Occupational MRSA Infection: Risk Factor, Disposition, Prevention, and Therapy

  • Richard Brans
  • O. Kaup
  • N. Y. SchürerEmail author
Reference work entry


Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of healthcare-associated infections. Healthcare workers (HCWs) are regularly exposed to MRSA at work and, thus, at higher risk for MRSA colonization than the general population. Colonized HCWs are usually asymptomatic but may rarely develop an infection by their own MRSA carriage strains. Work-related hand eczema is common among HCWs because of the necessity for wearing of occlusive gloves and frequent hand hygiene procedures during patient care. The associated skin barrier impairment may increase the risk for MRSA acquisition which is even more enhanced in those suffering from atopic dermatitis. Apart from healthcare, animal farming and meat production have become other occupational sectors with increasing exposure to MRSA and colonization of the involved workforce. This chapter will highlight the significance of occupational MRSA colonization and infection, its predisposition and inoculation, prevention, and current treatment modalities.


Staphylococcus aureus MRSA Healthcare workers Livestock Farmers Meat production Atopic dermatitis Skin barrier Antimicrobial peptides Colonization Decolonization Infection Hand eczema Severity Disinfection Antibiotic therapy Prevention Transmission 


  1. Aberg KM, Man MQ, Gallo RL et al (2008) Co-regulation and interdependence of the mammalian epidermal permeability and antimicrobial barriers. J Invest Dermatol 128(4):917–925PubMedCrossRefGoogle Scholar
  2. Albrich WC, Harbarth S (2008) Health-care workers: source, vector, or victim of MRSA? Lancet Infect Dis 8(5):289–301PubMedCrossRefGoogle Scholar
  3. Ammerlaan HS, Kluytmans JA, Wertheim HF et al (2009) Eradication of methicillin-resistant Staphylococcus aureus carriage: a systematic review. Clin Infect Dis 48(7):922–930PubMedCrossRefGoogle Scholar
  4. Ammerlaan HS, Kluytmans JA, Berkhout H et al (2011) Eradication of carriage with methicillin-resistant Staphylococcus aureus: determinants of treatment failure. J Antimicrob Chemother 66(10):2418–2424PubMedCrossRefGoogle Scholar
  5. Asher MI, Montefort S, Bjorksten B et al (2006) Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC phases one and three repeat multicountry cross-sectional surveys. Lancet 368(9537):733–743PubMedCrossRefGoogle Scholar
  6. Berthelot P, Grattard F, Fascia P et al (2003) Implication of a healthcare worker with chronic skin disease in the transmission of an epidemic strain of methicillin-resistant Staphylococcus aureus in a pediatric intensive care unit. Infect Control Hosp Epidemiol 24(4):299–300PubMedCrossRefGoogle Scholar
  7. Blok HE, Troelstra A, Kamp-Hopmans TE et al (2003) Role of healthcare workers in outbreaks of methicillin-resistant Staphylococcus aureus: a 10-year evaluation from a Dutch university hospital. Infect Control Hosp Epidemiol 24(9):679–685PubMedCrossRefGoogle Scholar
  8. Boguniewicz M, Leung DY (2011) Atopic dermatitis: a disease of altered skin barrier and immune dysregulation. Immunol Rev 242(1):233–246PubMedPubMedCentralCrossRefGoogle Scholar
  9. Boost M, Ho J, Guardabassi L et al (2013) Colonization of butchers with livestock-associated methicillin-resistant Staphylococcus aureus. Zoonoses Public Health 60(8):572–576CrossRefGoogle Scholar
