Advertisement

Laser Surface Micro-Nano Structuring via Hybrid Process

  • Peixun FanEmail author
  • Minlin ZhongEmail author
Living reference work entry
  • 21 Downloads

Abstract

In this chapter, a comprehensive review of laser surface micro-nano structuring via hybrid processes is presented. Special focus is paid on the combination of laser processing techniques with non-laser-based approaches. The strategy with laser processing followed by chemical growth or chemical etching approaches is presented. In addition, laser processing of nanoparticles, surface structures, as well as thin films together with other approaches are also presented. A description on the fabrication of micro-nano structures via femtosecond laser direct writing and their subsequent assembly driven by certain forces is also made. Accompanying different hybrid processes, representative surface micro-nano structures being produced together with their unique properties and applications are introduced. Laser processing is a programmable non-contact process, with multiple variables tunable in broad ranges, which makes it very flexible and adaptive for fabricating desired micro-nano structures on various materials and components. Further through the hybrid processes, more complicated architectures, smaller geometrical features, and higher productivities can be achieved, opening up new opportunities for producing complex micro-nano structures which are quite difficult or even not possible by individual processes.

Keywords

Laser processing Laser ablation Laser deposition Femtosecond laser Surface micro-nano structures Chemical growing Chemical etching Hybrid process Functionalization 

