogle Scholar
  13. 13.
    Bruze M, Frick M, Persson L (2003) Patch testing with thin-layer chromatograms. Contact Dermatitis 48:278–279PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Susitaival P, Winhoven SM, Williams J et al (2010) An outbreak of furniture related dermatitis (‘sofa dermatitis’) in Finland and the UK: history and clinical cases. J Eur Acad Dermatol Venereol 24:486–489PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Young E, Zimerson E, Bruze M et al (2016) Two sensitizing oxidation products of p-phenylenediamine patch tested in patients allergic to p-phenylenediamine. Contact Dermatitis 74:76–82PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Mowitz M, Zimerson E, Svedman C et al (2013) Patch testing with serial dilutions and thin-layer chromatograms of oak moss absolutes containing high and low levels of atranol and chloroatranol. Contact Dermatitis 69:342–349PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Bruze M, Fregert S (1983) Studies on purity and stability of photopatch test substances. Contact Dermatitis 9:33–39PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Bregnbak D, Johansen JD, Jellesen MS et al (2015) Chromium(VI) release from leather and metals can be detected with a diphenylcarbazide spot test. Contact Dermatitis 73:281–288PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Fregert S, Gruvberger B (1972) Chemical properties of cement. Berufsdermatosen 20:238–248PubMedPubMedCentralGoogle Scholar
  20. 20.
    Hansen MB, Menne T, Johansen JD (2006) Cr(III) and Cr(VI) in leather and elicitation of eczema. Contact Dermatitis 54:278–282PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Ingber A, Gammelgaard B, David M (1998) Detergents and bleaches are sources of chromium contact dermatitis in Israel. Contact Dermatitis 38:101–104PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Julander A, Hindsen M, Skare L et al (2009) Cobalt-containing alloys and their ability to release cobalt and cause dermatitis. Contact Dermatitis 60:165–170PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Lachapelle JM, Lauwerys R, Tennstedt D et al (1980) Eau de Javel and prevention of chromate allergy in France. Contact Dermatitis 6:107–110PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Nygren O, Wahlberg JE (1998) Speciation of chromium in tanned leather gloves and relapse of chromium allergy from tanned leather samples. Analyst 123:935–937PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Summer B, Fink U, Zeller R et al (2007) Patch test reactivity to a cobalt-chromium-molybdenum alloy and stainless steel in metal-allergic patients in correlation to the metal ion release. Contact Dermatitis 57:35–39PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Tandon R, Aarts B (1993) Chromium, nickel and cobalt contents of some Australian cements. Contact Dermatitis 28:201–205PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Wass U, Wahlberg JE (1991) Chromated steel and contact allergy. Recommendation concerning a “threshold limit value” for the release of hexavalent chromium. Contact Dermatitis 24:114–118PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Lind ML, Boman A, Surakka J et al (2004) A method for assessing occupational dermal exposure to permanent hair dyes. Ann Occup Hyg 48:533–539PubMedPubMedCentralGoogle Scholar
  29. 29.
    Bergendorff O, Hansson C (2001) Stability of thiuram disulfides in patch test preparations and formation of asymmetric disulfides. Contact Dermatitis 45:151–157PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Bergendorff O, Persson C, Hansson C (2006) High-performance liquid chromatography analysis of rubber allergens in protective gloves used in health care. Contact Dermatitis 55:210–215PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Knudsen BB, Larsen E, Egsgaard H et al (1993) Release of thiurams and carbamates from rubber gloves. Contact Dermatitis 28:63–69PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Vucicevic-Prcetic K, Cservenak R, Radulović N (2011) Determination of neomycin and oxytetracycline in the presence of their impurities in veterinary dosage forms by high-performance liquid chromatography/tandem mass spectrometry. J AOAC Int 94:750–757PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Bruze M, Fregert S, Gruvberger B (1984) Occurrence of Para-aminobenzoic acid and benzocaine as contaminants in sunscreen agents of Para-aminobenzoic acid type. Photo-Dermatology 1:277–285PubMedPubMedCentralGoogle Scholar
  34. 34.
