Modern Ergodic Theory: From a Physics Hypothesis to a Mathematical Theory with Transformative Interdisciplinary Impact

  • Doğan ÇömezEmail author
Living reference work entry


Ergodic theory emerged as a statistical mechanics hypothesis and has quickly reached into a mature and influential mathematical theory. Beginning with a brief historical account on the origins of the theory, the first two sections of this chapter aim to provide a broad exposé of some major results in ergodic theory and dynamical systems. The remaining sections are devoted to the discussion of the interdisciplinary nature of ergodic theory from a broad perspective. Select applications of the theory are outlined, and its interactions with other mathematical fields and with some nonmathematical disciplines are briefly illustrated.


Ergodic theory Dynamical system Ergodic transformation Measure-preserving transformation Invariant measure Interdisciplinary aspects of ergodic theory 


  1. Akcoglu MA (1975) A pointwise ergodic theorem in L p-spaces. Can J Math 27:1075–1082MathSciNetzbMATHCrossRefGoogle Scholar
  2. Akcoglu MA, del Junco A (1981) Differentiation of n-dimensional additive processes. Canadian J Math 33:749–768MathSciNetzbMATHCrossRefGoogle Scholar
  3. Akcoglu MA, Sucheston L (1977) Dilations of positive contractions on L p-spaces. Can Math Bull 20:285–292MathSciNetzbMATHCrossRefGoogle Scholar
  4. Akhmedov A, Çömez D (2015) Good modulating sequences for the ergodic Hilbert transform. Turkish J Math 39:124–138MathSciNetzbMATHCrossRefGoogle Scholar
  5. Bel G, Barkai E (2006) Weak ergodicity breaking with deterministic dynamics. Europhys Lett 74:15–21MathSciNetCrossRefGoogle Scholar
  6. Bellow A, Calderón AP (1999) A weak-type inequality for convolution products Harmonic analysis and partial differential equations (Chicago, 1996). Chicago lectures in mathematics. University Chicago Press, Chicago, pp 41–48zbMATHGoogle Scholar
  7. Bellow A, Losert V (1985) The weighted pointwise ergodic theorem and the individual ergodic theorem along subsequences. Trans Am Math Soc 288:307–345MathSciNetzbMATHCrossRefGoogle Scholar
  8. Bergelson V, Leibman A (2003) Topological multiple recurrence for polynomial configurations in nilpotent groups. Adv Math 175:271–296MathSciNetzbMATHCrossRefGoogle Scholar
  9. Birkhoff GD (1931) Proof of the ergodic theorem. Proc Natl Acad Sci USA 17:656–660zbMATHCrossRefGoogle Scholar
  10. Blume LE (1979) Ergodic behavior of stochastic processes of economic equilibria. Econometrica 47:1421–1432MathSciNetzbMATHCrossRefGoogle Scholar
  11. Boshernitzan M, Wierdl M (1996) Ergodic theorems along sequences and Hardy fields. Proc Natl Acad Sci USA 93:8205–8207MathSciNetzbMATHCrossRefGoogle Scholar
  12. Bosma W, Dajani K, Kraaikamp C (2006) Entropy quotients and correct digits in number-theoretic expansions. Dyn Stoch 48:176–188MathSciNetzbMATHGoogle Scholar
  13. Bourgain J (1988a) On the maximal ergodic theorem for certain subsets of the integers. Israel J Math 61:39–72MathSciNetzbMATHCrossRefGoogle Scholar
  14. Bourgain J (1988b) On the pointwise ergodic theorem on Lp for arithmetic sets. Israel J Math 61:73–84MathSciNetzbMATHCrossRefGoogle Scholar
  15. Bourgain J (1989) Pointwise ergodic theorems for arithmetic sets. IHES Publ Math 69:5–45. (With an appendix by the author, H. Fürstenberg, Y. Katznelson and Ornstein DS)MathSciNetzbMATHCrossRefGoogle Scholar
