Occupation-Induced Skin Cancer

  • M. L. LamEmail author
  • A. N. Patel
  • John S. C. English
Reference work entry


  • Occupational skin cancer occurs years after exposure and may be underreported.

  • Due to improvements in the safety of industrial processes, there has been a decline in occupational skin cancers.

  • Common carcinogens include polycyclic aromatic hydrocarbons, ionizing radiation, and arsenic.

  • Skin malignancy induction is usually due to mutation of the p53 gene by the carcinogen.

  • There is an increased frequency of melanoma among aviation crews.


Arsenic Carcinogen Coal tar Ionizing radiation Occupation Outdoorworker Polycyclic hydrocarbons Skin cancer Ultraviolet radiation 


  1. Adams RM, Ormsby A, Epstein JH (1999) In: Adams RM (ed) Adams occupational skin disease, 3rd edn. WB Saunders, Philadelphia, pp 142–164Google Scholar
  2. Alam M, Ratner D (2001) Cutaneous squamous-cell carcinoma. N Engl J Med 344:975–983PubMedCrossRefGoogle Scholar
  3. Apalla Z, Lallas A, Sotiriou E, Lazaridou E, Vakirlis E, Trakatelli M, Kyrgidis A, Ioannides D (2016) Farmers develop more aggressive histologic subtypes of basal cell carcinoma. Experience from a Tertiary Hospital in Northern Greece. J Eur Acad Dermatol Venereol 30(Suppl 3):17–20PubMedCrossRefGoogle Scholar
  4. Armstrong BK, Kricker A (1994) Cutaneous melanoma. Cancer Surv 20:219–240Google Scholar
  5. Bauer A, Diepgen TL, Schmitt J (2011) Is occupational solar ultraviolet irradiation a relevant risk factor for basal cell carcinoma? A systematic review and meta-analysis of the epidemiological literature. Br J Dermatol 165:612–625Google Scholar
  6. Blair A, Freeman LB (2009) Epidemiologic studies in agricultural populations: observations and future directions. J Agromedicine 20:219–240Google Scholar
  7. Bofetta P, Jourenkova N, Gustavsson P (1997) Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocar bons. Cancer Causes Control 8:444–472CrossRefGoogle Scholar
  8. Brash DE, Ziegler A, Jonason AS, Simon JA, Kunala S, Leffell DJ (1996) Sunlight and sunburn in human skin cancer: p53, apoptosis and tumour promotion. J Invest Dermatol Symp Proc 1:136–142Google Scholar
  9. Buettner PG, Raasch BA (1998) Incidence rates of skin cancer in Townsville, Australia. Int J Cancer 78:587–593CrossRefGoogle Scholar
  10. Buja A, Lange JH, Perissinotto E, Rausa G, Grigoletto F, Canova C, Mastrangelo G (2005) Cancer incidence among male military and civil pilots and flight attendants: an analysis on published data. Toxicol Ind Health 21:273–282PubMedCrossRefGoogle Scholar
  11. Burns FJ, Uddin AN, Wu F et al (2004) Arsenic-induced enhancement of ultraviolet radiation carcinogenesis in mouse skin: a dose response study. Environ Health Perspect 112:599–603PubMedPubMedCentralCrossRefGoogle Scholar
  12. Callahan CP, Merk HF, Blomeke B (2000) Occupational skin cancer and tumours. In: Kanerva L (ed) Handbook of occupational dermatology, vol 29. Springer, Heidelberg, pp 248–253CrossRefGoogle Scholar
  13. Carøe TK, Ebbehøj NE, Wulf HC, Agner T (2013) Occupational skin cancer may be underreported. Dan Med J 60(5):A4624PubMedGoogle Scholar
  14. Cherry N, Meyer JD et al (2000) Surveillance of occupational skin disease: EPIDERM & OPRA. Br J Dermatol 142:1128–1134CrossRefGoogle Scholar
