Encyclopedia of Gerontology and Population Aging

Living Edition
| Editors: Danan Gu, Matthew E. Dupre

Progeria: Humans

  • Walter ArancioEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-69892-2_724-1

Synonyms

Definition

Hutchinson-Gilford progeria syndrome (HGPS) is a human disease characterized by premature aging. The classical form of the syndrome is caused by a sporadic autosomal dominant mutation of LMNA gene that gives rise to the production of progerin, an aberrant form of the nuclear protein lamin A.

Overview

The name “progeria” derived from ancient Greek and means “prematurely old.” While there are different forms of accelerated aging and progeroid syndromes – e.g., the Werner syndrome (See “Werner Syndrome”), the Cockayne syndrome, and the xeroderma pigmentosum – the proper type of progeria – i.e., premature aging – is the Hutchinson-Gilford progeria syndrome (HGPS) (See “Hutchinson-Gilford Progeria Syndrome”). HGPS owes its name to the doctors who first described the syndrome: Dr. Jonathan Hutchinson (1886) and Dr. Hastings Gilford (1897). HGPS is an extremely rare condition. It affects approximately 1 in 20 million people. The...

This is a preview of subscription content, log in to check access.

References

  1. Arancio W, Pizzolanti G, Genovese SI, Pitrone M, Giordano C (2014) Epigenetic involvement in Hutchinson-Gilford progeria syndrome: a mini-review. Gerontology 60(3):197–203.  https://doi.org/10.1159/000357206CrossRefGoogle Scholar
  2. Arancio W, Genovese SI, Pizzolanti G, Giordano C (2015) Hutchinson Gilford progeria syndrome: a therapeutic approach via adenoviral delivery of CRISPR/cas genome editing system. J Genet Syndr Gene Ther 6:256.  https://doi.org/10.4172/2157-7412.1000256CrossRefGoogle Scholar
  3. Beyret E, Liao HK, Yamamoto M, Hernandez-Benitez R, Fu Y, Erikson G, Reddy P, Izpisua Belmonte JC (2019) Single-dose CRISPR-Cas9 therapy extends lifespan of mice with Hutchinson-Gilford progeria syndrome. Nat Med.  https://doi.org/10.1038/s41591-019-0343-4
  4. Bhakoo ON, Garg SK, Sehgal B (1964) Progeria with unusual ocular manifestations: report of a case with a review of the literature. Indian Pediatr 2:164–169Google Scholar
  5. Broc R, Nicolle M, Beaujeu D (1935) Progeria. Etude des lesions du systeme osseux. Presse Med 39:786–788Google Scholar
  6. Cabanillas R, Cadinanos J, Villameytide JA, Perez M, Longo J, Richard JM, Alvarez R, Duran NS, Illan R, Gonzalez DJ, Lopez-Otin C (2011) Nestor–Guillermo progeria syndrome: a novel premature aging condition with early onset and chronic development caused by BANF1 mutations. Am J Med Genet A 155A(11):2617–2625CrossRefGoogle Scholar
  7. Cao K, Graziotto JJ, Blair CD, Mazzulli JR, Erdos MR, Krainc D, Collins FS (2011) Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson-Gilford progeria syndrome cells. Sci Transl Med 3(89):89ra58.  https://doi.org/10.1126/scitranslmed.3002346CrossRefGoogle Scholar
  8. Cau P, Navarro C, Harhouri K, Roll P, Sigaudy S, Kaspi E, Perrin S, De Sandre-Giovannoli A, Lévy N (2014) Nuclear matrix, nuclear envelope and premature aging syndromes in a translational research perspective. Semin Cell Dev Biol 29:125–147.  https://doi.org/10.1016/j.semcdb.2014.03.021CrossRefGoogle Scholar
  9. Cenni V, Capanni C, Columbaro M, Ortolani M, D’Apice MR, Novelli G, Fini M, Marmiroli S, Scarano E, Maraldi NM, Squarzoni S, Prencipe S, Lattanzi G (2011) Autophagic degradation of farnesylated prelamin a as a therapeutic approach to Lamin linked progeria. Eur J Histochem 55(4):200–205CrossRefGoogle Scholar
  10. De Sandre-Giovannoli A, Bernard R, Cau P, Navarro C, Amiel J, Boccaccio I, Lyonnet S, Stewart CL, Munnich A, Le Merrer M, Lévy N (2003) Lamin a truncation in Hutchinson–Gilford progeria. Science 300(5628):2055.  https://doi.org/10.1126/science.1084125CrossRefGoogle Scholar
  11. Dechat T, Pfleghaar K, Sengupta K, Shimi T, Shumaker DK, Solimando L, Goldman RD (2008) Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev 22:832–853CrossRefGoogle Scholar
