Laser Interactions with Organic/Polymer Materials

Living reference work entry


Laser light irradiation of organic or polymeric materials leads to a wide range of controlled physical and chemical modifications in the micro- and nanoscales. Laser pulses, with wavelengths from the ultraviolet to the infrared, with duration in nanosecond, picosecond, and femtosecond temporal domains, may remove material from the surface by ablation, induce swelling of the irradiated region, or generate patterns of different sizes and geometries, using methods which involve multiple laser beams or nanoparticle-mediated effects. Laser-induced chemical modifications of organic or polymeric substrates are at the basis of very important and technologically relevant processes such as laser lithography, fabrication of nanocomposites, or 3D photopolymerization. Laser irradiation also serves for transferring organic and polymeric materials from bulk to thin films, and different advanced techniques have been applied, or specifically developed, for polymeric soft, light-sensitive materials, as is the case of pulsed laser deposition, laser-induced forward transfer, or matrix-assisted methods. This chapter introduces the most important laser irradiation and laser transfer techniques that are nowadays applied to organic and polymeric materials, describes some of the attempts to interpret and model the main underlying mechanisms, and reviews relevant applications of the laser-modified substrates.


Polymers Laser ablation Laser interference patterning Laser-induced periodic surface structures Laser foaming Laser cleaning Photopolymerization Pulsed laser deposition Matrix-assisted pulsed laser evaporation Laser-induced forward transfer 



Thanks are given to Spanish Ministry of Science, Innovation and Universities (MCIU) for funding under the project CTQ2016-75880-P. E.R. also thanks the tenure of a Ramón y Cajal contract (No. RYC-2011-08069). M.C. acknowledges support from Project PRX18/00029 (MCIU).


  1. Agranat MB, Krasyuk IK, Novikov NP, Perminov VP, Yudin YI, Yampol’skii PA (1973) Mechanical damage in polymers caused by laser pulses. Polym Mech 7:389ADSCrossRefGoogle Scholar
  2. Alamri S, Lasagni AF (2017) Development of a general model for direct laser interference patterning of polymers. Opt Express 25:9603ADSCrossRefGoogle Scholar
  3. Alamri S, Aguilar-Morales AI, Lasagni AF (2018) Controlling the wettability of polycarbonate substrates by producing hierarchical structures using Direct Laser Interference Patterning. Eur Polym J 99:27CrossRefGoogle Scholar
  4. Alexandrov A, Smirnova L, Yakimovich N, Sapogova N, Soustov L, Kirsanov A, Bityurin N (2005) UV-initiated growth of gold nanoparticles in PMMA matrix. Appl Surf Sci 248:181ADSCrossRefGoogle Scholar
  5. Almeida JM, Avila OI, Andrade MB, Stefanelo JC, Otuka AJ, Paula KT, Balogh DT, Mendonça CR (2019) Micropatterning of poly(p-phenylene vinylene) by femtosecond laser induced forward transfer. Polym Int 68:160CrossRefGoogle Scholar
  6. Andrew JE, Dyer PE, Forster D, Key PH (1983) Direct etching of polymeric materials using a XeCl laser. Appl Phys Lett 43:717ADSCrossRefGoogle Scholar
  7. Anglos D, Stassinopoulos A, Das RN, Zacharakis G, Psyllaki M, Jakubiak R, Vaia RA, Giannelis EP, Anastasiadis SH (2004) Random laser action in organic–inorganic nanocomposites. J Opt Soc Am B 21:208ADSCrossRefGoogle Scholar
  8. Arenholz E, Svorcik V, Kefer T, Heitz J, Bäuerle D (1991) Structure formation in UV-laser ablated poly-ethylene-terephthalate (PET). Appl Phys A 53:330ADSCrossRefGoogle Scholar
  9. Arenholz E, Wagner M, Heitz J, Bäuerle D (1992) Structure formation in UV-laser-ablated polyimide foils. Appl Phys A 55:119Google Scholar
  10. Arif S, Armbruster O, Kautek W (2013) Pulse laser particulate separation from polycarbonate: surface acoustic wave and thermomechanical mechanisms. Appl Phys A 111:539ADSCrossRefGoogle Scholar
  11. Arnold N (2008) Influence of the substrate, metal overlayer and lattice neighbors on the focusing properties of colloidal microspheres. Appl Phys A 92:1005ADSCrossRefGoogle Scholar
  12. Arnold N, Bityurin N (1999) Model for laser-induced thermal degradation and ablation of polymers. Appl Phys A 68:615ADSCrossRefGoogle Scholar
  13. Arnold N, Luk’yanchuk B, Bityurin N (1998) A fast quantitative modelling of ns laser ablation based on non-stationary averaging technique. Appl Surf Sci 127–129:184ADSCrossRefGoogle Scholar
  14. Arnold CB, Serra P, Piqué A (2007) Laser Direct-Write Techniques for Printing of Complex Materials. MRS Bull 32:23CrossRefGoogle Scholar
  15. Avila OI, Santos MV, Shimizu FM, Almeida GFB, Siqueir JP, Andrade MB, Balogh DT, Ribeiro SJL, Mendonca CR (2018) Direct Femtosecond Laser Printing of PPV on Bacterial Cellulose-Based Paper for Flexible Organic Devices. Macromol Mater Eng 303:1800265CrossRefGoogle Scholar
  16. Babu SV, D’Couto GC, Egitto FD (1992) Excimer laser induced ablation of polyetheretherketone, polyimide, and polytetrafluoroethylene. J Appl Phys 72:692ADSCrossRefGoogle Scholar
  17. Ball Z, Hopp B, Csete M, Ignácz F, Rácz B, Sauerbrey R, Szabó G (1995) Transient optical properties of excimer-laser-irradiated polyimide. Appl Phys A 61:547ADSCrossRefGoogle Scholar
  18. Baset F, Popov K, Villafranca A, Guay J-M, Al-Rekabi Z, Pelling AE, Ramunno L, Bhardwaj R (2013) Femtosecond laser induced surface swelling in poly-methyl methacrylate. Opt Express 21:12527ADSCrossRefGoogle Scholar
  19. Baudach S, Bonse J, Kautek W (1999) Ablation experiments on polyimide with femtosecond laser pulses. Appl Phys A 69:S395ADSCrossRefGoogle Scholar
  20. Baudach S, Bonse J, Krüger J, Kautek W (2000) Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate. Appl Surf Sci 154–155:555ADSCrossRefGoogle Scholar
  21. Baudach S, Krüger J, Kautek W (2001) Femtosecond Laser Processing of Soft Materials. Rev Laser Eng 29:705CrossRefGoogle Scholar
  22. Bäuerle D (2000) Laser processing and chemistry. Springer, BerlinCrossRefGoogle Scholar
  23. Beinhorn F, Ihlemann J, Luther K, Troe J (2004) Plasma effects in picosecond-femtosecond UV laser ablation of polymers. Appl Phys A 79:869ADSCrossRefGoogle Scholar
  24. Birnbaum M (1965) Semiconductor Surface Damage Produced by Ruby Lasers. J Appl Phys 36:3688ADSMathSciNetCrossRefGoogle Scholar
  25. Bityurin N (1999) UV etching accompanied by modifications. Surface etching. Appl Surf Sci 138–139:354ADSCrossRefGoogle Scholar
  26. Bityurin N (2005) Studies on laser ablation of polymers. Annu Rep Sect C Phys Chem 101:216CrossRefGoogle Scholar
  27. Bityurin N (2009) Model for laser swelling of a polymer film. Appl Surf Sci 255:9851ADSCrossRefGoogle Scholar
  28. Bityurin NM (2014) Laser nanostructuring of polymers. In: Springer series in materials science. Springer, Berlin/HeidelbergGoogle Scholar
  29. Bityurin N, Malyshev A (2002) Bulk photothermal model for laser ablation of polymers by nanosecond and subpicosecond pulses. J Appl Phys 92:605ADSCrossRefGoogle Scholar
  30. Bityurin N, Muraviov S, Alexandrov A, Malyshev A (1997) UV laser modifications and etching of polymer films (PMMA) below the ablation threshold. Appl Surf Sci 109–110:270ADSCrossRefGoogle Scholar
  31. Bityurin N, Luk’yanchuk BS, Hong MH, Chong TC (2003) Models for Laser Ablation of Polymers. Chem Rev 103:519CrossRefGoogle Scholar
