Encyclopedia of Gerontology and Population Aging

Living Edition
| Editors: Danan Gu, Matthew E. Dupre

Genetic Control of Aging

  • Maarouf Baghdadi
  • David KarasikEmail author
  • Joris DeelenEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-69892-2_726-1

Synonyms

Definition

The genetic control of aging is the contribution of genetic variation to lifespan and longevity.

Overview

The present day lifespan of individuals is higher than it has ever been before. Concomitant with the increase in global lifespan is the increase in the burden of late-life diseases, since advanced age is the greatest common risk factor for most chronic debilitating diseases.

Heritability studies have convincingly demonstrated that aging is subject to genetic control, with additive effects comprising a small fraction of total lifespan heritability. This opens the door for genetic studies of aging, which aim to understand the pathways underlying this process and, using that knowledge, to develop strategies for prevention, intervention, and therapy. Thus far, these studies have shown an inverse effect of multiple...

This is a preview of subscription content, log in to check access.

References

  1. Andersen SL, Sebastiani P, Dworkis DA et al (2012) Health span approximates life span among many supercentenarians: compression of morbidity at the approximate limit of life span. J Gerontol A Biol Sci Med Sci 67A:395–405.  https://doi.org/10.1093/gerona/glr223CrossRefGoogle Scholar
  2. Beekman M, Blanché H, Perola M et al (2013) Genome-wide linkage analysis for human longevity: genetics of healthy aging study. Aging Cell 12:184–193.  https://doi.org/10.1111/acel.12039CrossRefGoogle Scholar
  3. Ben-Avraham D, Karasik D, Verghese J et al (2017) The complex genetics of gait speed: genome-wide meta-analysis approach. Aging (Albany NY) 9:209–246.  https://doi.org/10.18632/aging.101151CrossRefGoogle Scholar
  4. Budovsky A, Craig T, Wang J et al (2013) LongevityMap: a database of human genetic variants associated with longevity. Trends Genet 29:559–560.  https://doi.org/10.1016/j.tig.2013.08.003CrossRefGoogle Scholar
  5. Buniello A, MacArthur JAL, Cerezo M et al (2019) The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res 47:D1005–D1012.  https://doi.org/10.1093/nar/gky1120CrossRefGoogle Scholar
  6. Debrabant B, Soerensen M, Flachsbart F et al (2014) Human longevity and variation in DNA damage response and repair: study of the contribution of sub-processes using competitive gene-set analysis. Eur J Hum Genet 22:1131–1136.  https://doi.org/10.1038/ejhg.2013.299CrossRefGoogle Scholar
  7. Deelen J, Uh H-W, Monajemi R et al (2013) Gene set analysis of GWAS data for human longevity highlights the relevance of the insulin/IGF-1 signaling and telomere maintenance pathways. Age (Omaha) 35:235–249.  https://doi.org/10.1007/s11357-011-9340-3CrossRefGoogle Scholar
  8. Flachsbart F, Caliebe A, Kleindorp R et al (2009) Association of FOXO3A variation with human longevity confirmed in German centenarians. Proc Natl Acad Sci U S A 106:2700–2705.  https://doi.org/10.1073/pnas.0809594106CrossRefGoogle Scholar
  9. Flachsbart F, Dose J, Gentschew L et al (2017) Identification and characterization of two functional variants in the human longevity gene FOXO3. Nat Commun 8:2063.  https://doi.org/10.1038/s41467-017-02183-yCrossRefGoogle Scholar
  10. Gibbs RA, Boerwinkle E, Doddapaneni H et al (2015) A global reference for human genetic variation. Nature 526:68–74.  https://doi.org/10.1038/nature15393CrossRefGoogle Scholar