  15. Dix CR (1960) Occupational trauma and skin cancer. Plast Reconst Surg 26:546–554CrossRefGoogle Scholar
  16. Dixon AJ, Dixon BF (2004) Ultraviolet radiation from welding and possible risk of skin and ocular malignancy. Med J Aust 181:155–157PubMedCrossRefGoogle Scholar
  17. Elwood JM, Williamson C, Stapleton PJ (1986) Malignant melanoma in relation to moles, pigmentation and exposure to fluorescent and other light sources. Br J Cancer 53:65–74PubMedPubMedCentralCrossRefGoogle Scholar
  18. Fink CA, Bates MN (2005) Melanoma and ionizing radiation: is there a causal relationship? Radiat Res 164:701–710PubMedCrossRefGoogle Scholar
  19. Freedman DM, Zahm SH, Dosemeci M (1997) Residential and occupational exposure to sunlight and mortality from non-Hodgkin’s lymphoma: composite case control study. Br Med J 314:1451–1455CrossRefGoogle Scholar
  20. Gawkrodger DJ (2004) Occupational skin cancers. Occup Med 54:458–463CrossRefGoogle Scholar
  21. German social accident insurance [DGUV], Referat Statistik, 2018Google Scholar
  22. Gou HR, Yu HS, Hu H, Monson RR (2001) Arsenic in drinking water and skin cancers: cell type specificity. Cancer Causes Control 12:909–916CrossRefGoogle Scholar
  23. Gray DT, Suman VJ, Su WP, Clay RP, Harmsen WS, Roenigk RK (1997) Trends in the population-based incidence of squamous cell carcinoma of the skin first diagnosed between 1984 and 1992. Arch Dermatol 133:735–740PubMedCrossRefGoogle Scholar
  24. Green A, Battistutta D, Hart V, Leslie D, Weedon D, Nmabour Study Group (1996) Skin cancer in a subtropical Australian population: incidence and lack of association with occupation. Am J Epidemiol 144:1034–1040PubMedCrossRefGoogle Scholar
  25. Guy GP, Machlin SR, Ekwueme DU, Yabroff KR (2014) Prevalence and costs of skin cancer treatment in the U.S., 2002–2006 and 2007–2011. Am J Prev Med 104(4):e69–e74. Scholar
  26. Hammer GP, Auvinen A, De Stavola BL, Grajewski B, Gundestrup M, Haldorsen T, Hammar N, Lagorio S, Linnersjö A, Pinkerton L, Pukkala E, Rafnsson V, dos Santos-Silva I, Storm HH, Strand TE, Tzonou A, Zeeb H, Blettner M (2014) Mortality from cancer and other causes in commercial airline crews: a joint analysis of cohorts from 10 countries. Occup Environ Med 71(5):313–322. Epub 2014 Jan 3CrossRefPubMedGoogle Scholar
  27. Hampton T (2005) Skin cancer’s ranks rise: immunosuppression to blame. JAMA 294:1476–1480PubMedCrossRefGoogle Scholar
  28. Hei TK, Liu SX, Waldren C (1998) Mutagenicity of arsenic in mammalian cells: role of reactive oxygen species. Proc Natl Acad Sci USA 95:8103–8107PubMedCrossRefGoogle Scholar
  29. Hollstein M, Rice K, Greenblatt MS, Soussi T, Fuchs R, Sorlie T (1996) p53 data base. Nucleic Acids Res 22:3547–3551Google Scholar
  30. Hsueh YM, Cheng GS, Wu HS et al (1995) Multiple risk factors associated with arsenic-induced skin cancer: effects of chronic liver disease and malnutritional status. Br J Cancer 71:109–114PubMedPubMedCentralCrossRefGoogle Scholar
  31. Jerant AF, Johnson JT, Sheridan CD, Caffrey TJ (2000) Early detection and treatment of skin cancer. Am Fam Physician 62:357–368, 375–376, 381–382PubMedGoogle Scholar