  10. Bootsma MC, Wassenberg MW, Trapman P et al (2011) The nosocomial transmission rate of animal-associated ST398 meticillin-resistant Staphylococcus aureus. J R Soc Interf 8(57):578–584CrossRefGoogle Scholar
  11. Brans R, Kolomanski K, Mentzel F et al (2016) Colonisation with methicillin-resistant Staphylococcus aureus and associated factors among nurses with occupational skin diseases. Occup Environ Med 73:670–675CrossRefGoogle Scholar
  12. Bunikowski R, Mielke ME, Skarabis H et al (2000) Evidence for a disease-promoting effect of Staphylococcus aureus-derived exotoxins in atopic dermatitis. J Allergy Clin Immunol 105(4):814–819PubMedCrossRefGoogle Scholar
  13. Cardona ID, Cho SH, Leung DY (2006) Role of bacterial superantigens in atopic dermatitis: implications for future therapeutic strategies. Am J Clin Dermatol 7(5):273–279PubMedCrossRefGoogle Scholar
  14. Caubet C, Jonca N, Brattsand M et al (2004) Degradation of corneodesmosome proteins by two serine proteases of the kallikrein family, SCTE/KLK5/hK5 and SCCE/KLK7/hK7. J Invest Dermatol 122(5):1235–1244PubMedCrossRefGoogle Scholar
  15. Coenraads PJ, Diepgen TL (1998) Risk for hand eczema in employees with past or present atopic dermatitis. Int Arch Occup Environ Health 71(1):7–13CrossRefGoogle Scholar
  16. Cork MJ, Robinson DA, Vasilopoulos Y et al (2006) New perspectives on epidermal barrier dysfunction in atopic dermatitis: gene-environment interactions. J Allergy Clin Immunol 118(1):3–21 quiz 22–23PubMedCrossRefGoogle Scholar
  17. Cuny C, Kock R, Witte W (2013) Livestock associated MRSA (LA-MRSA) and its relevance for humans in Germany. Int J Med Microbiol 303(6–7):331–337PubMedCrossRefGoogle Scholar
  18. Daeschlein G, von Podewils S, Bloom T et al (2015) Risk factors for MRSA colonization in dermatologic patients in Germany. J Dtsch Dermatol Ges 13(10):1015–1022PubMedGoogle Scholar
  19. Dubin G (2005) Proteinaceous cysteine protease inhibitors. Cell Mol Life Sci 62(6):653–669PubMedCrossRefGoogle Scholar
  20. Duckworth GJ, Lothian JL, Williams JD (1988) Methicillin-resistant Staphylococcus aureus: report of an outbreak in a London teaching hospital. J Hosp Infect 11(1):1–15PubMedCrossRefGoogle Scholar
  21. Dulon M, Haamann F, Nienhaus A (2013) Involvement of occupational physicians in the management of MRSA-colonised healthcare workers in Germany – a survey. J Occup Med Toxicol 8(1):16PubMedPubMedCentralCrossRefGoogle Scholar
  22. Dulon M, Peters C, Schablon A et al (2014) MRSA carriage among healthcare workers in non-outbreak settings in Europe and the United States: a systematic review. BMC Infect Dis 14:363PubMedPubMedCentralCrossRefGoogle Scholar
  23. Egelrud T (2000) Desquamation. Loden M, Maibach HI Dry skin and moisturizers: chemistry and function. CRC Press. Boca Raton, 109–117Google Scholar
  24. Elias PM (2005) Stratum corneum defensive functions: an integrated view. J Invest Dermatol 125(2):183–200PubMedCrossRefGoogle Scholar
  25. Elston DM (2009) Topical antibiotics in dermatology: emerging patterns of resistance. Dermatol Clin 27(1):25–31PubMedCrossRefGoogle Scholar
  26. Emmett EA (2003) Occupational contact dermatitis II: risk assessment and prognosis. Am J Contact Dermatitis 14(1):21–30PubMedCrossRefGoogle Scholar
  27. European Centre for Disease Prevention and Control (ECDC) (2017) Surveillance of antimicrobial resistance in Europe 2016. Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net).