  16. Bouchaud JP (1992) Weak ergodicity breaking and aging in disordered systems. J Phys I 2: 1705–1713Google Scholar
  17. Brunel A (1973) Théorème ergodique ponctuel pour un semi-groupe commutatif finiment engendré de contractions de L 1. Ann Inst H Poincaré Sect B 9:327–343MathSciNetzbMATHGoogle Scholar
  18. Campbell J, Petersen K (1989) The spectral measure and Hilbert transform of a measure-preserving transformation. Trans Am Math Soc 313:121–129MathSciNetzbMATHCrossRefGoogle Scholar
  19. Campbell J, Jones R, Reinhold K, Wierdl M (2003) Oscillation and variation for singular integrals in higher dimensions. Trans Am Math Soc 355:2115–2137MathSciNetzbMATHCrossRefGoogle Scholar
  20. Çömez D, Lin M (1991) Mean ergodicity of L 1-contractions and pointwise ergodic theorems. Almost everywhere convergence, II (Evanston, 1989). Academic, Boston, pp 113–126Google Scholar
  21. Çömez D, Litvinov S (2013) Ergodic averages with vector-valued Besicovitch weights. Positivity 17:27–46MathSciNetzbMATHCrossRefGoogle Scholar
  22. Çömez D, Lin M, Olsen J (1998) Weighted ergodic theorems for mean ergodic L 1–contractions. Trans Am Math Soc 350:101–117MathSciNetzbMATHCrossRefGoogle Scholar
  23. Cotlar M (1955) A combinatorial inequality and its applications to L 2-spaces. Rev Mat Cuyana 1:41–55MathSciNetGoogle Scholar
  24. Dajani K, Fieldsteel A (2001) Equipartition of interval partitions and an application to number theory. Proc Am Math Soc 129:3453–3460MathSciNetzbMATHCrossRefGoogle Scholar
  25. Dunford N, Schwartz JT (1956) Convergence almost everywhere of operator averages. J Ration Mech Analyse 5:129–178MathSciNetzbMATHGoogle Scholar
  26. Dunford N, Schwartz JT (1988) Linear operators-I. Wiley, New YorkzbMATHGoogle Scholar
  27. Eisner T, Farkas B, Haase M, Nagel R (2015) Operator theoretic aspects of ergodic theory. Springer-graduate texts in mathematics, 272, Springer, HeidelbergzbMATHCrossRefGoogle Scholar
  28. Fava NA (1972) Weak type inequalities for product operators. Stud Math 42:271–288MathSciNetzbMATHCrossRefGoogle Scholar
  29. Fürstenberg H (1977) Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions. J Analyse Math 31:204–256MathSciNetzbMATHCrossRefGoogle Scholar
  30. Fürstenberg H, Katznelson Y (1985) An ergodic Szemeredi theorem for IP-systems and combinatorial theory. J Analyse Math 45:117–168MathSciNetzbMATHCrossRefGoogle Scholar
  31. Goldstein, Litvinov S (2000) Banach principle in the space of τ-measurable operators. Stud Math 143:33–41MathSciNetzbMATHCrossRefGoogle Scholar
  32. Hofmann HF (2015) On the fundamental role of dynamics in quantum physics. Phys Rev A 91:062123CrossRefGoogle Scholar
  33. Host B, Kra B (2005) Nonconventional ergodic averages and nilmanifolds. Ann Math 161:397–488MathSciNetzbMATHCrossRefGoogle Scholar
  34. Jones RL, Kaufman R, Rosenblatt JM, Wierdl M (1998) Oscillation in ergodic theory. Ergodic Theory Dyn Syst 18:889–935.MathSciNetzbMATHCrossRefGoogle Scholar
  35. Jovanovic F, chinckus C (2013) Econophysics: a new challenge for financial economics? J Hist Econ Thought 35:319–352CrossRefGoogle Scholar
  36. Klein MJ (1952) The ergodic theorem in quantum statistical mechanics. Phys Rev 87:111–115MathSciNetzbMATHCrossRefGoogle Scholar
  37. Kac M (1947) On the notion of recurrence in discrete stochastic processes. Bull Am Math Soc 53:1002–1010MathSciNetzbMATHCrossRefGoogle Scholar
  38. Kolmogorov AN (1954) On conservation of conditionally periodic motions for a small change in Hamilton’s function (Russian). Dokl Akad Nauk SSSR 98:527–530MathSciNetGoogle Scholar