  32. Bityurin N, Alexandrov A, Afanasiev A, Agareva N, Pikulin A, Sapogova N, Soustov L, Salomatina E, Gorshkova E, Tsverova N, Smirnova L (2013) Photoinduced nanocomposites—creation, modification, linear and nonlinear optical properties. Appl Phys A 112:135ADSCrossRefGoogle Scholar
  33. Blanchet GB, Shah SI (1993) Deposition of polytetrafluoroethylene films by laser ablation. Appl Phys Lett 62:1026ADSCrossRefGoogle Scholar
  34. Bloisi F, Cassinese A, Papa R, Vicari L, Califano V (2008) Matrix-Assisted Pulsed Laser Evaporation of polythiophene films. Thin Solid Films 516:1594ADSCrossRefGoogle Scholar
  35. Bolle M, Lazare S, Le Blanc M, Wilmes A (1992) Submicron periodic structures produced on polymer surfaces with polarized excimer laser ultraviolet radiation. Appl Phys Lett 60:674ADSCrossRefGoogle Scholar
  36. Bounos G, Selimis A, Georgiou S, Rebollar E, Castillejo M, Bityurin N (2006) Dependence of ultraviolet nanosecond laser polymer ablation on polymer molecular weight: Poly(methyl methacrylate) at 248nm. J Appl Phys 100:114323ADSCrossRefGoogle Scholar
  37. Brannon JH (1989) Micropatterning of surfaces by excimer laser projection. J Vac Sci Technol B 7:1064CrossRefGoogle Scholar
  38. Cain SR (1993) A photothermal model for polymer ablation: chemical modification. J Phys Chem 97:7572CrossRefGoogle Scholar
  39. Cain SR, Burns FC, Otis CE (1992) On single‐photon ultraviolet ablation of polymeric materials. J Appl Phys 71:4107ADSCrossRefGoogle Scholar
  40. Caricato AP, Lomascolo M, Luches A, Mandoj F, Manera MG, Mastroianni M, Martino M, Paolesse R, Rella R, Romano F, Tunno T, Valerini D (2008) MAPLE deposition of methoxy Ge triphenylcorrole thin films. Appl Phys A 93:651ADSCrossRefGoogle Scholar
  41. Caricato AP, Cesaria M, Gigli G, Loiudice A, Luches A, Martino M, Resta V, Rizzo A, Taurino A (2012) Poly-(3-hexylthiophene)/[6,6]-phenyl-C61-butyric-acid-methyl-ester bilayer deposition by matrix-assisted pulsed laser evaporation for organic photovoltaic applications. Appl Phys Lett 100:073306ADSCrossRefGoogle Scholar
  42. Castillejo M, Rebollar E, Oujja M, Sanz M, Selimis A, Sigletou M, Psycharakis S, Ranella A, Fotakis C (2012) Fabrication of porous biopolymer substrates for cell growth by UV laser: The role of pulse duration. Appl Surf Sci 258:8919ADSCrossRefGoogle Scholar
  43. Chalupský J, Juha L, Hájková V, Cihelka J, Vyšĺn L, Gautier J, Hajdu J, Hau-Riege SP, Jurek M, Krzywinski J, London RA, Papalazarou E, Pelka JB, Rey G, Sebban S, Sobierajski R, Stojanovic N, Tiedtke K, Toleikis S, Tschentscher T, Valentin C, Wabnitz H, Zeitoun P (2009) Non-thermal desorption/ablation of molecular solids induced by ultra-short soft x-ray pulses. Opt Express 17:208ADSCrossRefGoogle Scholar
  44. Charlot V, Ibrahim A, Allonas X, Croutxé-Barghorn C, Delaite C (2014) Photopolymerization of methyl methacrylate: effects of photochemical and photonic parameters on the chain length. Polym Chem 5:6236CrossRefGoogle Scholar
  45. Cheptsov VS, Churbanova ES, Yusupov VI, Gorlenko MV, Lysak LV, Minaev NV, Bagratashvili VN, Chichkov BN (2018) Laser printing of microbial systems: effect of absorbing metal film. Lett Appl Microbiol 67:544CrossRefGoogle Scholar
  46. Chii-Rong Y, Yu-Sheng H, Guang-Yeu H, Yu-Der L (2004) Photoablation characteristics of novel polyimides synthesized for high-aspect-ratio excimer laser LIGA process. J Micromech Microeng 14:480CrossRefGoogle Scholar
  47. Chrisey DB, Piqué A, McGill RA, Horwitz JS, Ringeisen BR, Bubb DM, Wu PK (2003) Laser Deposition of Polymer and Biomaterial Films. Chem Rev 103:553CrossRefGoogle Scholar
  48. Chu F, Yan S, Zheng J, Zhang L, Zhang H, Yu K, Sun X, Liu A, Huang Y (2018) A Simple Laser Ablation-Assisted Method for Fabrication of Superhydrophobic SERS Substrate on Teflon Film. Nanoscale Res Lett 13:244ADSCrossRefGoogle Scholar
  49. Coloff SG, Vanderborgh NE (1973) Time-Resolved Laser Induced Degradation of Polystyrene. Anal Chem 45:1507CrossRefGoogle Scholar
  50. Conforti PF, Prasad M, Garrison BJ (2007a) Effects of thermal energy deposition on material ejection in poly(methyl methacrylate). Appl Surf Sci 253:6386ADSCrossRefGoogle Scholar
  51. Conforti PF, Prasad M, Garrison BJ (2007b) Effects of thermal energy deposition on material ejection in poly(methyl methacrylate). J Phys Chem C 111:12024CrossRefGoogle Scholar
  52. Conforti PF, Prasad M, Garrison BJ (2008a) Elucidating the Thermal, Chemical, and Mechanical Mechanisms of Ultraviolet Ablation in Poly(methyl methacrylate) via Molecular Dynamics Simulations. Acc Chem Res 41:915CrossRefGoogle Scholar
  53. Conforti PF, Prasad M, Garrison BJ (2008b) The impact of point thermal absorbers in ablation of poly(methyl methacrylate). Appl Phys A 92:1037ADSCrossRefGoogle Scholar
  54. Couris S, Hatziapostolou A, Anglos D, Mavromanolakis A, Fotakis C (1996) Laser Induced Breakdown Spectroscopy (LIBS): Applications in environmental issues. Proc SPIE Int Soc Opt Eng 2965:83ADSGoogle Scholar
  55. Cozzens RF, Fox RB (1978) Infrared laser ablation of polymers. Polym Eng Sci 18:900CrossRefGoogle Scholar
  56. Cristescu R, Stamatin I, Mihaiescu DE, Ghica C, Albulescu M, Mihailescu IN, Chrisey DB (2004a) Pulsed laser deposition of biocompatible polymers: a comparative study in case of pullulan. Thin Solid Films 453–454:262CrossRefGoogle Scholar
  57. Cristescu R, Mihaiescu D, Socol G, Stamatin I, Mihailescu IN, Chrisey DB (2004b) Deposition of biopolymer thin films by matrix assisted pulsed laser evaporation. Appl Phys A 79:1023ADSCrossRefGoogle Scholar
  58. Cristescu R, Dorcioman G, Ristoscu C, Axente E, Grigorescu S, Moldovan A, Mihailescu IN, Kocourek T, Jelinek M, Albulescu M, Buruiana T, Mihaiescu D, Stamatin I, Chrisey DB (2006) Matrix assisted pulsed laser evaporation processing of triacetate-pullulan polysaccharide thin films for drug delivery systems. Appl Surf Sci 252:4647ADSCrossRefGoogle Scholar
  59. Cui J, Rodríguez-Rodríguez Á, Hernández M, García-Gutiérrez M-C, Nogales A, Castillejo M, Moseguí González D, Müller-Buschbaum P, Ezquerra TA, Rebollar E (2016) Laser-induced periodic surface structures on P3HT and on its photovoltaic blend with PC71BM. ACS Appl Mater Interfaces 8:31894CrossRefGoogle Scholar
  60. Cui J, Nogales A, Ezquerra TA, Rebollar E (2017) Influence of substrate and film thickness on polymer LIPSS formation. Appl Surf Sci 394:125ADSCrossRefGoogle Scholar
  61. Dajun Y, Andrés L, Jeffrey LH, David CM, Suman D (2012) Patterning of periodic nano-cavities on PEDOT–PSS using nanosphere-assisted near-field optical enhancement and laser interference lithography. Nanotechnology 23:015304CrossRefGoogle Scholar
  62. Delle Side D, Caricato AP, Krása J, Nassisi V (2018) Target charging during laser ablation of polyethylene. Appl Phys A 124:138ADSCrossRefGoogle Scholar
  63. Denk R, Piglmayer K, Bäuerle D (2002) Laser-induced nanopatterning of PET using a-SiO2 microspheres. Appl Phys A 74:825ADSCrossRefGoogle Scholar
  64. Deubel M, von Freymann G, Wegener M, Pereira S, Busch K, Soukoulis CM (2004) Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat Mater 3:444ADSCrossRefGoogle Scholar
  65. Deutsch TF, Geis MW (1983) Self‐developing UV photoresist using excimer laser exposure. J Appl Phys 54:7201ADSCrossRefGoogle Scholar
  66. Dhanumalayan E, Joshi GM (2018) Performance properties and applications of polytetrafluoroethylene (PTFE)—a review. Adv Compos Hybrid Mater 1:247CrossRefGoogle Scholar