  28. Fluit AC (2012) Livestock-associated Staphylococcus aureus. Clin Microbiol Infect 18(8):735–744PubMedCrossRefGoogle Scholar
  29. Frickmann H, Schwarz NG, Hahn A, et al (2018) Comparing a single-day swabbing regimen with an established 3-day protocol for MRSA decolonization control. Clin Microbiol Infect 24(5):522–527PubMedCrossRefGoogle Scholar
  30. Fridkin SK, Hageman JC, Morrison M et al (2005) Methicillin-resistant Staphylococcus aureus disease in three communities. N Engl J Med 352(14):1436–1444PubMedCrossRefGoogle Scholar
  31. Goerge T, Lorenz MB, van Alen S et al (2017) MRSA colonization and infection among persons with occupational livestock exposure in Europe: prevalence, preventive options and evidence. Vet Microbiol 200:6–12PubMedCrossRefGoogle Scholar
  32. Gong JQ, Lin L, Lin T et al (2006) Skin colonization by Staphylococcus aureus in patients with eczema and atopic dermatitis and relevant combined topical therapy: a double-blind multicentre randomized controlled trial. Br J Dermatol 155(4):680–687PubMedCrossRefGoogle Scholar
  33. Gonzalez T, Biagini Myers JM, Herr AB et al (2017) Staphylococcal biofilms in atopic dermatitis. Curr Allergy Asthma Rep 17(12):81PubMedPubMedCentralCrossRefGoogle Scholar
  34. Graveland H, Wagenaar JA, Bergs K et al (2011) Persistence of livestock associated MRSA CC398 in humans is dependent on intensity of animal contact. PLoS One 6(2):e16830PubMedPubMedCentralCrossRefGoogle Scholar
  35. Haamann F, Dulon M, Nienhaus A (2011) MRSA as an occupational disease: a case series. Int Arch Occup Environ Health 84(3):259–266PubMedPubMedCentralCrossRefGoogle Scholar
  36. Hachem JP, Roelandt T, Schurer N et al (2010) Acute acidification of stratum corneum membrane domains using polyhydroxyl acids improves lipid processing and inhibits degradation of corneodesmosomes. J Invest Dermatol 130(2):500–510PubMedCrossRefGoogle Scholar
  37. Haslund P, Bangsgaard N, Jarlov JO et al (2009) Staphylococcus aureus and hand eczema severity. Br J Dermatol 161(4):772–777CrossRefGoogle Scholar
  38. Hawkins G, Stewart S, Blatchford O et al (2011) Should healthcare workers be screened routinely for meticillin-resistant Staphylococcus aureus? A review of the evidence. J Hosp Infect 77(4):285–289PubMedCrossRefGoogle Scholar
  39. Howell MD, Novak N, Bieber T et al (2005) Interleukin-10 downregulates anti-microbial peptide expression in atopic dermatitis. J Invest Dermatol 125(4):738–745PubMedCrossRefGoogle Scholar
  40. Ibler KS, Jemec GB, Flyvholm MA et al (2012) Hand eczema: prevalence and risk factors of hand eczema in a population of 2274 healthcare workers. Contact Dermatitis 67(4):200–207PubMedCrossRefGoogle Scholar
  41. Jappe U, Petzoldt D, Wendt C (2004) Methicillin-resistant Staphylococcus aureus colonization in inflammatory versus non-inflammatory skin diseases: who should be screened? Acta Derm Venereol 84(3):181–186PubMedCrossRefGoogle Scholar
  42. Kato T, Takai T, Mitsuishi K et al (2005) Cystatin A inhibits IL-8 production by keratinocytes stimulated with Der p 1 and Der f 1: biochemical skin barrier against mite cysteine proteases. J Allergy Clin Immunol 116(1):169–176PubMedCrossRefGoogle Scholar
  43. Khanna T, Friendship R, Dewey C et al (2008) Methicillin resistant Staphylococcus aureus colonization in pigs and pig farmers. Vet Microbiol 128(3–4):298–303PubMedCrossRefGoogle Scholar