    Bruze M, Gruvberger B, Thulin I (1990) PABA, benzocaine, and other PABA esters in sunscreens and after-sun products. Photodermatol Photoimmunol Photomed 7:106–108PubMedPubMedCentralGoogle Scholar
  35. 35.
    Al-Otaibi F, Ghazaly E, Johnston A et al (2014) Development of HPLC-UV method for rapid and sensitive analysis of topically applied tetracaine: its comparison with a CZE method. Biomed Chromatogr 28:826–830PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Elsayed MM (2007) Rapid determination of cinchocaine in skin by high-performance liquid chromatography. Biomed Chromatogr 21:491–496PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Fisher's Contact D (1995) Eds Rietschel RL, fowler JFJ 4th edn. Williams & Wilkins, Baltimore, pp 857–857Google Scholar
  38. 38.
    European Committee for Standardisation (CEN) (2002) Screening tests for nickel release from alloys and coatings in items that come in direct and prolonged contact with the skin. CR 12471Google Scholar
  39. 39.
    Liden C, Johnsson S (2001) Nickel on the Swedish market before the Nickel Directive. Contact Dermatitis 44:7–12PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Liden C, Rondell E, Skare L et al (1998) Nickel release from tools on the Swedish market. Contact Dermatitis 39:127–131PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Andersen KE, Nielsen GD, Flyvholm MA et al (1983) Nickel in tap water. Contact Dermatitis 9:140–143PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Pedersen NB, Fregert S, Brodelius P et al (1974) Release of nickel from silver coins. Acta Derm Venereol 54:231–234PubMedPubMedCentralGoogle Scholar
  43. 43.
    European Committee for Standardisation (CEN) (2015) Reference test method for release of nickel from all post assemblies which are inserted into pierced parts of the human body and articles intended to come into direct and prolonged contact with the skin EN 1811:2011+A1:2015Google Scholar
  44. 44.
    Fischer T, Fregert S, Gruvberger B et al (1984) Contact sensitivity to nickel in white gold. Contact Dermatitis 10:23–24PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Goon AT, Bruze M, Zimerson E et al (2011) Variation in allergen content over time of acrylates/methacrylates in patch test preparations. Br J Dermatol 164:116–124PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Mose KF, Andersen KE, Christensen LP (2013) Investigation of the homogeneity of methacrylate allergens in commercially available patch test preparations. Contact Dermatitis 69:239–244PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Bergh M, Menne T, Karlberg AT (1994) Colophony in paper-based surgical clothing. Contact Dermatitis 31:332–333PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Ehrin E, Karlberg AT (1990) Detection of rosin (colophony) components in technical products using an HPLC technique. Contact Dermatitis 23:359–366PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Karlberg AT, Gafvert E, Meding B et al (1996) Airborne contact dermatitis from unexpected exposure to rosin (colophony). Rosin sources revealed with chemical analyses. Contact Dermatitis 35:272–278PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Sadhra S, Gray CN, Foulds IS (1997) High-performance liquid chromatography of unmodified rosin and its applications in contact dermatology. J Chromatogr B Biomed Sci Appl 700:101–110PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Karlberg AT, Magnusson K (1996) Rosin components identified in diapers. Contact Dermatitis 34:176–18OPubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Karlberg AT, Gafvert E, Liden C (1995) Environmentally friendly paper may increase risk of hand eczema in rosin-sensitive persons. J Am Acad Dermatol 33:427–432PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Rastogi SC, Schouten A, de Kruijf N et al (1995) Contents of methyl-, ethyl-, propyl-, butyl- and benzylparaben in cosmetic products. Contact Dermatitis 32:28–30PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Seventh Commission Directive 96/45/EC of 2 July 1996 relationg to methods of analysis necessary for checking the composition of cosmetic productsGoogle Scholar
  55. 55.