  67. Dinca V, Ranella A, Farsari M, Kafetzopoulos D, Dinescu M, Popescu A, Fotakis C (2008) Quantification of the activity of biomolecules in microarrays obtained by direct laser transfer. Biomed Microdevices 10:719CrossRefGoogle Scholar
  68. Dinca V, Zaharie-Butucel D, Stanica L, Brajnicov S, Marascu V, Bonciu A, Cristocea A, Gaman L, Gheorghiu M, Astilean S, Vasilescu A (2018) Functional Micrococcus lysodeikticus layers deposited by laser technique for the optical sensing of lysozyme. Colloids Surf B: Biointerfaces 162:98CrossRefGoogle Scholar
  69. Doraiswamy A, Narayan RJ, Lippert T, Urech L, Wokaun A, Nagel M, Hopp B, Dinescu M, Modi R, Auyeung RCY, Chrisey DB (2006) Excimer laser forward transfer of mammalian cells using a novel triazene absorbing layer. Appl Surf Sci 252:4743ADSCrossRefGoogle Scholar
  70. Dunn DS, Ouderkirk AJ (1990) Chemical and physical properties of laser-modified polymers. Macromolecules 23:770ADSCrossRefGoogle Scholar
  71. Dvornikov AS, Rentzepis PM (1997) Novel organic ROM materials for optical 3D memory devices. Opt Commun 136:1ADSCrossRefGoogle Scholar
  72. Dyer PE (2003) Excimer laser polymer ablation: twenty years on. Appl Phys A 77:167ADSCrossRefGoogle Scholar
  73. Englert L, Wollenhaupt M, Sarpe C, Otto D, Baumert T (2012) Morphology of nanoscale structures on fused silica surfaces from interaction with temporally tailored femtosecond pulses. J Laser Appl 24:042002CrossRefGoogle Scholar
  74. Fardel R, Nagel M, Nüesch F, Lippert T, Wokaun A (2007) Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer. Appl Phys Lett 91:061103ADSCrossRefGoogle Scholar
  75. Fardel R, McLeod E, Tsai Y-C, Arnold CB (2010) Nanoscale ablation through optically trapped microspheres. Appl Phys A 101:41ADSCrossRefGoogle Scholar
  76. Farsari M, Chichkov BN (2009) Two-photon fabrication. Nat Photonics 3:450ADSCrossRefGoogle Scholar
  77. Farsari M, Ovsianikov A, Vamvakaki M, Sakellari I, Gray D, Chichkov BN, Fotakis C (2008) Fabrication of three-dimensional photonic crystal structures containing an active nonlinear optical chromophore. Appl Phys A 93:11ADSCrossRefGoogle Scholar
  78. Fischer J, von Freymann G, Wegener M (2010) The Materials Challenge in Diffraction-Unlimited Direct-Laser-Writing Optical Lithography. Adv Mater 22:3578CrossRefGoogle Scholar
  79. Fourrier T, Schrems G, Mühlberger T, Heitz J, Arnold N, Bäuerle D, Mosbacher M, Boneberg J, Leiderer P (2001) Laser cleaning of polymer surfaces. Appl Phys A 72:1ADSCrossRefGoogle Scholar
  80. Frank P, Lang F, Mosbacher M, Boneberg J, Leiderer P (2008) Infrared steam laser cleaning. Appl Phys A 93:1ADSCrossRefGoogle Scholar
  81. Frolov IA, Allayarov SR, Kalinin LA, Dixon DA, Tolstopyatov EM, Grakovich PN, Ivanov LF (2018) Impact of γ-Irradiation on the Kinetics of Laser Ablation of Polyamide Under Continuous CO2 Laser Beam. J Russ Laser Res 39:98CrossRefGoogle Scholar
  82. Fukumura H, Kohji Y, Masuhara H (1996) Laser implantation of fluorescent molecules into polymer films. Appl Surf Sci 96–98:569ADSCrossRefGoogle Scholar
  83. Fukumura H, Uji-i H, Banjo H, Masuhara H, Karnakis DM, Ichinose N, Kawanishi S, Uchida K, Irie M (1998) Laser implantation of photochromic molecules into polymer films: a new approach towards molecular device fabrication. Appl Surf Sci 127–129:761ADSCrossRefGoogle Scholar
  84. Gaspard S, Oujja M, Rebollar E, Walczak M, Díaz L, Santos M, Castillejo M (2007) IR laser ablation of doped poly(methyl methacrylate). Appl Surf Sci 253:6442ADSCrossRefGoogle Scholar
  85. Geldhauser T, Ziese F, Merkt F, Erbe A, Boneberg J, Leiderer P (2007) Acoustic laser cleaning of silicon surfaces. Appl Phys A 89:109ADSCrossRefGoogle Scholar
  86. Gonzalo J, Dyer PE, Snelling HV, Hird M (1999) Liquid crystal films grown by pulsed laser deposition. Appl Surf Sci 138–139:179ADSCrossRefGoogle Scholar
  87. Grant Norton M, Jiang W, Thomas Dickinson J, Hipps KW (1996) Pulsed laser ablation and deposition of fluorocarbon polymers. Appl Surf Sci 96–98:617ADSCrossRefGoogle Scholar
  88. Gross ME, Appelbaum A, Gallagher PK (1987) Laser direct‐write metallization in thin palladium acetate films. J Appl Phys 61:1628ADSCrossRefGoogle Scholar
  89. Guha S, Adil D, Ukah NB, Gupta RK, Ghosh K (2011) MAPLE-deposited polymer films for improved organic device performance. Appl Phys A 105:547ADSCrossRefGoogle Scholar
  90. Gumpenberger T, Heitz J, Bäuerle D, Kahr H, Graz I, Romanin C, Svorcik V, Leisch F (2003) Adhesion and proliferation of human endothelial cells on photochemically modified polytetrafluoroethylene. Biomaterials 24:5139CrossRefGoogle Scholar
  91. Gumpenberger T, Heitz J, Bäuerle D, Rosenmayer TC (2005) Modification of expanded polytetrafluoroethylene by UV irradiation in reactive and inert atmosphere. Appl Phys A 80:27ADSCrossRefGoogle Scholar
  92. Guo L, Jiang H-B, Shao R-Q, Zhang Y-L, Xie S-Y, Wang J-N, Li X-B, Jiang F, Chen Q-D, Zhang T, Sun H-B (2012a) Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device. Carbon 50:1667CrossRefGoogle Scholar
  93. Guo Y, Morozov A, Schneider D, Chung JW, Zhang C, Waldmann M, Yao N, Fytas G, Arnold CB, Priestley RD (2012b) Ultrastable nanostructured polymer glasses. Nat Mater 11:337ADSCrossRefGoogle Scholar
  94. Hagemeyer A, Hibst H, Heitz J, Bauerle D (1994) Improvements of the peel test for adhesion evaluation of thin metallic films on polymeric substrates. J Adhes Sci Technol 8:29CrossRefGoogle Scholar
  95. Hanada Y, Sugioka K, Kawano H, Tsuchimoto T, Miyamoto I, Miyawaki A, Midorikawa K (2009) Selective cell culture on UV transparent polymer by F2 laser surface modification. Appl Surf Sci 255:9885ADSCrossRefGoogle Scholar
  96. Hansen SG, Robitaille TE (1988a) Formation of polymer films by pulsed laser evaporation. Appl Phys Lett 52:81ADSCrossRefGoogle Scholar
  97. Hansen SG, Robitaille TE (1988b) Arrival time measurements of films formed by pulsed laser evaporation of polycarbonate and selenium. J Appl Phys 64:2122ADSCrossRefGoogle Scholar
  98. Hayashi T, Shibata T, Kawashima T, Makino E, Mineta T, Masuzawa T (2008) Photolithography system with liquid crystal display as active gray-tone mask for 3D structuring of photoresist. Sensors Actuators A Phys 144:381CrossRefGoogle Scholar
  99. Hopp B, Smausz T, Kresz N, Barna N, Bor Z, Kolozsvári L, Chrisey DB, Szabó A, Nógrádi A (2005a) Survival and Proliferative Ability of Various Living Cell Types after Laser-Induced Forward Transfer. Tissue Eng 11:1817CrossRefGoogle Scholar
  100. Hopp B, Smausz T, Barna N, Cs V, Zs A, Kredics L, Chrisey D (2005b) Time-resolved study of absorbing film assisted laser induced forward transfer of Trichoderma longibrachiatum conidia. J Phys D Appl Phys 38:833ADSCrossRefGoogle Scholar
  101. Hopp B, Smausz T, Kecskeméti G, Klini A, Bor Z (2007) Femtosecond pulsed laser deposition of biological and biocompatible thin layers. Appl Surf Sci 253:7806ADSCrossRefGoogle Scholar
  102. Hopp B, Smausz T, Papdi B, Bor Z, Szabó A, Kolozsvári L, Fotakis C, Nógrádi A (2008) Laser-based techniques for living cell pattern formation. Appl Phys A 93:45ADSCrossRefGoogle Scholar
  103. Huang Y-H, Wu M-N, Song C-W, Zhang J-J, Sun T, Jiang L (2018) Simulation and experimental investigations of thermal degradation of polystyrene under femtosecond laser ablation. Appl Phys A 124:797ADSCrossRefGoogle Scholar