  44. Koch-Institute CfHHaIPatR (2009) Recommendations for the prevention and control of methicillin-resistant Staphylococcus aureus isolates (MRSA) in hospitals and other healthcare facilities. GMS Krankenhhyg Interdiszip 4(1):Doc01Google Scholar
  45. Kratzer C, Tobudic S, Macfelda K et al (2007) In vivo activity of a novel polymeric guanidine in experimental skin infection with methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 51(9):3437–3439PubMedPubMedCentralCrossRefGoogle Scholar
  46. Lassok B, Tenhagen BA (2013) From pig to pork: methicillin-resistant Staphylococcus aureus in the pork production chain. J Food Prot 76(6):1095–1108PubMedCrossRefGoogle Scholar
  47. Lederer JW Jr, Best D, Hendrix V (2009) A comprehensive hand hygiene approach to reducing MRSA health care-associated infections. Jt Comm J Qual Patient Saf 35(4):180–185PubMedCrossRefGoogle Scholar
  48. Lode H (2009) Therapie von Infektionen durch Methicillin-resistente Staphylokokken (MRSA). Z Chemother 3:21–24Google Scholar
  49. Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339(8):520–532PubMedCrossRefGoogle Scholar
  50. Malik E, Dennison SR, Harris F et al (2016) pH dependent antimicrobial peptides and proteins, their mechanisms of action and potential as therapeutic agents. Pharmaceuticals (Basel) 9(4):E67CrossRefGoogle Scholar
  51. Marschall J, Muhlemann K (2006) Duration of methicillin-resistant Staphylococcus aureus carriage, according to risk factors for acquisition. Infect Control Hosp Epidemiol 27(11):1206–1212PubMedCrossRefGoogle Scholar
  52. Mauro T, Holleran WM, Grayson S et al (1998) Barrier recovery is impeded at neutral pH, independent of ionic effects: implications for extracellular lipid processing. Arch Dermatol Res 290(4):215–222PubMedPubMedCentralCrossRefGoogle Scholar
  53. McFadden JP, Noble WC, Camp RD (1993) Superantigenic exotoxin-secreting potential of staphylococci isolated from atopic eczematous skin. Br J Dermatol 128(6):631–632PubMedCrossRefGoogle Scholar
  54. Meding B, Swanbeck G (1990) Predictive factors for hand eczema. Contact Dermatitis 23(3):154–161CrossRefGoogle Scholar
  55. Mele T, Madrenas J (2010) TLR2 signalling: at the crossroads of commensalism, invasive infections and toxic shock syndrome by Staphylococcus aureus. Int J Biochem Cell Biol 42(7):1066–1071PubMedCrossRefGoogle Scholar
  56. Mernelius S, Carlsson E, Henricson J et al (2016) Staphylococcus aureus colonization related to severity of hand eczema. Eur J Clin Microbiol Infect Dis 35(8):1355–1361PubMedCrossRefGoogle Scholar
  57. Miedzobrodzki J, Kaszycki P, Bialecka A et al (2002) Proteolytic activity of Staphylococcus aureus strains isolated from the colonized skin of patients with acute-phase atopic dermatitis. Eur J Clin Microbiol Infect Dis 21(4):269–276PubMedCrossRefGoogle Scholar
  58. Millar BC, Loughrey A, Elborn JS et al (2007) Proposed definitions of community-associated meticillin-resistant Staphylococcus aureus (CA-MRSA). J Hosp Infect 67(2):109–113PubMedCrossRefGoogle Scholar
  59. Miller LG, Diep BA (2008) Clinical practice: colonization, fomites, and virulence: rethinking the pathogenesis of community-associated methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis 46(5):752–760PubMedCrossRefGoogle Scholar
  60. Monecke S, Coombs G, Shore AC et al (2011) A field guide to pandemic, epidemic and sporadic clones of methicillin-resistant Staphylococcus aureus. PLoS One 6(4):e17936PubMedPubMedCentralCrossRefGoogle Scholar