  39. Krengel U (1985) Ergodic theorems. de Gruyter, BerlinzbMATHCrossRefGoogle Scholar
  40. Leibman A (2005) Convergence of multiple ergodic averages along polynomials of several variables. Israel J Math 146:303–315MathSciNetzbMATHCrossRefGoogle Scholar
  41. Lin M, Olsen J, Tempelman A (1999) On modulated ergodic theorems for Dunford-Schwartz operators. Ill J Math 43:542–567MathSciNetzbMATHCrossRefGoogle Scholar
  42. Litvinov S (2012) Uniform equicontinuity of sequences of measurable operators and non-commutative ergodic theorems. Proc Am Math Soc 140:2401–2409MathSciNetzbMATHCrossRefGoogle Scholar
  43. Lochs G (1963) Die ersten 968 Kettenbruchnenner von π. Monatsch Math 67:311–316MathSciNetzbMATHCrossRefGoogle Scholar
  44. Lochs G (1964) Vergleich der Genauigkeit von Dezimalbruch und Kettenbruch. Abh Math Sem Univ Hamburg 27:142–144MathSciNetzbMATHCrossRefGoogle Scholar
  45. Lorenz EN (1963) Deterministic nonperiodic flow. J Atmospheric Sci 20:130–141MathSciNetzbMATHCrossRefGoogle Scholar
  46. Lorenz EN (1980) Attractor sets and quasigeostrophic equilibrium. J Atmos Sci 37:1685–1699MathSciNetCrossRefGoogle Scholar
  47. Lucarini V (2009) Thermodynamic efficiency and entropy production in the climate system. Phys Rev E 80:021118CrossRefGoogle Scholar
  48. Lyapunov AM (1892) The general problem of the stability of motion (In Russian). Doctoral dissertation, University of KharkovGoogle Scholar
  49. May RM (1987) Chaos and dynamics of biological populations. Dynamical chaos. Proc R Soc Discuss Meet 27–43Google Scholar
  50. Moore CC (2015) Ergodic theorem, ergodic theory, and statistical mechanics. Proc Natl Acad Sci USA 112:1907–1911MathSciNetzbMATHCrossRefGoogle Scholar
  51. Nagel R, Palm G (1982) Lattice dilations of positive contractions on L p-spaces. Can Math Bull 25:371–374MathSciNetzbMATHCrossRefGoogle Scholar
  52. Ornstein DS (1970) The sum of the iterates of a positive operator. In: Ney P (ed) Advances in probability and related topics, vol 2. pp 87–115Google Scholar
  53. Ozawa H, Ohmura A, Lorenz R, Pujol T (2003) The second law of thermodynamics and the global climate system: a review of the maximum entropy production principle. Rev Geophys 41: 1018CrossRefGoogle Scholar
  54. Patrascioiu A (1987) The ergodic hypothesis: a complicated problem in mathematics and physics. Los Alamos Science (Special issue) 263–279Google Scholar
  55. Perron O (1929) Über Stabilität und asymptotisches Verhalten der Integrale von Differentialgleichungssystemen (German). Math Z 29:129–160MathSciNetzbMATHCrossRefGoogle Scholar
  56. Pesin YB (1997) Dimension theory in dynamical systems. The University of Chicago Press, ChicagoCrossRefGoogle Scholar
  57. Petersen K (1983) Another proof of the existence of the ergodic Hilbert transform. Proc Am Math Soc 88:39–43MathSciNetzbMATHCrossRefGoogle Scholar
  58. Petersen KE, Salama IA (eds) (1995) Ergodic theory and its connections with harmonic analysis. Mathematical society lecture notes series, vol 205. Cambridge University Press, LondonGoogle Scholar
  59. Pietsch SA, Hasenauer H (2005) Using ergodic theory to assess the performance of ecosystem models. Tree Physiol 25:825–837CrossRefGoogle Scholar
  60. Poitras G, Heaney J (2015) Classical ergodicity and modern portfolio theory. Chin J Math 1–17MathSciNetzbMATHCrossRefGoogle Scholar