  104. Jelinek M, Cristescu R, Axente E, Kocourek T, Dybal J, Remsa J, Plestil J, Mihaiescu D, Albulescu M, Buruiana T, Stamatin I, Mihailescu IN, Chrisey DB (2007) Matrix assisted pulsed laser evaporation of cinnamate-pullulan and tosylate-pullulan polysaccharide derivative thin films for pharmaceutical applications. Appl Surf Sci 253:7755ADSCrossRefGoogle Scholar
  105. Jeong H, Chowdhury M, Wang Y, Sezen-Edmonds M, Loo Y-L, Register RA, Arnold CB, Priestley RD (2018) Tuning Morphology and Melting Temperature in Polyethylene Films by MAPLE. Macromolecules 51:512ADSCrossRefGoogle Scholar
  106. Jiang J, Callender CL, Noad JP, Walker RB, Mihailov SJ, Ding J, Day M (2004) All-polymer photonic devices using excimer laser micromachining. IEEE Photon Technol Lett 16:509ADSCrossRefGoogle Scholar
  107. Johnson SL, Schriver KE, Haglund RF, Bubb DM (2009a) Effects of the absorption coefficient on resonant infrared laser ablation of poly(ethylene glycol). J Appl Phys 105:024901ADSCrossRefGoogle Scholar
  108. Johnson SL, Bubb DM, Haglund RF (2009b) Phase explosion and recoil-induced ejection in resonant-infrared laser ablation of polystyrene. Appl Phys A 96:627ADSCrossRefGoogle Scholar
  109. Kallepalli DLN, Alshehri AM, Marquez DT, Andrzejewski L, Scaiano JC, Bhardwaj R (2016) Ultra-high density optical data storage in common transparent plastics. Sci Rep 6:26163ADSCrossRefGoogle Scholar
  110. Karas M, Bachmann D, Hillenkamp F (1985) Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Anal Chem 57:2935CrossRefGoogle Scholar
  111. Kattamis NT, Purnick PE, Weiss R, Arnold CB (2007) Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials. Appl Phys Lett 91:171120ADSCrossRefGoogle Scholar
  112. Kawamura Y, Toyoda K, Namba S (1982) Effective deep ultraviolet photoetching of polymethyl methacrylate by an excimer laser. Appl Phys Lett 40:374ADSCrossRefGoogle Scholar
  113. Klok H-A, Lecommandoux S (2001) Supramolecular Materials via Block Copolymer Self-Assembly. Adv Mater 13:1217CrossRefGoogle Scholar
  114. Koch L, Deiwick A, Schlie S, Michael S, Gruene M, Coger V, Zychlinski D, Schambach A, Reimers K, Vogt PM, Chichkov B (2012) Skin tissue generation by laser cell printing. Biotechnol Bioeng 109:1855CrossRefGoogle Scholar
  115. Krüger J, Martin S, Mädebach H, Urech L, Lippert T, Wokaun A, Kautek W (2005) Femto- and nanosecond laser treatment of doped polymethylmethacrylate. Appl Surf Sci 247:406ADSCrossRefGoogle Scholar
  116. Kunze T, Zwahr C, Krupop B, Alamri S, Rößler F, Lasagni AF (2017) Development of a scanner-based direct laser interference patterning optical head: new surface structuring opportunities. SPIE LASE, SPIE 10092:7Google Scholar
  117. Küper S, Stuke M (1987) Femtosecond uv excimer laser ablation. Appl Phys B 44:199ADSCrossRefGoogle Scholar
  118. Küper S, Stuke M (1989) UV-excimer-laser ablation of polymethylmethacrylate at 248 nm: Characterization of incubation sites with Fourier transform IR- and UV-Spectroscopy. Appl Phys A 49:211ADSCrossRefGoogle Scholar
  119. Küper S, Brannon J, Brannon K (1993) Threshold behavior in polyimide photoablation: Single-shot rate measurements and surface-temperature modeling. Appl Phys A 56:43ADSCrossRefGoogle Scholar
  120. Kwong HY, Wong MH, Wong YW, Wong KH (2007) Superhydrophobicity of polytetrafluoroethylene thin film fabricated by pulsed laser deposition. Appl Surf Sci 253:8841ADSCrossRefGoogle Scholar
  121. Lai ND, Zheng TS, Do DB, Lin JH, Hsu CC (2010) Fabrication of desired three-dimensional structures by holographic assembly technique. Appl Phys A 100:171ADSCrossRefGoogle Scholar
  122. Lang F, Mosbacher M, Leiderer P (2003) Near field induced defects and influence of the liquid layer thickness in Steam Laser Cleaning of silicon wafers. Appl Phys A 77:117ADSCrossRefGoogle Scholar
  123. Lang V, Roch T, Lasagni AF (2016) High-Speed Surface Structuring of Polycarbonate Using Direct Laser Interference Patterning: Toward 1 m2 min−1 Fabrication Speed Barrier. Adv Eng Mater 18:1342CrossRefGoogle Scholar
  124. Lasagni AF, Acevedo DF, Barbero CA, Mücklich F (2007) One-Step Production of Organized Surface Architectures on Polymeric Materials by Direct Laser Interference Patterning. Adv Eng Mater 9:99CrossRefGoogle Scholar
  125. Lasagni AF, Acevedo DF, Barbero CA, Mücklich F (2008) Advanced design of conductive polymeric arrays with controlled electrical resistance using direct laser interference patterning. Appl Phys A 91:369ADSCrossRefGoogle Scholar
  126. Lasagni AF, Gachot C, Trinh KE, Hans M, Rosenkranz A, Roch T, Eckhardt S, Kunze T, Bieda M, Günther D, Lang V, Mücklich F (2017) Direct laser interference patterning, 20 years of development: from the basics to industrial applications. SPIE LASE, SPIE 10092:11Google Scholar
  127. Lazare S, Benet P (1993) Surface amorphization of Mylar(R) films with the excimer laser radiation above and below ablation threshold: Ellipsometric measurements. J Appl Phys 74:4953ADSCrossRefGoogle Scholar
  128. Lazare S, Tokarev V, Sionkowska A, Wiśniewski M (2005) Surface foaming of collagen, chitosan and other biopolymer films by KrF excimer laser ablation in the photomechanical regime. Appl Phys A 81:465ADSCrossRefGoogle Scholar
  129. Lazare S, Elaboudi I, Castillejo M, Sionkowska A (2010) Model properties relevant to laser ablation of moderately absorbing polymers. Appl Phys A 101:215ADSCrossRefGoogle Scholar
  130. Lei W, Mittal K (2018) Laser surface modification for adhesion enhancement. In: Mittal K, Lei W (eds) Laser technology: applications in adhesion and related areas. Wiley, HobokenGoogle Scholar
  131. Lemoine P, Blau W, Drury A, Keely C (1993) Molecular weight effects on the 248-nm photoablation of polystyrene spun films. Polymer 34:5020CrossRefGoogle Scholar
  132. Leveugle E, Zhigilei LV (2007) Molecular dynamics simulation study of the ejection and transport of polymer molecules in matrix-assisted pulsed laser evaporation. J Appl Phys 102:074914ADSCrossRefGoogle Scholar
  133. Li ST, Arenholz E, Heitz J, Bäuerle D (1998) Pulsed-laser deposition of crystalline Teflon (PTFE) films. Appl Surf Sci 125:17ADSCrossRefGoogle Scholar
  134. Li C-F, Dong X-Z, Jin F, Jin W, Chen W-Q, Zhao Z-S, Duan X-M (2007) Polymeric distributed-feedback resonator with sub-micrometer fibers fabricated by two-photon induced photopolymerization. Appl Phys A 89:145ADSCrossRefGoogle Scholar
  135. Lippert T (2004) Laser application of polymers. In: Lippert TK (ed) Polymers and light. Springer, Berlin HeidelbergCrossRefGoogle Scholar
  136. Lippert T (2005) Interaction of Photons with Polymers: From Surface Modification to Ablation. Plasma Process Polym 2:525CrossRefGoogle Scholar
  137. Lippert T (2010) UV laser ablation of polymers: from structuring to thin film deposition. In: Miotello A, Ossi PM (eds) Laser-surface interactions for new materials production: tailoring structure and properties. Springer, Berlin/HeidelbergGoogle Scholar
  138. Lippert T, Dickinson JT (2003) Chemical and Spectroscopic Aspects of Polymer Ablation: Special Features and Novel Directions. Chem Rev 103:453CrossRefGoogle Scholar
  139. Luk’yanchuk B, Bityurin N, Arnold N, Bäuerle D (1996) The role of excited species in ultraviolet-laser materials ablation III. Non-stationary ablation of organic polymers. Appl Phys A 62:397ADSCrossRefGoogle Scholar