  12. Decker ML, Chavez E, Vulto I, Lansdorp PM (2009) Telomere length in Hutchinson-Gilford progeria syndrome. Mech Ageing Dev 130(6):377–383CrossRefGoogle Scholar
  13. Doubaj Y, De Sandre-Giovannoli A, Vera E-V, Navarro CL, Elalaoui SC, Tajir M, Levy N, Sefiani A (2012) An inherited LMNA gene mutation in atypical progeria syndrome. Am J Med Genet Part A 158A:2881–2887CrossRefGoogle Scholar
  14. Eisch V, Lu X, Gabriel D, Djabali K (2016) Progerin impairs chromosome maintenance by depleting CENP-F from metaphase kinetochores in Hutchinson-Gilford progeria fibroblasts. Oncotarget 7(17):24700–24718.  https://doi.org/10.18632/oncotarget.8267CrossRefGoogle Scholar
  15. Gabriel D, Roedl D, Gordon LB, Djabali K (2015) Sulforaphane enhances progerin clearance in Hutchinson–Gilford progeria fibroblasts. Aging Cell 14(1):78–91CrossRefGoogle Scholar
  16. Gilbert HTJ, Swift J (2019) The consequences of ageing, progeroid syndromes and cellular senescence on mechanotransduction and the nucleus. Exp Cell Res pii: S0014-4827(18):31025–31025.  https://doi.org/10.1016/j.yexcr.2019.03.002
  17. Gordon LB, Kleinman ME, Miller DT, Neuberg DS, Giobbie-Hurder A, Gerhard-Herman M, Smoot LB, Gordon CM, Cleveland R, Snyder BD, Fligor B, Bishop WR, Statkevich P, Regen A, Sonis A, Riley S, Ploski C, Correia A, Quinn N, Ullrich NJ, Nazarian A, Liang MG, Huh SY, Schwartzman A, Kieran MW (2012) Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson–Gilford progeria syndrome. Proc Natl Acad Sci U S A 109(41):16666–16671CrossRefGoogle Scholar
  18. Hennekam RC (2006) Hutchinson-Gilford progeria syndrome: review of the phenotype. Am J Med Genet A 140(23):2603–2624CrossRefGoogle Scholar
  19. Heyn H, Moran S, Esteller M (2013) Aberrant DNA methylation profiles in the premature aging disorders Hutchinson-Gilford progeria and Werner syndrome. Epigenetics 8:28–33CrossRefGoogle Scholar
  20. Ho R, Hegele RA (2019) Complex effects of laminopathy mutations on nuclear structure and function. Clin Genet 95(2):199–209.  https://doi.org/10.1111/cge.13455CrossRefGoogle Scholar
  21. Hutchison CJ (2011) The role of DNA damage in laminopathy progeroid syndromes. Biochem Soc Trans 39:1715–1718CrossRefGoogle Scholar
  22. Jung HJ, Coffinier C, Choe Y, Beigneux AP, Davies BS, Yang SH, Barnes RH 2nd, Hong J, Sun T, Pleasure SJ, Young SG, Fong LG (2012) Regulation of prelamin a but not Lamin C by miR-9, a brain-specific microRNA. Proc Natl Acad Sci U S A 109:E423–E431CrossRefGoogle Scholar
  23. Kubben N, Adriaens M, Meuleman W, Voncken JW, van Steensel B, Misteli T (2012) Mapping of Lamin A- and progerin-interacting genome regions. Chromosoma 121:447–464CrossRefGoogle Scholar
  24. Ly DH, Lockhart DJ, Lerner RA, Schultz PG (2000) Mitotic misregulation and human aging. Science 287:2486–2492CrossRefGoogle Scholar
  25. Mangerich A, Bürkle A (2012) Pleiotropic cellular functions of PARP1 in longevity and aging: genome maintenance meets inflammation. Oxidative Med Cell Longev 2012:321653CrossRefGoogle Scholar
  26. McClintock D, Ratner D, Lokuge M, Owens DM, Gordon LB, Collins FS, Djabali K (2007) The mutant form of lamin A that causes Hutchinson-Gilford progeria is a biomarker of cellular aging in human skin. PLoS One 2(12):e1269CrossRefGoogle Scholar
  27. McCord RP, Nazario-Toole A, Zhang H, Chines PS, Zhan Y, Erdos MR, Collins FS, Dekker J, Cao K (2013) Correlated alterations in genome organization, histone methylation, and DNA-Lamin a/C interactions in Hutchinson-Gilford progeria syndrome. Genome Res 23:260–269CrossRefGoogle Scholar
  28. Navarro CL, Cadinanos J, Sandre-Giovannoli AD, Bernard R, Courrier S, Boccaccio I, Boyer A, Kleijer WJ, Wagner A, Giuliano F, Beemer FA, Freije JM, Cau P, Hennekam RCM, Lopez-Otin C, Badens C, Levy N (2005) Loss of ZMPSTE24 (FACE-1) causes autosomal recessive restrictive dermopathy and accumulation of Lamin a precursors. Hum Mol Genet 14(11):1503–1513CrossRefGoogle Scholar