    Sottofattori E, Anzaldi M, Balbi A et al (1998) Simultaneous HPLC determination of multiple components in a commercial cosmetic cream. J Pharm Biomed Anal 18:213–217PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Kaniwa MA, Isama K, Nakamura A et al (1994) Identification of causative chemicals of allergic contact dermatitis using a combination of patch testing in patients and chemical analysis. Application to cases from industrial rubber products. Contact Dermatitis 30:20–25PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Kaniwa MA, Momma J, Ikarashi Y et al (1992) A method for identifying causative chemicals of allergic contact dermatitis using a combination of chemical analysis and patch testing in patients and animal groups: application to a case of rubber boot dermatitis. Contact Dermatitis 27:166–173PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Hansson C, Bergendorff O, Ezzelarab M et al (1997) Extraction of mercaptobenzothiazole compounds from rubber products. Contact Dermatitis 36:195–200PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Kaniwa MA, Isama K, Nakamura A et al (1994) Identification of causative chemicals of allergic contact dermatitis using a combination of patch testing in patients and chemical analysis. Application to cases from rubber footwear. Contact Dermatitis 30:26–34PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Fregert S, Trulsson L (1978) Simple methods for demonstration of epoxy resins of bisphenol a type. Contact Dermatitis 4:69–72PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Fregert S, Meding B, Trulsson L (1984) Demonstration of epoxy resin in stoma pouch plastic. Contact Dermatitis 10:106PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Jenkinson HA, Burrows D (1987) Pitfalls in the demonstration of epoxy resins. Contact Dermatitis 16:226–227PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Hansson C (1994) Determination of monomers in epoxy resin hardened at elevated temperature. Contact Dermatitis 31:333–334PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Le Coz CJ, Coninx D, Van Rengen A et al (1999) An epidemic of occupational contact dermatitis from an immersion oil for microscopy in laboratory personnel. Contact Dermatitis 40:77–83PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Oxholm A, Heidenheim M, Larsen E et al (1990) Extraction and patch testing of Methylcinnamate, a newly recognized fraction of balsam of Peru. Am J Contact Dermatitis 48:108–111Google Scholar
  66. 66.
    Avenel-Audran M, Goossens A, Zimerson E et al (2003) Contact dermatitis from electrocardiograph-monitoring electrodes: role of p-tert-butylphenol-formaldehyde resin. Contact Dermatitis 48:108–111PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Depree GJ, Bledsoe TA, Siegel PD (2005) Survey of sulfur-containing rubber accelerator levels in latex and nitrile exam gloves. Contact Dermatitis 53:107–113PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Dahlquist I, Fregert S, Gruvberger B (1980) Reliability of the chromotropic acid method for qualitative formaldehyde determination. Contact Dermatitis 6:357–358PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Fregert S, Dahlquist I, Gruvberger B (1984) A simple method for the detection of formaldehyde. Contact Dermatitis 10:132–134PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Gryllaki-Berger M, Mugny C, Perrenoud D et al (1992) A comparative study of formaldehyde detection using chromotropic acid, acetylacetone and HPLC in cosmetics and household cleaning products. Contact Dermatitis 26:149–154PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Sherertz EF (1992) Clothing dermatitis: practical aspects for the clinician. Dermatitis 3:55–64CrossRefGoogle Scholar
  72. 72.
    Stonecipher MR, Sherertz EF (1993) Office detection of formaldehyde in fabric: assessment of methods and update on frequency. Am J Contact Dermatitis 4:172–174CrossRefGoogle Scholar
  73. 73.
    Bergendorff O, Ezzelarab M, Wallengren J et al (1994) Airborne Contact dermatitis from formaldehyde released from heated plastic polymers. Dermatitis 5:223–225Google Scholar
  74. 74.
