Encyclopedia of Gerontology and Population Aging

Living Edition
| Editors: Danan Gu, Matthew E. Dupre

Somatic Mutations and Genome

  • Hoi Shan KwanEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-69892-2_942-1



Somatic mutations are mutations occurring in somatic cells of a multicellular organism. They can be passed to daughter cells after cell division but cannot be inherited in the progenies of the organism, in contrast to germline mutations.


DNA mutations can occur in the germline or somatic cells when DNA damage is not repaired or repaired with mistakes. Germline mutations are easily recognized and their frequencies can be calculated. Mutations in the germline pass to a child who carries the mutation in every cell. Somatic cell mutations, on the other hand, are difficult to detect because they are carried by individual cells (Dou et al. 2018). Chromosome aberrations could be detected with low-resolution, low-throughput technologies, such as fluorescence in situ hybridization (FISH). Most somatic mutations are, however, small lesions which are difficult to detect. Recent advancement of...

This is a preview of subscription content, log in to check access.


  1. Bohrson CL, Barton AR, Lodato MA et al (2019) Linked-read analysis identifies mutations in single-cell DNA-sequencing data. Nat Genet 51:749–754.  https://doi.org/10.1038/s41588-019-0366-2CrossRefGoogle Scholar
  2. Cai X, Evrony GD, Lehmann HS et al (2014) Single-cell, genome-wide sequencing identifies clonal somatic copy-number variation in the human brain. Cell Rep 8:1280–1289.  https://doi.org/10.1016/J.CELREP.2014.07.043CrossRefGoogle Scholar
  3. Campbell CD, Eichler EE (2013) Properties and rates of germline mutations in humans. Trends Genet 29: 575–584.  https://doi.org/10.1016/J.TIG.2013.04.005CrossRefGoogle Scholar
  4. Chen C, Xing D, Tan L et al (2017) Single-cell whole-genome analyses by Linear Amplification via Transposon Insertion (LIANTI). Science 356:189–194.  https://doi.org/10.1126/science.aak9787CrossRefGoogle Scholar
  5. Dean FB, Hosono S, Fang L et al (2002) Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci U S A 99: 5261–5266.  https://doi.org/10.1073/pnas.082089499CrossRefGoogle Scholar
  6. Dou Y, Gold HD, Luquette LJ, Park PJ (2018) Detecting somatic mutations in normal cells. Trends Genet 34: 545–557.  https://doi.org/10.1016/J.TIG.2018.04.003CrossRefGoogle Scholar
  7. Enge M, Arda HE, Mignardi M et al (2017) Single-cell analysis of human pancreas reveals transcriptional signatures of aging and somatic mutation patterns. Cell 171:321–330.e14.  https://doi.org/10.1016/J.CELL.2017.09.004CrossRefGoogle Scholar
  8. Fernandez-Marmiesse A, Gouveia S, Couce ML (2018) NGS technologies as a turning point in rare disease research, diagnosis and treatment. Curr Med Chem 25:404.  https://doi.org/10.2174/0929867324666170718101946CrossRefGoogle Scholar
  9. Fiorentino F, Biricik A, Bono S et al (2014) Development and validation of a next-generation sequencing–based protocol for 24-chromosome aneuploidy screening of embryos. Fertil Steril 101:1375–1382.e2.  https://doi.org/10.1016/J.FERTNSTERT.2014.01.051CrossRefGoogle Scholar
  10. Forsberg LA, Rasi C, Razzaghian HR et al (2012) Age-related somatic structural changes in the nuclear genome of human blood cells. Am J Hum Genet 90: 217–228.  https://doi.org/10.1016/J.AJHG.2011.12.009CrossRefGoogle Scholar
  11. Gawad C, Koh W, Quake SR (2016) Single-cell genome sequencing: current state of the science. Nat Rev Genet 17:175–188.  https://doi.org/10.1038/nrg.2015.16CrossRefGoogle Scholar
  12. Gregory MT, Bertout JA, Ericson NG et al (2016) Targeted single molecule mutation detection with massively parallel sequencing. Nucleic Acids Res 44:e22–e22.  https://doi.org/10.1093/nar/gkv915CrossRefGoogle Scholar