  140. Luk’yanchuk BS, Song WD, Wang ZB, Hong MH, Chong TC, Graf J, Mosbacher M, Leiderer P (2007) New methods for laser cleaning of nanoparticles. In: Phipps C (ed) Laser ablation and its applications. Springer US, BostonGoogle Scholar
  141. Luo H, Li Y, Cui H-B, Yang H, Gong Q-H (2009) Dielectric-loaded surface plasmon–polariton nanowaveguides fabricated by two-photon polymerization. Appl Phys A 97:709ADSCrossRefGoogle Scholar
  142. Mahan GD, Cole HS, Liu YS, Philipp HR (1988) Theory of polymer ablation. Appl Phys Lett 53:2377ADSCrossRefGoogle Scholar
  143. Maiman TH (1960) Stimulated Optical Radiation in Ruby. Nature 187:493ADSCrossRefGoogle Scholar
  144. Manoravi P, Joseph M, Sivakumar N (1998) Pulsed laser ablation —thin film deposition of polyethylene oxide. J Phys Chem Solids 59:1271ADSCrossRefGoogle Scholar
  145. Martínez-Tong DE, Rodríguez-Rodríguez Á, Nogales A, García-Gutiérrez M-C, Pérez-Murano F, Llobet J, Ezquerra TA, Rebollar E (2015) Laser fabrication of polymer ferroelectric nanostructures for nonvolatile organic memory devices. ACS Appl Mater Interfaces 7:19611CrossRefGoogle Scholar
  146. Martín-Fabiani I, Rebollar E, Pérez S, Rueda DR, García-Gutiérrez MC, Szymczyk A, Roslaniec Z, Castillejo M, Ezquerra TA (2012) Laser-induced periodic surface structures nanofabricated on poly (trimethylene terephthalate) spin-coated films. Langmuir 28:7938CrossRefGoogle Scholar
  147. Martín-Fabiani I, Rebollar E, García-Gutiérrez MC, Rueda DR, Castillejo M, Ezquerra TA (2015) Mapping the structural order of laser-induced periodic surface structures in thin polymer films by microfocus beam grazing incidence small-angle x-ray scattering. ACS Appl Mater Interfaces 7:3162CrossRefGoogle Scholar
  148. Martino M, Caricato AP, Romano F, Tunno T, Valerini D, Anni M, Caruso ME, Romano A, Verri T (2009) Pulsed laser deposition of organic and biological materials. J Mater Sci Mater Electron 20:435CrossRefGoogle Scholar
  149. Masubuchi T, Furutani H, Fukumura H, Masuhara H (2001) Laser-Induced Nanometer−Nanosecond Expansion and Contraction Dynamics of Poly(methyl methacrylate) Film Studied by Time-Resolved Interferometry. J Phys Chem B 105:2518CrossRefGoogle Scholar
  150. Mate CM, Toney MF, Leach KA (2001) Roughness of thin perfluoropolyether lubricant films: influence on disk drive technology. IEEE Trans Magn 37:1821ADSCrossRefGoogle Scholar
  151. Matsumoto N, Shima H, Fujii T, Kannari F (1997) Organic electroluminescence cells based on thin films deposited by ultraviolet laser ablation. Appl Phys Lett 71:2469ADSCrossRefGoogle Scholar
  152. Mauclair C, Zamfirescu M, Colombier JP, Cheng G, Mishchik K, Audouard E, Stoian R (2012) Control of ultrafast laser-induced bulk nanogratings in fused silica via pulse time envelopes. Opt Express 20:12997ADSCrossRefGoogle Scholar
  153. McGill RA, Chrisey DB (2000) USPatent 6,025,036Google Scholar
  154. McLeod E, Arnold CB (2008) Subwavelength direct-write nanopatterning using optically trapped microspheres. Nat Nanotechnol 3:413CrossRefGoogle Scholar
  155. Mercado AL, Allmond CE, Hoekstra JG, Fitz-Gerald JM (2005) Pulsed laser deposition vs. matrix assisted pulsed laser evaporation for growth of biodegradable polymer thin films. Appl Phys A 81:591ADSCrossRefGoogle Scholar
  156. Mikulikova R, Moritz S, Gumpenberger T, Olbrich M, Romanin C, Bacakova L, Svorcik V, Heitz J (2005) Cell microarrays on photochemically modified polytetrafluoroethylene. Biomaterials 26:5572CrossRefGoogle Scholar
  157. Murahara M, Toyoda K (1995) Excimer laser-induced photochemical modification and adhesion improvement of a fluororesin surface. J Adhes Sci Technol 9:1601CrossRefGoogle Scholar
  158. Naessens K, Ottevaere H, Baets R, Van Daele P, Thienpont H (2003) Direct writing of microlenses in polycarbonate with excimer laser ablation. Appl Opt 42:6349ADSCrossRefGoogle Scholar
  159. Nagel M, Fardel R, Feurer P, Häberli M, Nüesch FA, Lippert T, Wokaun A (2008) Aryltriazene photopolymer thin films as sacrificial release layers for laser-assisted forward transfer systems: study of photoablative decomposition and transfer behavior. Appl Phys A 92:781ADSCrossRefGoogle Scholar
  160. Niehaus M, Soltwisch J (2018) New insights into mechanisms of material ejection in MALDI mass spectrometry for a wide range of spot sizes. Sci Rep 8:7755ADSCrossRefGoogle Scholar
  161. Niino H, Yabe A (1996) Chemical surface modification of fluorocarbon polymers by excimer laser processing. Appl Surf Sci 96–98:550ADSCrossRefGoogle Scholar
  162. Niino H, Yabe A (1998) Surface Modification of Fluorocarbon Polymer using Phenylhydrazine Photolyzed by KrF Excimer Laser Irradiation. J Photopolym Sci Technol 11:357CrossRefGoogle Scholar
  163. Niino H, Okano H, Inui K, Yabe A (1997) Surface modification of poly(tetrafluoroethylene) by excimer laser processing: enhancement of adhesion. Appl Surf Sci 109–110:259ADSCrossRefGoogle Scholar
  164. Nishio S, Chiba T, Matsuzaki A, Sato H (1996) Control of structures of deposited polymer films by ablation laser wavelength: Polyacrylonitrile at 308, 248, and 193 nm. J Appl Phys 79:7198ADSCrossRefGoogle Scholar
  165. Okoshi M, Inoue N (2004) Laser ablation of polymers using 395 nm and 790 nm femtosecond lasers. Appl Phys A 79:841ADSCrossRefGoogle Scholar
  166. Olbrich M, Rebollar E, Heitz J, Frischauf I, Romanin C (2008) Electroporation chip for adherent cells on photochemically modified polymer surfaces. Appl Phys Lett 92:013901ADSCrossRefGoogle Scholar
  167. Oldershaw GA (1991) Excimer laser ablation of polyethylene terephthalate. Prediction of threshold fluences from thermolysis rates. Chem Phys Lett 186:23ADSCrossRefGoogle Scholar
  168. Palla-Papavlu A, Dinca V, Dinescu M, Di Pietrantonio F, Cannatà D, Benetti M, Verona E (2011) Matrix-assisted pulsed laser evaporation of chemoselective polymer. Appl Phys A 105:651ADSCrossRefGoogle Scholar
  169. Palmieri FL, Wohl CJ (2018) Topographical modification of polymers and metals by laser ablation to create Superhydrophobic surfaces. In: Mittal K, Lei W (eds) Laser technology: applications in adhesion and related areas. Wiley, HobokenGoogle Scholar
  170. Paltauf G, Dyer PE (2003) Photomechanical Processes and Effects in Ablation. Chem Rev 103:487CrossRefGoogle Scholar
  171. Pan H, Hwang DJ, Ko SH, Clem TA, Fréchet JMJ, Bäuerle D, Grigoropoulos CP (2010) High-Throughput Near-Field Optical Nanoprocessing of Solution-Deposited Nanoparticles. Small 6:1812CrossRefGoogle Scholar
  172. Papantonakis MR, Haglund RF Jr (2004) Picosecond pulsed laser deposition at high vibrational excitation density: the case of poly(tetrafluoroethylene). Appl Phys A 79:1687ADSCrossRefGoogle Scholar
  173. Park SH, Lim TW, Yang D-Y, Cho NC, Lee K-S (2006) Fabrication of a bunch of sub-30-nm nanofibers inside microchannels using photopolymerization via a long exposure technique. Appl Phys Lett 89:173133ADSCrossRefGoogle Scholar
  174. Paun IA, Ion V, Moldovan A, Dinescu M (2010) Thin films of polymer blends for controlled drug delivery deposited by matrix-assisted pulsed laser evaporation. Appl Phys Lett 96:243702ADSCrossRefGoogle Scholar
  175. Pazokian H, Selimis A, Jalal B, Saeid J, Mahmoud M, Fotakis C, Stratakis E (2012) Tailoring the wetting properties of polymers from highly hydrophilic to superhydrophobic using UV laser pulses. J Micromech Microeng 22:035001CrossRefGoogle Scholar
  176. Pérez S, Rebollar E, Oujja M, Martín M, Castillejo M (2013) Laser-induced periodic surface structuring of biopolymers. Appl Phys A 110:683ADSCrossRefGoogle Scholar