    Karlberg AT, Skare L, Lindberg I et al (1998) A method for quantification of formaldehyde in the presence of formaldehyde donors in skin-care products. Contact Dermatitis 38:20–28PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Second Commission Directive 82/434/EEC, Annex IV, Identification and determination of free fromaldehydeGoogle Scholar
  76. 76.
    Benassi CA, Semenzato A, Bettero A (1989) High-performance liquid chromatographic determination of free formaldehyde in cosmetics. J Chromatogr 464:387–393PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Villa C, Gambaro R, Mariani E et al (2007) High-performance liquid chromatographic method for the simultaneous determination of 24 fragrance allergens to study scented products. J Pharm Biomed Anal 44:755–762PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Rastogi SC (1995) Analysis of fragrances in cosmetics by gas chromatography–mass spectrometry. J High Resolut Chromatogr 18:653–658CrossRefGoogle Scholar
  79. 79.
    Rastogi SC, Johansen JD, Menne T (1996) Natural ingredients based cosmetics. Content of selected fragrance sensitizers. Contact Dermatitis 34:423–426PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Paulsen E, El-Houri RB, Andersen KE et al (2015) Sunflower seeds as eliciting agents of Compositae dermatitis. Contact Dermatitis 72:172–177PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Seo CS, Shin HK (2015) Simultaneous determination of three sesquiterpene lactones in Aucklandia lappa Decne by high-performance liquid chromatography. Pharmacogn Mag 11:562–566PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Gruvberger B, Bruze M, Tammela M (1998) Preservatives in moisturizers on the Swedish market. Acta Derm Venereol 78:52–56PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Gardana C, Simonetti P (2011) Evaluation of allergens in propolis by ultra-performance liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 25:1675–1682PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Gruvberger B, Persson K, Bjorkner B et al (1986) Demonstration of Kathon CG in some commercial products. Contact Dermatitis 15:24–27PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Rastogi SC (1990) Kathon CG and cosmetic products. Contact Dermatitis 22:155–160PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Isaksson M, Gruvberger B, Persson L et al (2000) Stability of corticosteroid patch test preparations. Contact Dermatitis 42:144–148PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Rastogi SC, Johansen SS (1995) Comparison of high-performance liquid chromatographic methods for the determination of 1,2-dibromo-2,4-dicyanobutane in cosmetic products. J Chromatogr A 692:53–57CrossRefGoogle Scholar
  88. 88.
    Rastogi SC, Zachariae C, Johansen JD et al (2004) Determination of methyldibromoglutaronitrile in cosmetic products by high-performance liquid chromatography with electrochemical detection. Method validation. J Chromatogr A 1031:315–317PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Ryberg K, Gruvberger B, Zimerson E et al (2008) Chemical investigations of disperse dyes in patch test preparations. Contact Dermatitis 58:199–209PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Raison-Peyron N, Bergendorff O, Bourrain JL et al (2016) Acetophenone azine: a new allergen responsible for severe contact dermatitis from shin pads. Contact Dermatitis 75:106–110PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Henriks-Eckerman ML, Kanerva L (1997) Gas chromatographic and mass spectrometric purity analysis of acrylates and methacrylates used as patch test substances. Am J Contact Dermat 8:20–23PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Stingeni L, Cerulli E, Spalletti A et al (2015) The role of acrylic acid impurity as a sensitizing component in electrocardiogram electrodes. Contact Dermatitis 73:44–48PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Kerre S, Devos L, Verhoeve L et al (1996) Contact allergy to diethylthiourea in a wet suit. Contact Dermatitis 35:176–178PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Bergendorff O, Persson CM, Hansson C (2004) HPLC analysis of alkyl thioureas in an orthopaedic brace and patch testing with pure ethylbutylthiourea. Contact Dermatitis 51:273–277PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Dooms-Goossens A, Bruze M, Buysse L et al (1995) Contact allergy to allyl glycidyl ether present as an impurity in 3-glycidyloxypropyltrimethoxysilane, a fixing additive in silicone and polyurethane resins. Contact Dermatitis 33:17–19PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Svedman C, Zimerson E, Bruze M (2014) Allergic contact dermatitis caused by benzanthrone in a pair of trousers. Contact Dermatitis 71:54–57PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Schwensen JF, Lundov MD, Bossi R et al (2015) Methylisothiazolinone and benzisothiazolinone are widely used in paint: a multicentre study of paints from five European countries. Contact Dermatitis 72:127–138PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Tanahashi T, Sasaki K, Numata M et al (2019) Three cases of photoallergic contact dermatitis induced by benzophenone in amusement park wristbands. Contact Dermatitis 80(3):191–193PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Guthrie WG (1984) Analysis of bronopol in water-based lotion. Provisional HPLC method. The Boots Company PLC, NottinghamGoogle Scholar
  100. 100.