  61. Morizane S, Yamasaki K, Kajita A et al (2012) TH2 cytokines increase kallikrein 7 expression and function in patients with atopic dermatitis. J Allergy Clin Immunol 130(1):259–261 e251PubMedPubMedCentralCrossRefGoogle Scholar
  62. Mulders MN, Haenen AP, Geenen PL et al (2010) Prevalence of livestock-associated MRSA in broiler flocks and risk factors for slaughterhouse personnel in The Netherlands. Epidemiol Infect 138(5):743–755PubMedCrossRefGoogle Scholar
  63. Nakatsuji T, Gallo RL (2012) Antimicrobial peptides: old molecules with new ideas. J Invest Dermatol 132(3 Pt 2):887–895PubMedCrossRefGoogle Scholar
  64. Nomura I, Goleva E, Howell MD et al (2003) Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J Immunol 171(6):3262–3269PubMedCrossRefGoogle Scholar
  65. Osadebe LU, Hanson B, Smith TC et al (2013) Prevalence and characteristics of Staphylococcus aureus in Connecticut swine and swine farmers. Zoonoses Public Health 60(3):234–243PubMedCrossRefGoogle Scholar
  66. Otto M (2004) Virulence factors of the coagulase-negative staphylococci. Front Biosci 9:841–863PubMedCrossRefGoogle Scholar
  67. Park HY, Kim CR, Huh IS et al (2013) Staphylococcus aureus colonization in acute and chronic skin lesions of patients with atopic dermatitis. Ann Dermatol 25(4):410–416PubMedPubMedCentralCrossRefGoogle Scholar
  68. Pedersen LK, Held E, Johansen JD et al (2005) Less skin irritation from alcohol-based disinfectant than from detergent used for hand disinfection. Br J Dermatol 153(6):1142–1146CrossRefPubMedPubMedCentralGoogle Scholar
  69. Peters C, Dulon M, Kleinmuller O et al (2017) MRSA prevalence and risk factors among health personnel and residents in nursing homes in Hamburg, Germany – a cross-sectional study. PLoS One 12(1):e0169425PubMedPubMedCentralCrossRefGoogle Scholar
  70. Reich-Schupke S, Geis G, Reising M et al (2010) MRSA in dermatology – prospective epidemiological study in employees and patients of a dermatological department of a university hospital. J Dtsch Dermatol Ges 8(8):607–613PubMedGoogle Scholar
  71. Rioux C, Armand-Lefevre L, Guerinot W et al (2007) Acquisition of methicillin-resistant Staphylococcus aureus in the acute care setting: incidence and risk factors. Infect Control Hosp Epidemiol 28(6):733–736PubMedCrossRefGoogle Scholar
  72. Robert-Koch-Institut (2014) Empfehlungen zur Prävention und Kontrolle von Methicillin-resistenten Staphylococcus aureus-Stämmen (MRSA) in medizinischen und pflegerischen Einrichtungen. Bundesgesundheitsbl 57:696–732Google Scholar
  73. Sandilands A, Sutherland C, Irvine AD et al (2009) Filaggrin in the frontline: role in skin barrier function and disease. J Cell Sci 122(Pt 9):1285–1294PubMedPubMedCentralCrossRefGoogle Scholar
  74. Sassmannshausen R, Deurenberg RH, Kock R et al (2016) MRSA prevalence and associated risk factors among health-care workers in non-outbreak situations in the Dutch-German EUREGIO. Front Microbiol 7:1273PubMedPubMedCentralCrossRefGoogle Scholar
  75. Schmithausen RM, Schulze-Geisthoevel SV, Stemmer F et al (2015) Analysis of transmission of MRSA and ESBL-E among pigs and farm personnel. PLoS One 10(9):e0138173PubMedPubMedCentralCrossRefGoogle Scholar
  76. Schroder JM, Harder J (2006) Antimicrobial skin peptides and proteins. Cell Mol Life Sci 63(4):469–486PubMedCrossRefGoogle Scholar
  77. Sievert DM, Rudrik JT, Patel JB et al (2008) Vancomycin-resistant Staphylococcus aureus in the United States, 2002–2006. Clin Infect Dis 46(5):668–674PubMedCrossRefGoogle Scholar