References

  1. Ahmmed KMT, Grambow C, Kietzig AM (2014) Fabrication of micro/nano structures on metals by femtosecond laser micromachining. Micromachines 5:1219–1253.  https://doi.org/10.3390/mi5041219CrossRefGoogle Scholar
  2. Bauhofer AA, Krödel S, Rys J, Bilal OR, Constantinescu A, Daraio C (2017) Harnessing photochemical shrinkage in direct laser writing for shape morphing of polymer sheets. Adv Mater 29(42):1703024.  https://doi.org/10.1002/adma.201703024CrossRefGoogle Scholar
  3. Bian H, Yang Q, Chen F, Liu HW, Du GQ, Deng ZF, Si JH, Yun F, Hou X (2013) Scalable shape-controlled fabrication of curved microstructures using a femtosecond laser wet-etching process. Mater Sci Eng C 33:2795–2799.  https://doi.org/10.1016/j.msec.2013.02.048CrossRefGoogle Scholar
  4. Bian H, Wei Y, Yang Q, Chen F, Zhang F, Du GQ, Yong JL, Hou X (2016) Direct fabrication of compound-eye microlens array on curved surfaces by a facile femtosecond laser enhanced wet etching process. Appl Phys Lett 109:221109.  https://doi.org/10.1063/1.4971334ADSCrossRefGoogle Scholar
  5. Cai MY, Fan PX, Long JY, Han JP, Lin Y, Zhang HJ, Zhong ML (2017) Large-scale tunable 3D self-supporting WO3 micro-nano architectures as direct photoanodes for efficient photoelectrochemical water splitting. ACS Appl Mater Interfaces 9(21):17856–17864.  https://doi.org/10.1021/acsami.7b02386CrossRefGoogle Scholar
  6. Cai MY, Han JP, Lin Y, Liu WJ, Luo X, Zhang HJ, Zhong ML (2018) CoS2-incorporated WS2 nanosheets for efficient hydrogen production. Electrochim Acta 287:1–9.  https://doi.org/10.1016/j.electacta.2018.08.003ADSCrossRefGoogle Scholar
  7. Chen F, Liu HW, Yang Q, Wang XH, Hou C, Bian H, Liang WW, Si JH, Hou X (2010) Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method. Opt Express 18(19):20334–20343.  https://doi.org/10.1364/OE.18.020334ADSCrossRefGoogle Scholar
  8. Chizari S, Shaw LA, Hopkins JB (2019) Simultaneous printing and deformation of microsystems via two-photon lithography and holographic optical tweezers. Mater Horiz 6(2):350–355.  https://doi.org/10.1039/c8mh01100aCrossRefGoogle Scholar
  9. Chu WS, Kim CS, Lee HT, Choi JO, Park JI, Song JH, Jang KH, Ahn SH (2014) Hybrid manufacturing in micro/nano scale: a review. Int J Precis Eng Manuf Green Tech 1(1):75–92.  https://doi.org/10.1007/s40684-014-0012-5CrossRefGoogle Scholar
  10. Constantinescu C, Deepak KLN, Delaporte P, Utéza O, Grojo D (2016) Arrays of metallic micro-/nano-structures by means of colloidal lithography and laser dewetting. Appl Surf Sci 374:124–131.  https://doi.org/10.1016/j.apsusc.2015.10.073ADSCrossRefGoogle Scholar
  11. Dong CS, Gu Y, Zhong ML, Li L, Ma MX, Liu WJ (2011a) The effect of laser remelting in the formation of tunable nanoporous Mn structures on mild steel substrates. Appl Surf Sci 257:2467–2473.  https://doi.org/10.1016/j.apsusc.2010.09.117ADSCrossRefGoogle Scholar
  12. Dong CS, Gu Y, Zhong ML, Li L, Sezer K, Ma MX, Liu WJ (2011b) Fabrication of superhydrophobic Cu surfaces with tunable regular micro and random nano-scale structures by hybrid laser texture and chemical etching. J Mater Process Technol 211:1234–1240.  https://doi.org/10.1016/j.jmatprotec.2011.02.007CrossRefGoogle Scholar
  13. Dong CS, Zhong ML, Huang T, Ma MX, Wortmann D, Brajdic M, Kelbassa I (2011c) Photodegradation of methyl orange under visible light by micro-nano hierarchical Cu2O structure fabricated by hybrid laser processing and chemical dealloying. ACS Appl Mater Interfaces 3:4332–4338.  https://doi.org/10.1021/am200997wCrossRefGoogle Scholar
  14. Fan PX, Bai BF, Long JY, Jiang DF, Jin GF, Zhang HJ, Zhong ML (2015) Broadband high-performance infrared antireflection nanowires facilely grown on ultrafast laser structured Cu surface. Nano Lett 15(9):5988–5994.  https://doi.org/10.1021/acs.nanolett.5b02141ADSCrossRefGoogle Scholar