    Wang H, Provan GJ, Helliwell K (2002) Determination of bronopol and its degradation products by HPLC. J Pharm Biomed Anal 29:387–392PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Crépy MN, Bensefa-Colas L, Krief P et al (2011) Facial leucoderma following eczema: a new case induced by spectacle frames. Contact Dermatitis 65:243–245PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Kroona L, Warfvinge G, Isaksson M et al (2017) Quantification of l-carvone in toothpastes available on the Swedish market. Contact Dermatitis 77:224–230PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Opstrup MS, Johansen JD, Bossi R et al (2015) Chlorhexidine in cosmetic products – a market survey. Contact Dermatitis 72:55–58PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Williams RO 3rd, Mahaguna V, Sriwongjanya M (1997) Determination of diazolidinyl urea in a topical cream by high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 696:303–306PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Umekoji A, Fukai K, Sowa-Osako J et al (2016) Allergic contact dermatitis caused by the preservative 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one in black trousers. Contact Dermatitis 75:326–328PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Ponten A, Zimerson E, Sorensen O et al (2004) Chemical analysis of monomers in epoxy resins based on bisphenols F and A. Contact Dermatitis 50:289–297PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Schouten A, Vermeulen M (1994) The determination of dimethyloldimethylhydantoin (DMDMH) in cosmetic products. TNO nutrition and food research report V 94.608Google Scholar
  108. 108.
    Hulstaert E, Bergendorff O, Persson C et al (2018) Contact dermatitis caused by a new rubber compound detected in canvas shoes. Contact Dermatitis 78:12–17PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Pontén A, Hamnerius N, Bruze M et al (2013) Occupational allergic contact dermatitis caused by sterile non-latex protective gloves: clinical investigation and chemical analyses. Contact Dermatitis 68:103–110PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Frick M, Zimerson E, Karlsson D et al (2004) Poor correlation between stated and found concentrations of diphenylmethane-4,4′-diisocyanate (4,4′-MDI) in petrolatum patch-test preparations. Contact Dermatitis 51:73–78PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Meding B, Baum H, Bruze M et al (1990) Allergic contact dermatitis from diphenylthiourea in Vulkan heat retainers. Contact Dermatitis 22:8–12PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Fregert S, Trulson L, Zimerson E (1982) Contact allergic reactions to diphenylthiourea and phenylisothiocyanate in PVC adhesive tape. Contact Dermatitis 8:38–42PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Uter W, Hildebrandt S, Geier J et al (2007) Current patch test results in consecutive patients with, and chemical analysis of, disperse blue (DB) 106, DB 124, and the mix of DB 106 and 124. Contact Dermatitis 57:230–234PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Kaniwa M, Isama K, Nakamura A et al (1994) Identification of causative chemicals of allergic contact dermatitis using a combination of patch testing in patients and chemical analysis. Application to cases from rubber gloves. Contact Dermatitis 31:65–71PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Hald M, Bergendorff O, Isaksson M et al (2018) Allergic contact dermatitis caused by plastic items containing the ultraviolet absorber drometrizole. Contact Dermatitis 79:110–112PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Bruze M, Fregert S (1983) Allergic contact dermatitis from ethylene thiourea. Contact Dermatitis 9:208–212PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Paulsen E, Petersen TH, Fretté XC et al (2014) Systemic allergic dermatitis caused by Apiaceae root vegetables. Contact Dermatitis 70:98–103PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Gimenez-Arnau