  177. Pfleging W, Finke S, Gaganidze E, Litfin K, Steinbock L, Heidinger R (2003) Laser-assisted fabrication of monomode polymer waveguides and their optical characterization. Mater Werkst 34:904CrossRefGoogle Scholar
  178. Pfleging W, Torge M, Bruns M, Trouillet V, Welle A, Wilson S (2009) Laser- and UV-assisted modification of polystyrene surfaces for control of protein adsorption and cell adhesion. Appl Surf Sci 255:5453ADSCrossRefGoogle Scholar
  179. Phillips HM, Smayling MC, Sauerbrey R (1993a) Modification of electrical conductivity and surface structure in polymers using ultraviolet laser radiation. Microelectron Eng 20:73CrossRefGoogle Scholar
  180. Phillips HM, Wahl S, Sauerbrey R (1993b) Submicron electrically conducting wires produced in polyimide by ultraviolet laser irradiation. Appl Phys Lett 62:2572ADSCrossRefGoogle Scholar
  181. Phipps CR, Luke JR, Lippert T, Hauer M, Wokaun A (2004) Micropropulsion using laser ablation. Appl Phys A 79:1385CrossRefGoogle Scholar
  182. Pikulin A, Bityurin N (2007) Spatial resolution in polymerization of sample features at nanoscale. Phys Rev B 75:195430Google Scholar
  183. Pikulin A, Bityurin N (2010) Spatial confinement of percolation: Monte Carlo modeling and nanoscale laser polymerization. Phys Rev B 82:085406Google Scholar
  184. Pikulin A, Afanasiev A, Agareva N, Alexandrov AP, Bredikhin V, Bityurin N (2012) Effects of spherical mode coupling on near-field focusing by clusters of dielectric microspheres. Opt Express 20:9052ADSCrossRefGoogle Scholar
  185. Piqué A (2011) The Matrix-Assisted Pulsed Laser Evaporation (MAPLE) process: origins and future directions. Appl Phys A 105:517ADSCrossRefGoogle Scholar
  186. Piqué A, Chrisey DB, Spargo BJ, Bucaro MA, Vachet RW, Callahan JH, McGill RA, Leonhardt D, Mlsna TE (1998) Use of Matrix Assisted Pulsed Laser Evaporation (Maple) for the Growth of Organic Thin Films. MRS Proc 526:421CrossRefGoogle Scholar
  187. Piqué A, McGill RA, Chrisey DB, Leonhardt D, Mslna TE, Spargo BJ, Callahan JH, Vachet RW, Chung R, Bucaro MA (1999) Growth of organic thin films by the matrix assisted pulsed laser evaporation (MAPLE) technique. Thin Solid Films 355–356:536CrossRefGoogle Scholar
  188. Piqué A, Wu P, Ringeisen BR, Bubb DM, Melinger JS, McGill RA, Chrisey DB (2002) Processing of functional polymers and organic thin films by the matrix-assisted pulsed laser evaporation (MAPLE) technique. Appl Surf Sci 186:408ADSCrossRefGoogle Scholar
  189. Popov O, Zilbershtein A, Davidov D (2006) Random lasing from dye-gold nanoparticles in polymer films: Enhanced gain at the surface-plasmon-resonance wavelength. Appl Phys Lett 89:191116ADSCrossRefGoogle Scholar
  190. Prasad M, Conforti PF, Garrison BJ (2007a) On the role of chemical reactions in initiating ultraviolet laser ablation in poly(methyl methacrylate). J Appl Phys 101:103113ADSCrossRefGoogle Scholar
  191. Prasad M, Conforti PF, Garrison BJ (2007b) Coupled molecular dynamics-Monte Carlo model to study the role of chemical processes during laser ablation of polymeric materials. J Chem Phys 127:084705ADSCrossRefGoogle Scholar
  192. Prasad M, Conforti PF, Garrison BJ, Yingling YG (2007c) Computational investigation into the mechanisms of UV ablation of poly(methyl methacrylate). Appl Surf Sci 253:6382ADSCrossRefGoogle Scholar
  193. Prasad M, Conforti PF, Garrison BJ (2008) Influence of photoexcitation pathways on the initiation of ablation in poly (methyl methacrylate). Appl Phys A 92:877ADSCrossRefGoogle Scholar
  194. Prasad M, Conforti PF, Garrison BJ (2009) Interplay between Chemical, Thermal, and Mechanical Processes Occurring upon Laser Excitation of Poly(methyl methacrylate) and Its Role in Ablation. J Phys Chem C 113:11491CrossRefGoogle Scholar
  195. Preuss S, Späth M, Zhang Y, Stuke M (1993) Time resolved dynamics of subpicosecond laser ablation. Appl Phys Lett 62:3049ADSCrossRefGoogle Scholar
  196. Purice A, Schou J, Kingshott P, Pryds N, Dinescu M (2007) Characterization of lysozyme films produced by matrix assisted pulsed laser evaporation (MAPLE). Appl Surf Sci 253:6451ADSCrossRefGoogle Scholar
  197. Qin Z, He T, Zhang Y (1998) Characteristics of the conductive polyimide film surfaces induced by ultraviolet laser beam. Appl Phys A 66:441ADSCrossRefGoogle Scholar
  198. Rebollar E, Bounos G, Oujja M, Domingo C, Georgiou S, Castillejo M (2005) Influence of polymer molecular weight on the UV ablation of doped poly(methyl methacrylate). Appl Surf Sci 248:254ADSCrossRefGoogle Scholar
  199. Rebollar E, Bounos G, Oujja M, Georgiou S, Castillejo M (2006a) Effect of Molecular Weight on the Morphological Modifications Induced by UV Laser Ablation of Doped Polymers. J Phys Chem B 110:16452CrossRefGoogle Scholar
  200. Rebollar E, Bounos G, Oujja M, Domingo C, Georgiou S, Castillejo M (2006b) Influence of Polymer Molecular Weight on the Chemical Modifications Induced by UV Laser Ablation. J Phys Chem B 110:14215CrossRefGoogle Scholar
  201. Rebollar E, Gaspard S, Oujja M, Villavieja MM, Corrales T, Bosch P, Georgiou S, Castillejo M (2006c) Pulsed laser deposition of polymers doped with fluorescent molecular sensors. Appl Phys A 84:171ADSCrossRefGoogle Scholar
  202. Rebollar E, Bounos G, Oujja M, Georgiou S, Castillejo M (2007a) Morphological and chemical modifications and plume ejection following UV laser ablation of doped polymers: Dependence on polymer molecular weight. Appl Surf Sci 253:7820ADSCrossRefGoogle Scholar
  203. Rebollar E, Oujja M, Bounos G, Kolloch A, Georgiou S, Castillejo M (2007b) Analysis of plume following ultraviolet laser ablation of doped polymers: Dependence on polymer molecular weight. J Appl Phys 101:033106ADSCrossRefGoogle Scholar
  204. Rebollar E, Bounos G, Selimis A, Castillejo M, Georgiou S (2008a) Examination of the influence of molecular weight on polymer laser ablation: polystyrene at 248 nm. Appl Phys A 92:1043ADSCrossRefGoogle Scholar
  205. Rebollar E, Frischauf I, Olbrich M, Peterbauer T, Hering S, Preiner J, Hinterdorfer P, Romanin C, Heitz J (2008b) Proliferation of aligned mammalian cells on laser-nanostructured polystyrene. Biomaterials 29:1796CrossRefGoogle Scholar
  206. Rebollar E, Pérez S, Hernández JJ, Martín-Fabiani I, Rueda DR, Ezquerra TA, Castillejo M (2011) Assessment and formation mechanism of laser-induced periodic surface structures on polymer spin-coated films in real and reciprocal space. Langmuir 27:5596CrossRefGoogle Scholar
  207. Rebollar E, Sanz M, Perez S, Hernandez M, Martín-Fabiani I, Rueda DR, Ezquerra TA, Domingo C, Castillejo M (2012a) Gold coatings on polymer laser induced periodic surface structures: assessment as substrates for surface-enhanced Raman scattering. Phys Chem Chem Phys 14:15699CrossRefGoogle Scholar
  208. Rebollar E, Vázquez de Aldana JR, Pérez-Hernández JA, Ezquerra TA, Moreno P, Castillejo M (2012b) Ultraviolet and infrared femtosecond laser induced periodic surface structures on thin polymer films. Appl Phys Lett 100:041106ADSCrossRefGoogle Scholar
  209. Rebollar E, Vázquez de Aldana JR, Martín-Fabiani I, Hernández M, Rueda DR, Ezquerra TA, Domingo C, Moreno P, Castillejo M (2013) Assessment of femtosecond laser induced periodic surface structures on polymer films. Phys Chem Chem Phys 15:11287CrossRefGoogle Scholar