  15. Fan PX, Zhong ML, Bai BF, Jin GF, Zhang HJ (2016) Large scale and cost effective generation of 3D self-supporting oxide nanowire architectures by a top-down and bottom-up combined approach. RSC Adv 6(51):45923–45930.  https://doi.org/10.1039/c6ra06222aCrossRefGoogle Scholar
  16. Giakoumaki AN, Kenanakis G, Klini A, Androulidaki M, Viskadourakis Z, Farsari M, Selimis A (2017a) 3D micro-structured arrays of ZnΟ nanorods. Sci Rep 7:2100.  https://doi.org/10.1038/s41598-017-02231-zADSCrossRefGoogle Scholar
  17. Giakoumaki AN, Kenanakis G, Klini A, Androulidaki M, Viskadourakis Z, Farsari M, Selimis A (2017b) 3D patterning of ZnO nanostructures. Mater Today 20(7):392–393.  https://doi.org/10.1016/j.mattod.2017.07.003CrossRefGoogle Scholar
  18. González-Rubio G, Guerrero-Martínez A, Liz-Marzán LM (2016) Reshaping, fragmentation, and assembly of gold nanoparticles assisted by pulse lasers. Acc Chem Res 49:678–686.  https://doi.org/10.1021/acs.accounts.6b00041CrossRefGoogle Scholar
  19. González-Rubio G, Díaz-Núñez P, Rivera A, Prada A, Tardajos G, González-Izquierdo J, Bañares L, Llombart P, Macdowell LG, Alcolea Palafox M, Liz-Marzán LM, Peña-Rodríguez O, Guerrero-Martínez A (2017) Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances. Science 358:640–644.  https://doi.org/10.1126/science.aan8478ADSCrossRefGoogle Scholar
  20. Gu Y, Dong CS, Zhong ML, Ma MX, Li L, Liu WJ (2011) Fabrication of nanoporous manganese by laser cladding and selective electrochemical de-alloying. Appl Surf Sci 257:3211–3215.  https://doi.org/10.1016/j.apsusc.2010.09.118ADSCrossRefGoogle Scholar
  21. Han JP, Cai MY, Lin Y, Liu WJ, Luo X, Zhang HJ, Zhong ML (2018) 3D re-entrant nanograss on microcones for durable superamphiphobic surfaces via laser-chemical hybrid method. Appl Surf Sci 456:726–736.  https://doi.org/10.1016/j.apsusc.2018.06.126ADSCrossRefGoogle Scholar
  22. Hossain MM, Gu M (2014) Fabrication methods of 3D periodic metallic nano/microstructures for photonics applications. Laser Photonics Rev 8(2):23–249.  https://doi.org/10.1002/lpor.201300052CrossRefGoogle Scholar
  23. Hu YL, Lao ZX, Cumming BP, Wu D, Li JW, Liang HY, Chu JR, Huang WH, Gu M (2015) Laser printing hierarchical structures with the aid of controlled capillary-driven self-assembly. PNAS 112(22):6876–6881.  https://doi.org/10.1073/pnas.1503861112ADSCrossRefGoogle Scholar
  24. Huang T, Deng ZD, Xiao RS, Wu Q, Yang WX (2016) Laser-hybrid fabrication of highly-dispersed substrate-bonded manganese carbonate microspheres. Mater Lett 183:48–51.  https://doi.org/10.1016/j.matlet.2016.07.075CrossRefGoogle Scholar
  25. Huang T, Lu JL, Xiao RS, Wu Q, Yang WX (2017a) Enhanced photocatalytic properties of hierarchical three-dimensional TiO2 grown on femtosecond laser structured titanium substrate. Appl Surf Sci 403:584–589.  https://doi.org/10.1016/j.apsusc.2017.01.203ADSCrossRefGoogle Scholar
  26. Huang T, Lu JL, Zhang X, Xiao RS, Yang WX, Wu Q (2017b) Femtosecond laser fabrication of anatase TiO2 micro-nanostructures with chemical oxidation and annealing. Sci Rep 7:2089.  https://doi.org/10.1038/s41598-017-02369-wADSCrossRefGoogle Scholar
  27. Huang T, Sun DY, Yang WX, Wu Q, Xiao RS (2017c) The fabrication of porous Si with interconnected micro-sized dendrites and tunable morpholog through the dealloying of a laser remelted Al–Si alloy. Materials 10:357.  https://doi.org/10.3390/ma10040357CrossRefGoogle Scholar
  28. Huang T, Sun DY, Yang WX, Wang HL, Wu Q, Xiao RS (2018) Binder-free anode with porous Si/Cu architecture for lithium-ion batteries. Scr Mater 146:304–307.  https://doi.org/10.1016/j.scriptamat.2017.12.018CrossRefGoogle Scholar