A, Gimenez-Arnau E, Serra-Baldrich E et al (2002) Principles and methodology for identification of fragrance allergens in consumer products. Contact Dermatitis 47:345–352PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Rastogi SC, Johansen JD, Frosch P et al (1998) Deodorants on the European market: quantitative chemical analysis of 21 fragrances. Contact Dermatitis 38:29–35PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Rastogi SC, Lepoittevin JP, Johansen JD et al (1998) Fragrances and other materials in deodorants: search for potentially sensitizing molecules using combined GC-MS and structure activity relationship (SAR) analysis. Contact Dermatitis 39:293–303PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Herman A, Aerts O, Baeck M et al (2017) Allergic contact dermatitis caused by isobornyl acrylate in Freestyle® Libre, a newly introduced glucose sensor. Contact Dermatitis 77:367–373PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Karlberg AT, Dooms-Goossens A (1997) Contact allergy to oxidized d-limonene among dermatitis patients. Contact Dermatitis 36:201–206PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Karlberg AT, Magnusson K, Nilsson U (1992) Air oxidation of d-limonene (the citrus solvent) creates potent allergens. Contact Dermatitis 26:332–340PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Bruze M, Edman B, Niklasson B et al (1985) Thin layer chromatography and high pressure liquid chromatography of musk ambrette and other nitromusk compounds including photopatch studies. Photo-Dermatology 2:295–302PubMedPubMedCentralGoogle Scholar
  125. 125.
    Bruze M, Gruvberger B (1985) Contact allergy to photoproducts of musk ambrette. Photo-Dermatology 2:310–314PubMedPubMedCentralGoogle Scholar
  126. 126.
    Hamnerius N, Pontén A, Mowitz M (2018) Textile contact dermatitis caused by octylisothiazolinone in compression stockings. Contact Dermatitis 78:419–421PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Paulsen E, Christensen LP, Fretté XC et al (2010) Patch test reactivity to feverfew-containing creams in feverfew-allergic patients. Contact Dermatitis 63:146–150PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Bruze M, Persson L, Trulsson L et al (1986) Demonstration of contact sensitizers in resins and products based on phenol-formaldehyde. Contact Dermatitis 14:146–154PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Shono M, Numata M, Sasaki K (2018) Allergic contact dermatitis caused by Solvent Orange 60 in spectacle frames in Japan. Contact Dermatitis 78:83–84PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Arisu K, Hayakawa R, Ogino Y et al (1992) Tinuvin P in a spandex tape as a cause of clothing dermatitis. Contact Dermatitis 26:311–316PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Bjorkner B, Niklasson B (1997) Contact allergy to the UV absorber Tinuvin P in a dental restorative material. Am J Contact Dermat 8:6–7PubMedPubMedCentralGoogle Scholar
  132. 132.
    Niklasson B, Bjorkner B (1989) Contact allergy to the UV-absorber Tinuvin P in plastics. Contact Dermatitis 21:330–334PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Crépy MN, Langlois E, Mélin S et al (2014) Tricresyl phosphate in polyvinylchloride gloves: a new allergen. Contact Dermatitis 70:325–328PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Andersen KE, Vestergaard ME, Christensen LP (2014) Triethylene glycol bis(2-ethylhexanoate) – a new contact allergen identified in a spectacle frame. Contact Dermatitis 70:112–116PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Suuronen K, Pesonen M, Henriks-Eckerman ML et al (2013) Triphenyl phosphite, a new allergen in polyvinylchloride gloves. Contact Dermatitis 68:42–49PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Menne T, Andersen KE, Kaaber K et al (1987) Evaluation of the dimethylglyoxime stick test for the detection of nickel. Derm Beruf Umwelt 35:128–130PubMedPubMedCentralGoogle Scholar
  137. 137.