  13. Kirkwood TBL (1977) Evolution of ageing. Nature 270:301–304.  https://doi.org/10.1038/270301a0CrossRefGoogle Scholar
  14. Kirkwood TBL (2005) Understanding the odd science of aging. Cell 120:437–447.  https://doi.org/10.1016/J.CELL.2005.01.027CrossRefGoogle Scholar
  15. Knouse KA, Wu J, Amon A (2016) Assessment of megabase-scale somatic copy number variation using single-cell sequencing. Genome Res 26:376–384.  https://doi.org/10.1101/gr.198937.115CrossRefGoogle Scholar
  16. Krimmel JD, Schmitt MW, Harrell MI et al (2016) Ultra-deep sequencing detects ovarian cancer cells in peritoneal fluid and reveals somatic TP53 mutations in noncancerous tissues. Proc Natl Acad Sci U S A 113:6005–6010.  https://doi.org/10.1073/pnas.1601311113CrossRefGoogle Scholar
  17. Lodato MA, Woodworth MB, Lee S et al (2015) Somatic mutation in single human neurons tracks developmental and transcriptional history. Science 350:94–98.  https://doi.org/10.1126/science.aab1785CrossRefGoogle Scholar
  18. Martincorena I, Campbell PJ (2015) Somatic mutation in cancer and normal cells. Science 349:1483–1489.  https://doi.org/10.1126/science.aab4082CrossRefGoogle Scholar
  19. Milholland B, Auton A, Suh Y, Vijg J (2015) Age-related somatic mutations in the cancer genome. Oncotarget 6:24627–24635.  https://doi.org/10.18632/oncotarget.5685CrossRefGoogle Scholar
  20. Milholland B, Suh Y, Vijg J (2017) Mutation and catastrophe in the aging genome. Exp Gerontol 94:34–40.  https://doi.org/10.1016/J.EXGER.2017.02.073CrossRefGoogle Scholar
  21. Morimoto Y, Ono S, Imamura A et al (2017) Deep sequencing reveals variations in somatic cell mosaic mutations between monozygotic twins with discordant psychiatric disease. Hum Genome Var 4:17032.  https://doi.org/10.1038/hgv.2017.32CrossRefGoogle Scholar
  22. Munné S, Wells D (2017) Detection of mosaicism at blastocyst stage with the use of high-resolution next-generation sequencing. Fertil Steril 107:1085–1091.  https://doi.org/10.1016/J.FERTNSTERT.2017.03.024CrossRefGoogle Scholar
  23. Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci U S A 83: 2934–2938.  https://doi.org/10.1073/pnas.83.9.2934CrossRefGoogle Scholar
  24. Risques RA, Kennedy SR (2018) Aging and the rise of somatic cancer-associated mutations in normal tissues. PLoS Genet 14:e1007108.  https://doi.org/10.1371/journal.pgen.1007108CrossRefGoogle Scholar
  25. Schröck E, du Manoir S, Veldman T et al (1996) Multicolor spectral karyotyping of human chromosomes. Science (80- ) 273:494–497.  https://doi.org/10.1126/science.273.5274.494CrossRefGoogle Scholar
  26. Szilard L (1959) On the nature of the aging process. Proc Natl Acad Sci U S A 45:30–45.  https://doi.org/10.1073/pnas.45.1.30CrossRefGoogle Scholar
  27. Upton KR, Gerhardt DJ, Jesuadian JS et al (2015) Ubiquitous L1 mosaicism in hippocampal neurons. Cell 161: 228–239.  https://doi.org/10.1016/J.CELL.2015.03.026CrossRefGoogle Scholar
  28. Young AL, Challen GA, Birmann BM, Druley TE (2016) Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat Commun 7:12484.  https://doi.org/10.1038/ncomms12484CrossRefGoogle Scholar
  29. Zhang L, Dong X, Lee M et al (2019) Single-cell whole-genome sequencing reveals the functional landscape of somatic mutations in B lymphocytes across the human lifespan. bioRxiv 535906.  https://doi.org/10.1101/535906
  30. Zong C, Lu S, Chapman AR, Xie XS (2012) Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 338:1622–1626.  https://doi.org/10.1126/science.1229164CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of Life SciencesThe Chinese University of Hong KongShatinHong Kong

Section editors and affiliations

  • Lok Ting Lau
    • 1
  1. 1.Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityKowloonHong Kong