  11. Gierman HJ, Fortney K, Roach JC et al (2014) Whole-genome sequencing of the world’s oldest people. PLoS One 9:e112430.  https://doi.org/10.1371/journal.pone.0112430CrossRefGoogle Scholar
  12. Grossi V, Forte G, Sanese P et al (2018) The longevity SNP rs2802292 uncovered: HSF1 activates stress-dependent expression of FOXO3 through an intronic enhancer. Nucleic Acids Res 46:5587–5600.  https://doi.org/10.1093/nar/gky331CrossRefGoogle Scholar
  13. Kaplanis J, Gordon A, Shor T et al (2018) Quantitative analysis of population-scale family trees with millions of relatives. Science 360:171–175.  https://doi.org/10.1126/science.aam9309CrossRefGoogle Scholar
  14. Karasik D, Kiel DP (2015) Genetics of osteoporosis in older age, 2 edn. 141–155. Springer International Publishing Switzerland  https://doi.org/10.1007/978-3-319-25976-5
  15. Kuningas M, Estrada K, Hsu YH et al (2011) Large common deletions associate with mortality at old age. Hum Mol Genet 20:4290–4296.  https://doi.org/10.1093/hmg/ddr340CrossRefGoogle Scholar
  16. Ljungquist B, Berg S, Lanke J et al (1998) The effect of genetic factors for longevity: a comparison of identical and fraternal twins in the Swedish Twin Registry. J Gerontol A Biol Sci Med Sci 53:441–446.  https://doi.org/10.1093/gerona/53A.6.M441CrossRefGoogle Scholar
  17. Manolio TA, Collins FS, Cox NJ et al (2009) Finding the missing heritability of complex diseases. Nature 461:747–753.  https://doi.org/10.1038/nature08494CrossRefGoogle Scholar
  18. McDaid AF, Joshi PK, Porcu E et al (2017) Bayesian association scan reveals loci associated with human lifespan and linked biomarkers. Nat Commun 8.  https://doi.org/10.1038/ncomms15842
  19. McGue M, Skytthe A, Christensen K (2014) The nature of behavioural correlates of healthy ageing: a twin study of lifestyle in mid to late life. Int J Epidemiol 43:775–782.  https://doi.org/10.1093/ije/dyt210CrossRefGoogle Scholar
  20. Nygaard M, Debrabant B, Tan Q et al (2016) Copy number variation associates with mortality in long-lived individuals: a genome-wide assessment. Aging Cell 15:49–55.  https://doi.org/10.1111/acel.12407CrossRefGoogle Scholar
  21. Owen D, Bracher-Smith M, Kendall KM et al (2018) Effects of pathogenic CNVs on physical traits in participants of the UK Biobank. BMC Genomics 19:867.  https://doi.org/10.1186/s12864-018-5292-7CrossRefGoogle Scholar
  22. Pan W-H, Lynn K-S, Chen C-H et al (2006) Using endophenotypes for pathway clusters to map complex disease genes. Genet Epidemiol 30:143–154.  https://doi.org/10.1002/gepi.20136CrossRefGoogle Scholar
  23. Partridge L, Deelen J, Slagboom PE (2018) Facing up to the global challenges of ageing. Nature 561:45–56.  https://doi.org/10.1038/s41586-018-0457-8CrossRefGoogle Scholar
  24. Passtoors WM, Boer JM, Goeman JJ et al (2012) Transcriptional profiling of human familial longevity indicates a role for ASF1A and IL7R. PLoS One 7:e27759.  https://doi.org/10.1371/journal.pone.0027759CrossRefGoogle Scholar
  25. Ruby JG, Wright KM, Rand KA et al (2018) Estimates of the heritability of human longevity are substantially inflated due to assortative mating. Genetics 210:1109–1124.  https://doi.org/10.1534/genetics.118.301613CrossRefGoogle Scholar
  26. Schächter F, Faure-Delanef L, Guénot F et al (1994) Genetic associations with human longevity at the APOE and ACE loci. Nat Genet 6:29–32.  https://doi.org/10.1038/ng0194-29CrossRefGoogle Scholar