  78. Skiest DJ, Brown K, Cooper TW et al (2007) Prospective comparison of methicillin-susceptible and methicillin-resistant community-associated Staphylococcus aureus infections in hospitalized patients. J Inf Secur 54(5):427–434Google Scholar
  79. Skudlik C, Dulon M, Wendeler D et al (2009) Hand eczema in geriatric nurses in Germany – prevalence and risk factors. Contact Dermatitis 60(3):136–143CrossRefGoogle Scholar
  80. Solberg CO (2000) Spread of Staphylococcus aureus in hospitals: causes and prevention. Scand J Infect Dis 32(6):587–595PubMedCrossRefGoogle Scholar
  81. van Belkum A, Verkaik NJ, de Vogel CP et al (2009) Reclassification of Staphylococcus aureus nasal carriage types. J Infect Dis 199(12):1820–1826PubMedCrossRefGoogle Scholar
  82. Van Cleef BA, Broens EM, Voss A et al (2010) High prevalence of nasal MRSA carriage in slaughterhouse workers in contact with live pigs in The Netherlands. Epidemiol Infect 138(5):756–763PubMedCrossRefGoogle Scholar
  83. van Cleef BA, van Benthem BH, Verkade EJ et al (2014) Dynamics of methicillin-resistant Staphylococcus aureus and methicillin-susceptible Staphylococcus aureus carriage in pig farmers: a prospective cohort study. Clin Microbiol Infect 20(10):O764–O771PubMedCrossRefGoogle Scholar
  84. van Duijkeren E, Hengeveld P, Zomer TP et al (2016) Transmission of MRSA between humans and animals on duck and turkey farms. J Antimicrob Chemother 71(1):58–62PubMedCrossRefGoogle Scholar
  85. Verkade E, Kluytmans J (2014) Livestock-associated Staphylococcus aureus CC398: animal reservoirs and human infections. Infect Genet Evol 21:523–530PubMedCrossRefGoogle Scholar
  86. Weese JS, Archambault M, Willey BM et al (2005) Methicillin-resistant Staphylococcus aureus in horses and horse personnel, 2000–2002. Emerg Infect Dis 11(3):430–435PubMedPubMedCentralCrossRefGoogle Scholar
  87. Wertheim HF, Melles DC, Vos MC et al (2005) The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis 5(12):751–762PubMedCrossRefGoogle Scholar
  88. Winnefeld M, Richard MA, Drancourt M et al (2000) Skin tolerance and effectiveness of two hand decontamination procedures in everyday hospital use. Br J Dermatol 143(3):546–550PubMedCrossRefGoogle Scholar
  89. Witte W, Braulke C, Cuny C et al (2005a) Emergence of methicillin-resistant Staphylococcus aureus with Panton-Valentine leukocidin genes in central Europe. Eur J Clin Microbiol Infect Dis 24(1):1–5PubMedCrossRefGoogle Scholar
  90. Witte W, Wiese-Posselt M, Jappe U (2005b) Community-based MRSA. A new challenge for dermatology. Hautarzt 56(8):731–738PubMedCrossRefGoogle Scholar
  91. Witte W, Strommenger B, Stanek C et al (2007) Methicillin-resistant Staphylococcus aureus ST398 in humans and animals, Central Europe. Emerg Infect Dis 13(2):255–258PubMedPubMedCentralCrossRefGoogle Scholar
  92. Wulf MW, Tiemersma E, Kluytmans J et al (2008) MRSA carriage in healthcare personnel in contact with farm animals. J Hosp Infect 70(2):186–190PubMedCrossRefGoogle Scholar
  93. Yamasaki O, Yamaguchi T, Sugai M et al (2005) Clinical manifestations of staphylococcal scalded-skin syndrome depend on serotypes of exfoliative toxins. J Clin Microbiol 43(4):1890–1893PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Dermatology, Environmental Medicine and Health TheoryUniversity of OsnabrückOsnabrückGermany
  2. 2.Institute for Interdisciplinary Dermatologic Prevention and Rehabilitation (iDerm)University of OsnabrückOsnabrückGermany

Personalised recommendations