    Thyssen JP, Skare L, Lundgren L et al (2010) Sensitivity and specificity of the nickel spot (dimethylglyoxime) test. Contact Dermatitis 62:279–288PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Midander K, Julander A, Skare L et al (2013) The cobalt spot test--further insights into its performance and use. Contact Dermatitis 69:280–287PubMedPubMedCentralGoogle Scholar
  139. 139.
    Thyssen JP, Johansen JD, Jellesen MS et al (2012) Cobalt spot test used for diagnosis of occupationally-related exposure to cobalt-containing powder. Contact Dermatitis 66:228–229PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Thyssen JP, Johansen JD, Jellesen MS et al (2013) Consumer leather exposure: an unrecognized cause of cobalt sensitization. Contact Dermatitis 69:276–279PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Hamann D, Hamann CR, Kishi P et al (2016) Leather contains cobalt and poses a risk of allergic contact dermatitis: cobalt Indicator solution and X-ray florescence spectrometry as screening tests. Dermatitis 27:202–207PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Bregnbak D, Opstrup MS, Jellesen MS et al (2017) Allergic contact dermatitis caused by cobalt in leather – clinical cases. Contact Dermatitis 76:366–368PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Pflaum RT, Howick LC (1956) The chromium-diphenylcarbazide reaction. J Am Chem Soc 78:4862–4866CrossRefGoogle Scholar
  144. 144.
    International Organization for Standardization (ISO) (2017) Leather – chemical determination of chromium(VI) content in leather – part 1: colorimetric method. ISO 17075-1:2017Google Scholar
  145. 145.
    Hedberg YS, Lidén C, Odnevall Wallinder I (2015) Chromium released from leather – I: exposure conditions that govern the release of chromium(III) and chromium(VI). Contact Dermatitis 72:206–215PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    European Committee for Standardization (CEN) (2016) Methods of testing cement – part 10: determination of the water-soluble chromium (VI) content of cement. EN 196–10:2016Google Scholar
  147. 147.
    Rajan-Sithamparanadarajah R, Roff M, Delgado P et al (2004) Patterns of dermal exposure to hazardous substances in European union workplaces. Ann Occup Hyg 48:285–297PubMedPubMedCentralGoogle Scholar
  148. 148.
    Julander A, Boman A, Johanson G et al (2018) Occupational skin exposure to chemicals. Arbete och Hälsa 52(3):151. Scholar
  149. 149.
    Aragon A, Blanco LE, Funez A et al (2006) Assessment of dermal pesticide exposure with fluorescent tracer: a modification of a visual scoring system for developing countries. Ann Occup Hyg 50:75–83PubMedPubMedCentralGoogle Scholar
  150. 150.
    Blanco LE, Aragón A, Lundberg I et al (2008) The determinants of dermal exposure ranking method (DERM): a pesticide exposure assessment approach for developing countries. Ann Occup Hyg 52:535–544PubMedPubMedCentralGoogle Scholar
  151. 151.
    Cherrie JW, Brouwer DH, Roff M et al (2000) Use of qualitative and quantitative fluorescence techniques to assess dermal exposure. Ann Occup Hyg 44:519–522PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Brouwer DH, Boeniger MF, van Hemmen J (2000) Hand wash and manual skin wipes. Ann Occup Hyg 44:501–510PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Lind ML, Johnsson S, Lidén C et al (2017) Hairdressers' skin exposure to hair dyes during different hair dyeing tasks. Contact Dermatitis 77:303–310PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Henriks-Eckerman ML, Suuronen K, Jolanki R et al (2007) Determination of occupational exposure to alkanolamines in metal-working fluids. Ann Occup Hyg 51:153–160PubMedPubMedCentralGoogle Scholar
  155. 155.