  29. Khuat V, Ma YC, Si JH, Chen T, Chen F, Hou X (2014) Fabrication of through holes in silicon carbide using femtosecond laser irradiation and acid etching. Appl Surf Sci 289:529–532.  https://doi.org/10.1016/j.apsusc.2013.11.030ADSCrossRefGoogle Scholar
  30. Kuchmizhak A, Pustovalov E, Syubaev S, Vitrik O, Kulchin Y, Porfirev A, Khonina S, Kudryashov S, Danilov P, Ionin A (2016a) On-fly femtosecond-laser fabrication of self-organized plasmonic nanotextures for chemo- and biosensing applications. ACS Appl Mater Interfaces 8:24946–24955.  https://doi.org/10.1021/acsami.6b07740CrossRefGoogle Scholar
  31. Kuchmizhak A, Vitrik O, Kulchin Y, Storozhenko D, Mayor A, Mirochnik A, Makarov S, Milichko V, Kudryashov S, Zhakhovsky V, Inogamov N (2016b) Laser printing of resonant plasmonic nanovoids. Nanoscale 8:12352–12361.  https://doi.org/10.1039/c6nr01317aADSCrossRefGoogle Scholar
  32. Kwon MH, Shin HS, Chu CN (2014) Fabrication of a super-hydrophobic surface on metal using laser ablation and electrodeposition. Appl Surf Sci 288:222–228.  https://doi.org/10.1016/j.apsusc.2013.10.011ADSCrossRefGoogle Scholar
  33. Lao ZX, Pan D, Yuan HW, Ni JC, Ji SY, Zhu WL, Hu YL, Li JW, Wu D, Chu JR (2018) Mechanical-tunable capillary-force-driven self-assembled hierarchical structures on soft substrate. ACS Nano 12(10):10142–10150.  https://doi.org/10.1021/acsnano.8b05024CrossRefGoogle Scholar
  34. Liu XQ, Yang SN, Yu L, Chen QD, Zhang YL, Sun HB (2019) Rapid engraving of artificial compound eyes from curved sapphire substrate. Adv Funct Mater 2019:1900037.  https://doi.org/10.1002/adfm.201900037CrossRefGoogle Scholar
  35. Lu JL, Huang T, Liu Z, Zhang X, Xiao RS (2018) Long-term wettability of titanium surfaces by combined femtosecond laser micro/nano structuring and chemical treatments. Appl Surf Sci 459:257–262.  https://doi.org/10.1016/j.apsusc.2018.08.004ADSCrossRefGoogle Scholar
  36. Lv XZ, Ji LF, Wu Y, Lin ZY, Yan YZ (2016) Porous silicon with double band photoluminescence fabricated by chemical-assisted picosecond laser irradiation. J Laser Appl 28(2):022002.  https://doi.org/10.2351/1.4939301CrossRefGoogle Scholar
  37. Ma ZC, Zhang YL, Han B, Chen QD, Sun HB (2018) Femtosecond-laser direct writing of metallic micro/nanostructures: from fabrication strategies to future applications. Small Methods 2:1700413.  https://doi.org/10.1002/smtd.201700413CrossRefGoogle Scholar
  38. Makarov SV, Petrov MI, Zywietz U, Milichko V, Zuev D, Lopanitsyna N, Kuksin A, Mukhin I, Zograf G, Ubyivovk E, Smirnova DA, Starikov S, Chichkov BN, Kivshar YS (2017) Efficient second-harmonic generation in nanocrystalline silicon nanoparticles. Nano Lett 17(5):3047–3053.  https://doi.org/10.1021/acs.nanolett.7b00392ADSCrossRefGoogle Scholar
  39. Mao ZW, Cao W, Hu J, Jiang L, Wang AD, Li X, Cao J, Lu YF (2017) A dual-functional surface with hierarchical micro/nanostructure arrays for self-cleaning and antireflection. RSC Adv 7(78):49649–49654.  https://doi.org/10.1039/c7ra11186jCrossRefGoogle Scholar
  40. Meng XW, Chen F, Yang Q, Bian H, Du GQ, Hou X (2015) Simple fabrication of closed-packed IR microlens arrays on silicon by femtosecond laser wet etching. Appl Phys A Mater Sci Process 121:157–162.  https://doi.org/10.1007/s00339-015-9402-yADSCrossRefGoogle Scholar
  41. Pan A, Si JH, Chen T, Ma YC, Chen F, Hou X (2013) Fabrication of high-aspect-ratio grooves in silicon using femtosecond laser irradiation and oxygen-dependent acid etching. Opt Express 21(14):16657–16662.  https://doi.org/10.1364/OE.21.016657ADSCrossRefGoogle Scholar
  42. Pan A, Gao B, Chen T, Si JH, Li CX, Chen F, Hou X (2014) Fabrication of concave spherical microlenses on silicon by femtosecond laser irradiation and mixed acid etching. Opt Express 22(12):15245–15250.  https://doi.org/10.1364/OE.22.015245ADSCrossRefGoogle Scholar