  27. Schulze TG, McMahon FJ (2004) Defining the phenotype in human genetic studies: forward genetics and reverse phenotyping. Hum Hered 58:131–138.  https://doi.org/10.1159/000083539CrossRefGoogle Scholar
  28. Sebastiani P, Nussbaum L, Andersen SL et al (2016) Increasing sibling relative risk of survival to older and older ages and the importance of precise definitions of “Aging,” “Life Span,” and “Longevity”. J Gerontol A Biol Sci Med Sci 71:340–346.  https://doi.org/10.1093/gerona/glv020CrossRefGoogle Scholar
  29. Singh J, Minster RL, Schupf N et al (2017) Genomewide association scan of a mortality associated endophenotype for a long and healthy life in the long life family study. J Gerontol A Biol Sci Med Sci 72:1411–1416.  https://doi.org/10.1093/gerona/glx011CrossRefGoogle Scholar
  30. Tazearslan C, Huang J, Barzilai N, Suh Y (2011) Impaired IGF1R signaling in cells expressing longevity-associated human IGF1R alleles. Aging Cell 10:551–554.  https://doi.org/10.1111/j.1474-9726.2011.00697.xCrossRefGoogle Scholar
  31. Tikkanen E, Gustafsson S, Amar D et al (2018) Biological insights into muscular strength: genetic findings in the UK Biobank. Sci Rep 8:6451.  https://doi.org/10.1038/s41598-018-24735-yCrossRefGoogle Scholar
  32. Timmers PRHJ, Mounier N, Lall K et al (2019) Genomics of 1 million parent lifespans implicates novel pathways and common diseases and distinguishes survival chances. 1–40.  https://doi.org/10.7554/eLife.39856.001
  33. van den Berg N, Beekman M, Smith KR et al (2017) Historical demography and longevity genetics: back to the future. Ageing Res Rev 38:28–39.  https://doi.org/10.1016/j.arr.2017.06.005CrossRefGoogle Scholar
  34. van den Berg N, Rodríguez-Girondo M, van Dijk IK et al (2019) Longevity defined as top 10% survivors and beyond is transmitted as a quantitative genetic trait. Nat Commun 10:35.  https://doi.org/10.1038/s41467-018-07925-0CrossRefGoogle Scholar
  35. Veale AMO, Falconer DS (1960) Introduction to quantitative genetics. Appl Stat 9:202.  https://doi.org/10.2307/2985722CrossRefGoogle Scholar
  36. Walter S, Atzmon G, Demerath EW et al (2011) A genome-wide association study of aging. Neurobiol Aging 32.  https://doi.org/10.1016/j.neurobiolaging.2011.05.026
  37. Willcox BJ, Donlon TA, He Q et al (2008) FOXO3A genotype is strongly associated with human longevity. Proc Natl Acad Sci 105:13987–13992.  https://doi.org/10.1073/pnas.0801030105CrossRefGoogle Scholar
  38. Willems SM, Wright DJ, Day FR et al (2017) Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness. Nat Commun 8:16015.  https://doi.org/10.1038/ncomms16015CrossRefGoogle Scholar
  39. Zenin A, Tsepilov Y, Sharapov S et al (2019) Identification of 12 genetic loci associated with human healthspan. Commun Biol 2:41.  https://doi.org/10.1038/s42003-019-0290-0CrossRefGoogle Scholar
  40. Zhao X, Liu X, Zhang A et al (2018) The correlation of copy number variations with longevity in a genome-wide association study of Han Chinese. Aging (Albany NY) 10:1206–1222.  https://doi.org/10.18632/aging.101461CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Max Planck Institute for Biology of AgeingCologneGermany
  2. 2.Azrieli Faculty of MedicineBar Ilan UniversitySafedIsrael
  3. 3.Marcus Institute for Aging ResearchHebrew SeniorLifeBostonUSA

Section editors and affiliations

  • Diddahally R. Govindaraju
    • 1
    • 2
  1. 1.Department of Human Evolutionary Biology, Museum of Comparative ZoologyHarvard UniversityCambridgeUSA
  2. 2.The Institute for Aging Research, The Glenn Center for the Biology of Human AgingAlbert Einstein College of MedicineBronxUSA