  210. Rebollar E, Pérez S, Hernández M, Domingo C, Martín M, Ezquerra TA, García-Ruiz JP, Castillejo M (2014) Physicochemical modifications accompanying UV laser induced surface structures on poly (ethylene terephthalate) and their effect on adhesion of mesenchymal cells. Phys Chem Chem Phys 16:17551CrossRefGoogle Scholar
  211. Rebollar E, Castillejo M, Ezquerra TA (2015a) Laser induced periodic surface structures on polymer films: From fundamentals to applications. Eur Polym J 73:162CrossRefGoogle Scholar
  212. Rebollar E, Hernández M, Sanz M, Pérez S, Ezquerra TA, Castillejo M (2015b) Laser‐induced surface structures on gold‐coated polymers: Influence of morphology on surface‐enhanced R aman scattering enhancement. J Appl Polym Sci 132CrossRefGoogle Scholar
  213. Rebollar E, Rueda DR, Martín-Fabiani I, Rodriguez-Rodriguez A, Garcia-Gutierrez M-C, Portale G, Castillejo M, Ezquerra TA (2015c) In situ monitoring of laser-induced periodic surface structures formation on polymer films by grazing incidence small-angle X-ray scattering. Langmuir 31:3973CrossRefGoogle Scholar
  214. Reinhardt C, Kiyan R, Passinger S, Stepanov AL, Ostendorf A, Chichkov BN (2007) Rapid laser prototyping of plasmonic components. Appl Phys A 89:321ADSCrossRefGoogle Scholar
  215. Riedel D, Castex MC (1999) Effective absorption coefficient measurements in PMMA and PTFE by clean ablation process with a coherent VUV source at 125 nm. Appl Phys A 69:375ADSCrossRefGoogle Scholar
  216. Riehn R, Charas A, Morgado J, Cacialli F (2003) Near-field optical lithography of a conjugated polymer. Appl Phys Lett 82:526ADSCrossRefGoogle Scholar
  217. Ringeisen BR, Callahan J, Wu PK, Piqué A, Spargo B, McGill RA, Bucaro M, Kim H, Bubb DM, Chrisey DB (2001) Novel Laser-Based Deposition of Active Protein Thin Films. Langmuir 17:3472CrossRefGoogle Scholar
  218. Rodríguez-Beltrán RI, Paszkiewicz S, Szymczyk A, Rosłaniec Z, Nogales A, Ezquerra TA, Castillejo M, Moreno P, Rebollar E (2017) Laser induced periodic surface structures on polymer nanocomposites with carbon nanoadditives. Appl Phys A 123:717ADSCrossRefGoogle Scholar
  219. Rodríguez-Beltrán RI, Hernandez M, Paszkiewicz S, Szymczyk A, Rosłaniec Z, Ezquerra TA, Castillejo M, Moreno P, Rebollar E (2018) Laser induced periodic surface structures formation by nanosecond laser irradiation of poly (ethylene terephthalate) reinforced with Expanded Graphite. Appl Surf Sci 436:1193ADSCrossRefGoogle Scholar
  220. Rodríguez-Rodríguez Á, Rebollar E, Soccio M, Ezquerra TA, Rueda DR, Garcia-Ramos JV, Castillejo M, Garcia-Gutierrez M-C (2015) Laser-induced periodic surface structures on conjugated polymers: poly (3-hexylthiophene). Macromolecules 48:4024ADSCrossRefGoogle Scholar
  221. Rodríguez-Rodríguez Á, Rebollar E, Ezquerra TA, Castillejo M, Garcia-Ramos JV, García-Gutiérrez M-C (2017) Patterning conjugated polymers by laser: Synergy of nanostructure formation in the all-polymer heterojunction P3HT/PCDTBT. Langmuir 34:115CrossRefGoogle Scholar
  222. Rodríguez-Rodríguez Á, García-Gutiérrez M-C, Ezquerra TA, Brady MA, Wang C, Rebollar E (2018) Resonant soft x-ray scattering unravels the hierarchical morphology of nanostructured bulk heterojunction photovoltaic thin films. Phys Rev Mater 2:066003CrossRefGoogle Scholar
  223. Romero F, Salinas-Castillo A, Rivadeneyra A, Albrecht A, Godoy A, Morales D, Rodriguez N (2018) In-Depth Study of Laser Diode Ablation of Kapton Polyimide for Flexible Conductive Substrates. Nano 8:517Google Scholar
  224. Rößler F, Günther D, Lasagni AF (2016) Fabrication of Hierarchical Micro Patterns on PET Substrates Using Direct Laser Interference Patterning. Adv Eng Mater 18:1755CrossRefGoogle Scholar
  225. Rößler F, Günther K, Lasagni AF (2018) In-volume structuring of a bilayered polymer foil using direct laser interference patterning. Appl Surf Sci 440:1166ADSCrossRefGoogle Scholar
  226. Rubahn K, Ihlemann I, Jakopic G, Simonsen AC, Rubahn HG (2004) UV laser-induced grating formation in PDMS thin films. Appl Phys Mater Sci Process 79:1715ADSCrossRefGoogle Scholar
  227. Sakellari I, Gaidukeviciute A, Giakoumaki A, Gray D, Fotakis C, Farsari M, Vamvakaki M, Reinhardt C, Ovsianikov A, Chichkov BN (2010) Two-photon polymerization of titanium-containing sol–gel composites for three-dimensional structure fabrication. Appl Phys A 100:359ADSCrossRefGoogle Scholar
  228. Sakellari I, Kabouraki E, Gray D, Purlys V, Fotakis C, Pikulin A, Bityurin N, Vamvakaki M, Farsari M (2012) Diffusion-Assisted High-Resolution Direct Femtosecond Laser Writing. ACS Nano 6:2302CrossRefGoogle Scholar
  229. Sánchez EH, Normile PS, De Toro JA, Caballero R, Canales-Vázquez J, Rebollar E, Castillejo M, Colino JM (2019) Flexible, multifunctional nanoribbon arrays of palladium nanoparticles for transparent conduction and hydrogen detection. Appl Surf Sci 470:212ADSCrossRefGoogle Scholar
  230. Sapogova N, Bityurin N (2009) Model for UV induced formation of gold nanoparticles in solid polymeric matrices. Appl Surf Sci 255:9613ADSCrossRefGoogle Scholar
  231. Schmidt H, Ihlemann J, Wolff-Rottke B, Luther K, Troe J (1998) Ultraviolet laser ablation of polymers: spot size, pulse duration, and plume attenuation effects explained. J Appl Phys 83:5458ADSCrossRefGoogle Scholar
  232. Selimis A, Tserevelakis GJ, Kogou S, Pouli P, Filippidis G, Sapogova N, Bityurin N, Fotakis C (2012) Nonlinear microscopy techniques for assessing the UV laser polymer interactions. Opt Express 20:3990ADSCrossRefGoogle Scholar
  233. Seo J-H, Park JH, Kim S-I, Park BJ, Ma Z, Choi J, Ju B-K (2014) Nanopatterning by Laser Interference Lithography: Applications to Optical Devices. J Nanosci Nanotechnol 14:1521CrossRefGoogle Scholar
  234. Serra P, Piqué A (2019) Laser-Induced Forward Transfer: Fundamentals and Applications. Adv Mater Technol 4:1800099CrossRefGoogle Scholar
  235. Sima F, Davidson P, Pauthe E, Sima LE, Gallet O, Mihailescu IN, Anselme K (2011) Fibronectin layers by matrix-assisted pulsed laser evaporation from saline buffer-based cryogenic targets. Acta Biomater 7:3780CrossRefGoogle Scholar
  236. Singh SS, Baruah PK, Khare A, Joshi SN (2018) Incubation studies and the threshold for surface damage and cavity formation in the processing of polycarbonate by Nd:YAG laser. Opt Laser Technol 108:592ADSCrossRefGoogle Scholar
  237. Slepička P, Rebollar E, Heitz J, Švorčík V (2008) Gold coatings on polyethyleneterephthalate nano-patterned by F2 laser irradiation. Appl Surf Sci 254:3585ADSCrossRefGoogle Scholar
  238. Snelling HV, Walton CD, Whitehead DJ (2004) Polymer jacket stripping of optical fibres by laser irradiation. Appl Phys A 79:937ADSCrossRefGoogle Scholar
  239. Socol G, Mihailescu IN, Albu A-M, Antohe S, Stanculescu F, Stanculescu A, Mihut L, Preda N, Socol M, Rasoga O (2009) MAPLE prepared polymeric thin films for non-linear optic applications. Appl Surf Sci 255:5611ADSCrossRefGoogle Scholar
  240. Sowa S, Watanabe W, Tamaki T, Nishii J, Itoh K (2006) Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses. Opt Express 14:291ADSCrossRefGoogle Scholar
  241. Spyratou E, Makropoulou M, Serafetinides AA (2008) Study of visible and mid-infrared laser ablation mechanism of PMMA and intraocular lenses: experimental and theoretical results. Lasers Med Sci 23:179CrossRefGoogle Scholar
  242. Srinivasan R (1991) Photokinetic etching of polymethyl methacrylate films by continuous wave ultraviolet laser radiation. J Appl Phys 70:7588ADSCrossRefGoogle Scholar