  43. Tang M, Hong ML, Choo YS, Tang Z, Chua Daniel HC (2010) Super-hydrophobic transparent surface by femtosecond laser micro-patterned catalyst thin film for carbon nanotube cluster growth. Appl Phys A Mater Sci Process 101:503–508.  https://doi.org/10.1007/s00339-010-5887-6ADSCrossRefGoogle Scholar
  44. Tong SY, Biang H, Yang Q, Chen F, Deng ZF, Si JH, Hou X (2014) Large-scale high quality glass microlens arrays fabricated by laser enhanced wet etching. Opt Express 22(23):29283–29291.  https://doi.org/10.1364/OE.22.029283ADSCrossRefGoogle Scholar
  45. Wang XW, Kuchmizhak A, Storozhenko D, Makarov S, Juodkazis S (2018) Single-step laser plasmonic coloration of metal films. ACS Appl Mater Interfaces 10(1):1422–1427.  https://doi.org/10.1021/acsami.7b16339CrossRefGoogle Scholar
  46. Xiao J, Liu P, Wang CX, Yang GW (2017) External field-assisted laser ablation in liquid: an efficient strategy for nanocrystal synthesis and nanostructure assembly. Prog Mater Sci 87:140–220.  https://doi.org/10.1016/j.pmatsci.2017.02.004CrossRefGoogle Scholar
  47. Yang J, Liang T, Wu WT, Liu H, Gao MR, Ling C, Li L, Du XW (2013) A top–down strategy towards monodisperse colloidal lead sulphide quantum dots. Nat Commun 4:1695.  https://doi.org/10.1038/ncomms2637ADSCrossRefGoogle Scholar
  48. Zhang DS, Gökce B, Barcikowski S (2017) Laser synthesis and processing of colloids: fundamentals and applications. Chem Rev 117:3990–4103.  https://doi.org/10.1021/acs.chemrev.6b00468CrossRefGoogle Scholar
  49. Zhang F, Wang C, Yin K, Dong XR, Song YX, Tian YX, Duan JA (2018) Quasi-periodic concave microlens array for liquid refractive index sensing fabricated by femtosecond laser assisted with chemical etching. Sci Rep 8:2419.  https://doi.org/10.1038/s41598-018-20807-1ADSCrossRefGoogle Scholar
  50. Zhigunov DM, Evlyukhin AB, Shalin AS, Zywietz U, Chichkov BN (2018) Femtosecond laser printing of single Ge and SiGe nanoparticles with electric and magnetic optical resonances. ACS Photonics 5(3):977–983.  https://doi.org/10.1021/acsphotonics.7b01275CrossRefGoogle Scholar
  51. Zhu Z, Dhokia VG, Nassehi A, Newman ST (2013) A review of hybrid manufacturing processes-state of the art and future perspectives. Int J Comput Integr Manuf 26(7):596–615.  https://doi.org/10.1080/0951192X.2012.749530CrossRefGoogle Scholar
  52. Zhu XL, Vannahme C, Højlund-Nielsen E, Mortensen NA, Kristensen A (2016) Plasmonic colour laser printing. Nat Nanotechnol 11:325–329.  https://doi.org/10.1038/NNANO.2015.285ADSCrossRefGoogle Scholar
  53. Zhu XL, Yan W, Levy U, Mortensen NA, Kristensen A (2017) Resonant laser printing of structural colors on high-index dielectric metasurfaces. Sci Adv 3(5):e1602487.  https://doi.org/10.1126/sciadv.1602487ADSCrossRefGoogle Scholar
  54. Zuev DA, Makarov SV, Milichko VA, Mukhin IS, Milichko VA, Starikov SV, Morozov IA, Shishkin II, Krasnok AE, Belov PA (2016) Fabrication of hybrid nanostructures via nanoscale laser-induced reshaping for advanced light manipulation. Adv Mater 28:3087–3093.  https://doi.org/10.1002/adma.201505346CrossRefGoogle Scholar
  55. Zywietz U, Evlyukhin AB, Reinhardt C, Chichkov BN (2014) Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses. Nat Commun 5:3402.  https://doi.org/10.1038/ncomms4402ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Laser Materials Processing Research Center, School of Materials Science and EngineeringTsinghua UniversityBeijingP. R. China

Section editors and affiliations

  • Minlin Zhong
    • 1
  1. 1.School of Materials Science and EngineeringTsinghua UniversityBeijingP.R. China

Personalised recommendations