  29. Osorio FG, Navarro CL, Cadinanos J, Lopez-Mejia IC, Quiros PM, Bartoli C, Rivera J, Tazi J, Guzman G, Varela I, Depetris D, de Carlos F, Cobo J, Andres V, De Sandre-Giovannoli A, Freije JM, Levy N, Lopez-Otin C (2011) Splicing-directed therapy in a new mouse model of human accelerated aging. Sci Transl Med 3(106):106ra107CrossRefGoogle Scholar
  30. Pellegrini C, Columbaro M, Capanni C, D’Apice MR, Cavallo C, Murdocca M, Lattanzi G, Squarzoni S (2015) All-trans retinoic acid and rapamycin normalize Hutchinson–Gilford progeria fibroblast phenotype. Oncotarget 6(30):29914–29928CrossRefGoogle Scholar
  31. Prokocimer M, Barkan R, Gruenbaum Y (2013) Hutchinson-Gilford progeria syndrome through the lens of transcription. Aging Cell 12:533–543CrossRefGoogle Scholar
  32. Rivera-Torres J, Acín-Perez R, Cabezas-Sánchez P, Osorio FG, Gonzalez-Gómez C, Megias D, Cámara C, López-Otín C, Enríquez JA, Luque-García JL, Andrés V (2013) Identification of mitochondrial dysfunction in Hutchinson-Gilford progeria syndrome through use of stable isotope labeling with amino acids in cell culture. J Proteome 91:466–477CrossRefGoogle Scholar
  33. Scaffidi P, Misteli T (2005) (R)eversal of the cellular phenotype in the premature aging disease Hutchinson–Gilford progeria syndrome. Nat Med 11(4):440–445CrossRefGoogle Scholar
  34. Shevelyov YY, Ulianov SV (2018) Role of nuclear lamina in gene repression and maintenance of chromosome architecture in the nucleus. Biochemistry (Mosc) 83(4):359–369.  https://doi.org/10.1134/S0006297918040077CrossRefGoogle Scholar
  35. Shevelyov YY, Ulianov SV (2019) The nuclear lamina as an organizer of chromosome architecture. Cell 8(2):pii: E136.  https://doi.org/10.3390/cells8020136CrossRefGoogle Scholar
  36. Shumaker DK, Dechat T, Kohlmaier A, Adam SA, Bozovsky MR, Erdos MR, Eriksson M, Goldman AE, Khuon S, Collins FS, Jenuwein T, Goldman RD (2006) Mutant nuclear Lamin a leads to progressive alterations of epigenetic control in premature aging. Proc Natl Acad Sci U S A 103:8703–8708CrossRefGoogle Scholar
  37. Stehbens WE, Wakefield SJ, Gilbert-Barness E, Olson RE, Ackerman J (1999) Histological and ultrastructural features of atherosclerosis in progeria. Cardiovasc Pathol 8:29–39CrossRefGoogle Scholar
  38. Varela I, Pereira S, Ugalde AP, Navarro CL, Suarez MF, Cau P, Cadinanos J, Osorio FG, Foray N, Cobo J, de Carlos F, Levy N, Freije JMP, Lopez-Otin C (2008) Combined treatment with statins and aminobisphosphonates extends longevity in a mouse model of human premature aging. Nat Med 14(7):767–772CrossRefGoogle Scholar
  39. Wang L, Yang W, Ju W, Wang P, Zhao X, Jenkins EC, Brown WT, Zhong N (2012) A proteomic study of Hutchinson-Gilford progeria syndrome: application of 2D-chromotography in a premature aging disease. Biochem Biophys Res Commun 417:1119–1126CrossRefGoogle Scholar
  40. Wuyts W, Biervliet M, Reyniers E, D'Apice MR, Novelli G, Storm K (2005) Somatic and gonadal mosaicism in Hutchinson–Gilford progeria. Am J Med Genet Part A 135A:66–68CrossRefGoogle Scholar
  41. Yang SH, Andres DA, Spielmann HP, Young SG, Fong LG (2008) Progerin elicits disease phenotypes of progeria in mice whether or not it is farnesylated. J Clin Invest 118(10):3291–3300CrossRefGoogle Scholar
  42. Yang SH, Chang SY, Ren S, Wang Y, Andres DA, Spielmann HP, Fong LG, Young SG (2011) Absence of progeria-like disease phenotypes in knock-in mice expressing a non-farnesylated version of progerin. Hum Mol Genet 20(3):436–444.  https://doi.org/10.1093/hmg/ddq490CrossRefGoogle Scholar
  43. Young SG, Yang SH, Davies BS, Jung HJ, Fong LG (2013) Targeting protein prenylation in progeria. Sci Transl Med 5(171):171ps3.  https://doi.org/10.1126/scitranslmed.3005229CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF)University of PalermoPalermoItaly

Section editors and affiliations

  • Diddahally R. Govindaraju
    • 1
    • 2
  1. 1.Department of Human Evolutionary Biology, Museum of Comparative ZoologyHarvard UniversityCambridgeUSA
  2. 2.The Institute for Aging Research, The Glenn Center for the Biology of Human AgingAlbert Einstein College of MedicineBronxUSA