  32. John SM, Trakatelli M, Gehring R, Finlay K, Fionda C, Wittlich M, Augustin M, Hilpert G, Barroso Dias JM, Ulrich C, Pellacani G (2016) CONSENSUS REPORT: recognizing non-melanoma skin cancer, including actinic keratosis, as an occupational disease – a call to action. J Eur Acad Dermatol Venereol 30(Suppl 3):38–45. Scholar
  33. Keyse SM, Applegate LA, Tyrell RM (1990) Oxidant stress leads to transcriptional activation of the human hemeoxygenase gene in skin fibroblasts. Mol Cell Biol 10:4967–4972PubMedPubMedCentralCrossRefGoogle Scholar
  34. Knobeloch LM, Zierold KM, Anderson HA (2006) Association of arsenic-contaminated drinking water with prevalence of skin cancer in Wisconsin’s Fox River Valley. J Health Popul Nutr 24:206–213PubMedGoogle Scholar
  35. Korting GW (1979–1981) Dermatologie in Praxis und Klinik, Bd. I–IV. Thieme, Stuttgart. UV-induction of skin cancers. Front Biosci (Schol Ed) 2:11–17Google Scholar
  36. Kowal-Vern A, Criswell BK (2005) Burn scar neoplasms: a literature review and statistical analysis. Burns 31(4):403–413PubMedCrossRefGoogle Scholar
  37. Lear JT, Tan BB, Smith AG, Jones PW, Fryer AA (1998) A comparison of risk factors for malignant melanoma, squamous cell and basal cell carcinoma in the UK. Int J Clin Pract 52:145–149PubMedGoogle Scholar
  38. Lee TC, Tanaka N, Lamb PW (1988) Induction of gene amplification by arsenic. Science 241:79–81PubMedCrossRefGoogle Scholar
  39. Lee TK, MacArthur AC, Gallagher RP, Elwood MJ (2009) Occupational physical activity and risk of malignant melanoma: the Western Canada melanoma study. Melanoma Res 19:260–266PubMedCrossRefGoogle Scholar
  40. Letzel S, Drexler H (1998) Occupationally related tumours in tar refinery workers. J Am Acad Dermatol 39:712–720CrossRefGoogle Scholar
  41. Lindelöf B, Sigurgeirsson B, Gäbel H et al (2000) Incidence of skin cancer in 5356 patients following organ transplantation. Br J Dermatol 143(3):513–519PubMedGoogle Scholar
  42. Mackie RM, Hauschild A, Eggermont AM (2009) Epidemiology of invasive cutaneous melanoma. Ann Oncol 20(Suppl 6):vi1–vi7PubMedPubMedCentralCrossRefGoogle Scholar
  43. Meo SA, Al-Khlaiwi T (2003) Health hazards of welding fumes. Saudi Med J 24:1176–1182PubMedGoogle Scholar
  44. Millard LG (1986) Multiple pigmented papular basal cell carcinomas: 527 a new pattern of industrial tar-induced skin tumours. Br J Ind Med 43:143–146Google Scholar
  45. Mitchell DL, Jen J, Cleaver JE (1992) Sequence specificity of cyclobutane pyrimidine dimmers in DNA treated with solar radiation. Nucl Acids Res 20:225–229PubMedCrossRefGoogle Scholar
  46. Mitropoulos P, Norman R (2005) Occupational non- solar risk factors of squamous cell carcinoma of the skin: a population based case controlled study. Dermatol Online J 11:5PubMedGoogle Scholar
  47. Mohan SV, Chang AL (2014) Advanced basal cell carcinoma: epidemiology and therapeutic innovations. Curr Dermatol Rep 3(1):40–45. Scholar
  48. Moles JP, Moyret C, Guillot B, Jeanteur P, Guilhou JJ, Theillet C, Basset Sanguin N (1993) p53 gene mutations in human epithelial skin cancers. Oncogene 8:583–588PubMedGoogle Scholar
  49. Nicholas JS, Swearingen CJ, Kilmer JB (2009) Predictors of skin cancer in commercial airline pilots. Occup Med (Lond) 59:434–436CrossRefGoogle Scholar