  243. Srinivasan R, Braren B (1988) Ultraviolet laser ablation and etching of polymethyl methacrylate sensitized with an organic dopant. Appl Phys A 45:289ADSCrossRefGoogle Scholar
  244. Srinivasan R, Braren B (1989) Ultraviolet laser ablation of organic polymers. Chem Rev 89:1303CrossRefGoogle Scholar
  245. Srinivasan R, Mayne-Banton V (1982) Self‐developing photoetching of poly(ethylene terephthalate) films by far‐ultraviolet excimer laser radiation. Appl Phys Lett 41:576ADSCrossRefGoogle Scholar
  246. Srinivasan R, Sutcliffe E, Braren B (1987) Ablation and etching of polymethylmethacrylate by very short (160 fs) ultraviolet (308 nm) laser pulses. Appl Phys Lett 51:1285ADSCrossRefGoogle Scholar
  247. Stamatin L, Cristescu R, Socol G, Moldovan A, Mihaiescu D, Stamatin I, Mihailescu IN, Chrisey DB (2005) Laser deposition of fibrinogen blood proteins thin films by matrix assisted pulsed laser evaporation. Appl Surf Sci 248:422ADSCrossRefGoogle Scholar
  248. Steenberge GV, Geerinck P, Put SV, Koetsem JV, Ottevaere H, Morlion D, Thienpont H, Daele PV (2004) MT-Compatible Laser-Ablated Interconnections for Optical Printed Circuit Boards. J Lightwave Technol 22:2083ADSCrossRefGoogle Scholar
  249. Straub M, Nguyen LH, Fazlic A, Gu M (2004) Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography. Opt Mater 27:359ADSCrossRefGoogle Scholar
  250. Sublemontier O, Rosset-Kos M, Ceccotti T, Hergott JF, Auguste T, Normand D, Schmidt M, Beaumont F, Farcage D, Cheymol G, Le Caro JM, Cormont P, Mauchien P, Thro PY, Skrzypczak J, Muller S, Marquis E, Barthod B, Gaurand I, Davenet M, Bernard R (2011) Modular EUV Source for the next generation lithography. J Laser Micro Nanoeng 6:113CrossRefGoogle Scholar
  251. Sun H-B, Takada K, Kawata S (2001) Elastic force analysis of functional polymer submicron oscillators. Appl Phys Lett 79:3173ADSCrossRefGoogle Scholar
  252. Sun C, Min J, Lin J, Wan H, Yang S, Wang S (2018) The effect of laser ablation treatment on the chemistry, morphology and bonding strength of CFRP joints. Int J Adhes Adhes 84:325CrossRefGoogle Scholar
  253. Sutcliffe E, Srinivasan R (1986) Dynamics of UV laser ablation of organic polymer surfaces. J Appl Phys 60:3315ADSCrossRefGoogle Scholar
  254. Takada K, Sun H-B, Kawata S (2005) Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting. Appl Phys Lett 86:071122ADSCrossRefGoogle Scholar
  255. Tan D, Li Y, Qi F, Yang H, Gong Q, Dong X, Duan X (2007) Reduction in feature size of two-photon polymerization using SCR500. Appl Phys Lett 90:071106ADSCrossRefGoogle Scholar
  256. Thomas B, Alloncle AP, Delaporte P, Sentis M, Sanaur S, Barret M, Collot P (2007) Experimental investigations of laser-induced forward transfer process of organic thin films. Appl Surf Sci 254:1206ADSCrossRefGoogle Scholar
  257. Toftmann B, Papantonakis MR, Auyeung RCY, Kim W, O’Malley SM, Bubb DM, Horwitz JS, Schou J, Johansen PM, Haglund RF (2004) UV and RIR matrix assisted pulsed laser deposition of organic MEH-PPV films. Thin Solid Films 453–454:177CrossRefGoogle Scholar
  258. Toriumi A, Herrmann JM, Kawata S (1997) Nondestructive readout of a three-dimensional photochromic optical memory with a near-infrared differential phase-contrast microscope. Opt Lett 22:555ADSCrossRefGoogle Scholar
  259. Torrisi L, Gammino S, Mezzasalma AM, Visco AM, Badziak J, Parys P, Wolowski J, Woryna E, Krása J, Láska L, Pfeifer M, Rohlena K, Boody FP (2004) Laser ablation of UHMWPE-polyethylene by 438 nm high energy pulsed laser. Appl Surf Sci 227:164ADSCrossRefGoogle Scholar
  260. Trokel SL, Srinivasan R, Braren B (1983) Excimer Laser Surgery of the Cornea. Am J Ophthalmol 96:710CrossRefGoogle Scholar
  261. Tsuboi Y, Goto M, Itaya A (2001) Pulsed laser deposition of silk protein: Effect of photosensitized-ablation on the secondary structure in thin deposited films. J Appl Phys 89:7917ADSCrossRefGoogle Scholar
  262. Tsutsumi N, Fujihara A (2007) Self-assembled spontaneous structures induced by a pulsed laser on a surface of azobenzene polymer film. J Appl Phys 101:033110ADSCrossRefGoogle Scholar
  263. Walker E, Rentzepis PM (2008) A new dimension. Nat Photonics 2:406ADSCrossRefGoogle Scholar
  264. Wang B, Wang X, Zheng H, Lam YC (2015) Surface Wettability Modification of Cyclic Olefin Polymer by Direct Femtosecond Laser Irradiation. Nanomaterials (Basel) 5:1442CrossRefGoogle Scholar
  265. Wei W, Alex K, Omer GM, Hooman M (2007) A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars. Nanotechnology 18:485302CrossRefGoogle Scholar
  266. Womack M, Vendan M, Molian P (2004) Femtosecond pulsed laser ablation and deposition of thin films of polytetrafluoroethylene. Appl Surf Sci 221:99ADSCrossRefGoogle Scholar
  267. Wu PK, Ringeisen BR, Callahan J, Brooks M, Bubb DM, Wu HD, Piqué A, Spargo B, McGill RA, Chrisey DB (2001) The deposition, structure, pattern deposition, and activity of biomaterial thin-films by matrix-assisted pulsed-laser evaporation (MAPLE) and MAPLE direct write. Thin Solid Films 398–399:607CrossRefGoogle Scholar
  268. Wu XH, Yamilov A, Noh H, Cao H, Seelig EW, Chang RPH (2004) Random lasing in closely packed resonant scatterers. J Opt Soc Am B 21:159ADSCrossRefGoogle Scholar
  269. Wu G, Paz MD, Chiussi S, Serra J, González P, Wang YJ, Leon B (2009) Excimer laser chemical ammonia patterning on PET film. J Mater Sci Mater Med 20:597CrossRefGoogle Scholar
  270. Yakimovich NO, Sapogova NV, Smirnova LA, Aleksandrov AP, Gracheva TA, Kirsanov AV, Bityurin NM (2008) Gold-Containing Nanocomposition Materials on the Basis of Homo- and Copolymers of Methylmethacrylate. Russ J Phys Chem B Focus Physics 2:128Google Scholar
  271. Yingling YG, Garrison BJ (2004) Coarse-Grained Chemical Reaction Model. J Phys Chem B 108:1815CrossRefGoogle Scholar
  272. Yingling YG, Garrison BJ (2005) Coarse-Grained Model of the Interaction of Light with Polymeric Material: Onset of Ablation. J Phys Chem B 109:16482CrossRefGoogle Scholar
  273. Yingling YG, Garrison BJ (2007) Incorporation of chemical reactions into UV photochemical ablation of coarse-grained material. Appl Surf Sci 253:6377ADSCrossRefGoogle Scholar
  274. Yu F, Mücklich F, Li P, Shen H, Mathur S, Lehr C-M, Bakowsky U (2005) In Vitro Cell Response to a Polymer Surface Micropatterned by Laser Interference Lithography. Biomacromolecules 6:1160CrossRefGoogle Scholar
  275. Yudasaka M, Tasaka Y, Tanaka M, Kamo H, Ohki Y, Usami S, Yoshimura S (1994) Polyperinaphthalene film formation by pulsed laser deposition with a target of perylenetetracarboxylic dianhydride. Appl Phys Lett 64:3237ADSCrossRefGoogle Scholar
  276. Zenobi R, Knochenmuss R (1998) Ion formation in MALDI mass spectrometry. Mass Spectrom Rev 17:337ADSCrossRefGoogle Scholar
  277. Zhigilei LV, Leveugle E, Garrison BJ, Yingling YG, Zeifman MI (2003) Computer Simulations of Laser Ablation of Molecular Substrates. Chem Rev 103:321CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Instituto de Química Física Rocasolano, IQFR-CSICMadridSpain

Section editors and affiliations

  • Leonid V. Zhigilei
    • 1
  • Nadezhda Bulgakova
    • 2
  1. 1.Department of Materials Science and EngineeringUniversity of VirginiaCharlottesvilleUSA
  2. 2.HiLASE Centre Institute of Physics ASCRDolní BřežanyCzech Republic

Personalised recommendations