    Gawkrodger DJ, McLeod CW, Dobson K (2012) Nickel skin levels in different occupations and an estimate of the threshold for reacting to a single open application of nickel in nickel-allergic subjects. Br J Dermatol 166:82–87PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Jensen P, Thyssen JP, Johansen JD et al (2011) Occupational hand eczema caused by nickel and evaluated by quantitative exposure assessment. Contact Dermatitis 64:32–36PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Julander A, Skare L, Mulder M et al (2010) Skin deposition of nickel, cobalt, and chromium in production of gas turbines and space propulsion components. Ann Occup Hyg 54:340–350PubMedPubMedCentralGoogle Scholar
  158. 158.
    Liden C, Skare L, Lind B et al (2006) Assessment of skin exposure to nickel, chromium and cobalt by acid wipe sampling and ICP-MS. Contact Dermatitis 54:233–238PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Lidén C, Skare L, Nise G et al (2008) Deposition of nickel, chromium, and cobalt on the skin in some occupations – assessment by acid wipe sampling. Contact Dermatitis 58:347–354PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Staton I, Ma R, Evans N et al (2006) Dermal nickel exposure associated with coin handling and in various occupational settings: assessment using a newly developed finger immersion method. Br J Dermatol 154:658–664PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Nylander-French LA (2000) A tape-stripping method for measuring dermal exposure to multifunctional acrylates. Ann Occup Hyg 44:645–651PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Ahlström MG, Midander K, Menné T et al (2019) Nickel deposition and penetration into the stratum corneum after short metallic nickel contact: an experimental study. Contact Dermatitis 80:86–93PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Hostynek JJ, Dreher F, Nakada T et al (2001) Human stratum corneum adsorption of nickel salts. Investigation of depth profiles by tape stripping in vivo. Acta Derm Venereol Suppl (Stockh) 212:11–18Google Scholar
  164. 164.
    Julander A, Skare L, Vahter M et al (2011) Nickel deposited on the skin – visualization by DMG test. Contact Dermatitis 64:151–157PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Bregnbak D, Thyssen JP, Jellesen MS et al (2016) Experimental skin deposition of chromium on the hands following handling of samples of leather and metal. Contact Dermatitis 75:89–95PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Midander K, Julander A, Skare L et al (2014) Cobalt skin dose resulting from short and repetitive contact with hard metals. Contact Dermatitis 70:361–368PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    OECD (2002) Guidance document for the conduct of studies of occupational exposure to pesticides during agricultural application. OECD, ParisCrossRefGoogle Scholar
  168. 168.
    Fillenham G, Lidén C, Berglind IA (2012) Skin exposure to epoxy in the pipe relining trade – an observational study. Contact Dermatitis 67:66–72PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Uter W, Bauer A, Bensefa-Colas L et al (2018) Extended documentation for hand dermatitis patients: pilot study on irritant exposures. Contact Dermatitis 79:168–174PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Anveden I, Liden C, Alderling M et al (2006) Self-reported skin exposure--validation of questions by observation. Contact Dermatitis 55:186–191PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Kettelarij J, Midander K, Lidén C et al (2018) Neglected exposure route: cobalt on skin and its associations with urinary cobalt levels. Occup Environ Med 75:837–842PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jakob Dahlin
    • 1
  • Cecilia Svedman
    • 1
    Email author
  • Birgitta Gruvberger
    • 1
  • Magnus Bruze
    • 1
  • Carola Lidén
    • 2
  • Sigfrid Fregert
    • 3
  1. 1.Department of Occupational and Environmental DermatologySkåne University HospitalMalmöSweden
  2. 2.Institute of Environmental Medicine, Karolinska InstitutetStockholmSweden
  3. 3.Department of Occupational and Environmental DermatologySkåne University HospitalMalmöSweden

Personalised recommendations