  50. Nixon R (1998) Occupational skin cancer. In: JSC E (ed) A colour handbook of occupational dermatology. Manson, London, pp 135–146Google Scholar
  51. Ott C, Huber S (2006) The clinical significance of cosmic radiation in aviation. Praxis (Bern 1994) 95:99–106CrossRefGoogle Scholar
  52. Perez-Gomez B, Pollan M, Gustavsson P, Plato N, Aragones N, Lopez-Abente G (2004) Cutaneous melanoma: hints from occupational risks by anatomic site in Swedish men. Occup Environ Med 61:117–126PubMedPubMedCentralCrossRefGoogle Scholar
  53. Pie’rard GE, Pie’rard-Franchimont C, Paquet P, Quatresooz P (2009) Emerging therapies for ionizing radiation-associated skin field carcinogenesis. Expert Opin Pharmacother 10:813–821CrossRefGoogle Scholar
  54. Radespiel-Troger M, Meyer M, Pfahlberg A, Lausen B, Uter W, Gefeller O (2009) Outdoor work and skin cancer incidence: a registry-based study in Bavaria. Int Arch Occup Environ Health 82:357–363PubMedCrossRefGoogle Scholar
  55. Rafnsson V, Hrafnkelsson J, Tulinius H, Sigurgeirsson B, Olafsson JH (2003) Risk factors for cutaneous malignant melanoma among air- crews and a random sample of the population. Occup Environ Med 60:815–820PubMedPubMedCentralCrossRefGoogle Scholar
  56. Rass K, Reichrath J (2008) UV damage and DNA repair in malignant melanoma and non-melanoma skin cancer. J Adv Exp Med Biol 624:162–178CrossRefGoogle Scholar
  57. Roelofzen JH, Aben KK, Oldenhof UT, Coenraad PJ, Alkemade HA, van de Kerkhof PC, van der Valk PG, Kiemeney LA (2010) No increased risk of cancer after coal tar treatment in patients with psoriasis or eczema. J Invest Dermatol 130(4):953–961. Epub 2009 Dec 17CrossRefPubMedGoogle Scholar
  58. Rogers HW, Weinstock MA, Feldman SR, Coldiron BM (2015) Incidence estimate of nonmelanoma skin cancer (keratinocyte carcinomas) in the US population, 2012. JAMA Dermatol 151(10):1081–1086. Scholar
  59. Rushton L, Hutchings SJ (2017) The burden of occupationally-related cutaneous malignant melanoma in Britain due to solar radiation. Br J Cancer 116:536. [Epub ahead of print]CrossRefPubMedPubMedCentralGoogle Scholar
  60. Sanlorenzo M, Wehner MR, Linos E, Kornak J, Kainz W, Posch C, Vujic I, Johnston K, Gho D, Monico G, McGrath JT, Osella-Abate S, Quaglino P, Cleaver JE, Ortiz-Urda S (2015) The risk of melanoma in airline pilots and cabin crew: a meta-analysis. JAMA Dermatol 151(1):51–58. Scholar
  61. Saurez B, Lopez-Abente G, Martinez C, Navarro C, Tormo MJ, Rosso S, Schraub S, Gafa L, Sancho-Garnier H, Wechsler J, Zanetti R (2007) Occupation and skin cancer: the results of the HELIOS-I multicentre case-control study. BMC Public Health 7:180CrossRefGoogle Scholar
  62. Schmitt J, Seidler A, Diepgen TL, Bauer A (2011) Occupational ultraviolet light exposure increases the risk for the development of cutaneous squamous cell carcinoma: a systematic review and meta-analysis. Br J Dermatol 164:291–307PubMedPubMedCentralCrossRefGoogle Scholar
  63. Schmitt J, Haufe E, Trautmann F, Schulze HJ, Elsner P, Drexler H, Bauer A, Letzel S, John SM, Fartasch M, Brüning T, Seidler A, Dugas-Breit S, Gina M, Weistenhöfer W, Bachmann K, Bruhn I, Lang BM, Bonness S, Allam JP, Grobe W, Stange T, Westerhausen S, Knuschke P, Wittlich M, Diepgen TL, for the FB 181 Study Groupfor the FB 181 Study Group (2018a) Occupational UV-exposure is a major risk factor for basal cell carcinoma: results of the population-based case-control study FB-181. J Occup Environ Med 60(1):36–42PubMedCrossRefGoogle Scholar