  61. Rohlin VA (1967) Lectures on the entropy theory of transformations with invariant measure (Russian). Uspehi Mat Nauk 22:3–56MathSciNetGoogle Scholar
  62. Rosenblatt J, Wierdl M (1992) A new maximal inequality and its applications. Ergodic Theory Dyn Syst 12:509–558MathSciNetzbMATHCrossRefGoogle Scholar
  63. Roth K (1952) Sur quelques ensembles d’entiers (French). C R Acad Sci Paris 234:388–390MathSciNetzbMATHGoogle Scholar
  64. Samuelson PA (1965) Proof that properly anticipated prices fluctuate randomly. Indus Manag Rev 6:41–49Google Scholar
  65. Sato R (1987) On the ergodic Hilbert transform for Lamperti operators. Proc Am Math Soc 99: 484–488MathSciNetzbMATHCrossRefGoogle Scholar
  66. Sattler E (2017) Fractal dimension of subfractals induced by sofic subshifts. Monatsch Math 183:539–557MathSciNetzbMATHCrossRefGoogle Scholar
  67. Sinai Y (1959) On the concept of entropy for a dynamic system (Russian). Dokl Akad Nauk SSSR 124:768–771MathSciNetzbMATHGoogle Scholar
  68. Sklar L (1993) Physics and chance: philosophical issues in the foundations of statistical mechanics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  69. Tao T (2008) Norm convergence of multiple ergodic averages for commuting transformations. Ergodic Theory Dyn Syst 28:657–688MathSciNetzbMATHCrossRefGoogle Scholar
  70. Tao T, Ziegler T (2008) The primes contain arbitrarily long polynomial progressions. Acta Math 201:213–305MathSciNetzbMATHCrossRefGoogle Scholar
  71. Terrell TR (1971) Local ergodic theorems for n-parameter semigroups of contraction operators. Doctoral dissertation, The Ohio State UniversityGoogle Scholar
  72. Thornton PE (1998) Description of a numerical simulation model for predicting the dynamics of energy, water, carbon and nitrogen in a terrestrial ecosystem. Ph.D. Thesis, University of Montana, MissoulaGoogle Scholar
  73. Tucker W (2002) A rigorous ODE solver and Smale’s 14th problem. Found Comput Math 2:53–117MathSciNetzbMATHCrossRefGoogle Scholar
  74. Turner CJ, Michailidis AA, Abanin DA, Serbyn M, Papi Z (2018) Weak ergodicity breaking from quantum many-body scars. Nat Phys 14:745–749CrossRefGoogle Scholar
  75. van Leth J (2001) Ergodic theory, interpretations of probability and the foundations of statistical mechanics. Stud Hist Philos Mod Phys 32:581–594MathSciNetCrossRefGoogle Scholar
  76. von Neumann J (1932) Proof of the quasi-ergodic hypothesis. Proc Natl Acad Sci USA 18:70–82zbMATHCrossRefGoogle Scholar
  77. Wiener N (1939) The ergodic theorem. Duke Math J 5:1–18MathSciNetzbMATHCrossRefGoogle Scholar
  78. Wiener N, Wintner A (1941) Harmonic analysis and ergodic theory. Am J Math 63:415–426MathSciNetzbMATHCrossRefGoogle Scholar
  79. Weigel AV, Simon B, Tamkun MM, Krapfa D (2011) Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking. Proc Natl Acad Sci USA 108:6438–6443CrossRefGoogle Scholar
  80. Wierdl M (1988) Pointwise ergodic theorem along the prime numbers. Israel J Math 64:315–336MathSciNetzbMATHCrossRefGoogle Scholar
  81. Zygmund A (1951) An individual ergodic theorem for non-commutative transformations. Acta Sci Math Szeged 14:103–110MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsNorth Dakota State UniversityFargoUSA

Section editors and affiliations

  • Torsten Lindström
    • 1
  • Bharath Sriraman
    • 2
  1. 1.Department of MathematicsLinnaeus UniversityVäxjöSweden
  2. 2.Department of Mathematical SciencesThe University of MontanaMissoulaUSA

Personalised recommendations