  64. Schmitt J, Haufe E, Trautmann F, Schulze HJ, Elsner P, Drexler H, Bauer A, Letzel S, John SM, Fartasch M, Brüning T, Seidler A, Dugas-Breit S, Gina M, Weistenhöfer W, Bachmann K, Bruhn I, Lang BM, Bonness S, Allam JP, Grobe W, Stange T, Westerhausen S, Knuschke P, Wittlich M, Diepgen TL, for the FB 181 Study Group, Bieber T, Brans R, Brecht B, Grabbe S, Küster D, Ruppert L, Stephan V, Thielitz A, Zimmermann E (2018b) Is UV-exposure acquired at work the most important risk factor for cutaneous squamous cell carcinoma? Results of the population-based case-control study FB-181. Br J Dermatol 178:462–472PubMedCrossRefGoogle Scholar
  65. Shah P, Trinh E, Qiang L, Xie L, Hu WY, Prins GS, Pi J, He YY (2017) Arsenic induces p62 expression to form a positive feedback loop with Nrf2 in human epidermal keratinocytes: implications for preventing arsenic-induced skin cancer. Molecules 22(2):pii: E194. Scholar
  66. Sheff JS, Pane TA (2009) Spindle cell melanoma arising from decades-old burn scar. Plast Reconstr Surg 124:274e–275ePubMedCrossRefGoogle Scholar
  67. Surdu S, Fitzgerald EF, Bloom MS, Boscoe FP, Carpenter DO, Haase RF, Gurzau E, Rudnai P, Koppova K, Févotte J, Vahter M, Leonardi G, Goessler W, Kumar R, Fletcher T (2013) Occupational exposure to arsenic and risk of nonmelanoma skin cancer in a multinational European study. Int J Cancer 133(9):2182–2191. Epub 2013 Jul 9CrossRefPubMedGoogle Scholar
  68. Trappey A, Fernando A, Gaur R, Raj M, Ouhtit A (2010) The shady side of sunlight: current understanding of the mechanisms underlying UV-induction of skin cancers. Front Biosci (Schol Ed) 2:11–17CrossRefGoogle Scholar
  69. Turner S, Carder M, van Tongeren M et al (2007) The incidence of occupational skin disease as reported to The Health and Occupation Reporting (THOR) network between 2002 and 2005. Br J Dermatol 157:713–722CrossRefGoogle Scholar
  70. Vega L, Gonsebatt ME, Ostrosky-Wegman P (1995) Aneugenic effect of sodium arsenite on human lymphocytes in vitro: an individual susceptibility effect detected. Mutat Res 334:365–373PubMedCrossRefGoogle Scholar
  71. Walter SD, Marrett LD, Shannon HS, From L, Hertzman C (1992) The association of cutaneous malignant melanoma and fluorescent light exposure. Am J Epidemol 135:749–762CrossRefGoogle Scholar
  72. Yu HS, Liao WT, Chai CY (2006) Arsenic carcinogenesis in the skin. J Biomed Sci 13:657–666PubMedCrossRefGoogle Scholar
  73. Ziegler A, Leffell DJ, Kunala S, Sharma HW, Gailani M, Simon JA, Halperin AJ, Baden HP, Shapiro PE, Bale AE, Brash DE (1993) Mutation hotspots due to sunlight in the p53 gene of non-melanoma skin cancers. Proc Natl Acad Sci U S A 90:4216–4220PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • M. L. Lam
    • 1
    Email author
  • A. N. Patel
    • 1
  • John S. C. English
    • 2
  1. 1.Department of DermatologyNottingham NHS Treatment CentreNottinghamUK
  2. 2.Department of Dermatology, Nottingham Circle Treatment CentreNottingham University HospitalNottinghamUK

Personalised recommendations