Mechanisms of Allergic Contact Dermatitis

  • Thomas RustemeyerEmail author
  • Ingrid M. W. van Hoogstraten
  • B. Mary E. von Blomberg
  • Rik J. Scheper
Reference work entry


Allergenicity depends on several factors determined by the very physicochemical nature of the molecules themselves, i.e., their capacity to penetrate the horny layer, lipophilicity, and chemical reactivity. The sensitizing property of the majority of contact allergens could be predicted from these characteristics (Patlewicz et al., Contact Dermatitis 50:91–97, 2004; Gerberick et al., Altern Lab Anim 36(2):215–242, 2008). Two other factors, however, further contribute to the allergenicity of chemicals, namely, their pro-inflammatory activity and capacity to induce maturation of LC. These issues will be dealt with in more detail in the following sections.

Along with their migration and settling within the draining lymph nodes, haptenized LC further mature, as characterized by their increased expression of costimulatory and antigen-presentation molecules (Cumberbatch et al., Arch Dermatol Res 289:277–284, 1997; Heufler et al. J Exp Med 167:700–705, 1988). In addition, they adopt a strongly veiled, interdigitating appearance, thus maximizing the chances of productive encounters with naive T lymphocytes and recognition of altered self (Steinman et al., J Invest Dermatol 105:2S–7S, 1995; Furue et al., Br J Dermatol 135:194–198, 1996; Schuler and Steinman, J Exp Med 161:526–546, 1985).

The intricate structure of lymph node paracortical areas, the differential expression of chemokines and their receptors, the characteristic membrane ruffling of IDC, and the predominant circulation of naïve T lymphocytes through these lymph node areas provide optimal conditions for T-cell-receptor binding, i.e., the first signal for induction of T-cell activation (Banchereau and Steinman, Nature 392:245–252, 1998). Intimate DC–T-cell contacts are further strengthened by secondary signals, provided by sets of cellular adhesion molecules, and growth-promoting cytokines (reviewed in Hommel, Immunol Cell Biol 82:62–66, 2004; Cella et al., Curr Opin Immunol 9:10–16, 1997).

In healthy individuals, primary skin contacts with contact allergens lead to differentiation and expansion of allergen-specific effector T cells displaying Th1, Th2, and/or Th17 cytokine profiles. The same allergens, if encountered along mucosal surfaces, favor the development of allergen-specific Th2 and Th17 effector cells, and/or Th3 and Tr1 allergen-specific regulatory T cells. Whereas the first two subsets may assist or replace Th1 cells in pro-inflammatory effector functions, the latter two subsets are mainly known for downregulating immune responsiveness. For most, if not all allergens, along with prolonged allergenic contacts, the role of Th2 cells as effector cells gradually increases given reduced longevity of Th1 responses.

The respective contributions of similar subsets of allergen-specific CD8 + T cells are still unknown, but distinct effector roles of allergen-specific Tc1 and Tc2 have been postulated.

Priming via the skin results in CLA positive T cells, which upon inflammatory stimuli preferentially enter the skin; on the other hand, gut homing T cells have been primed and generated along mucosal surfaces. Upon priming, T cells loose much of their capacity to recirculate via the lymph nodes, but gain the capacity to enter the tissues. In particular recently activated T cells will enter skin inflammatory sites. ACD reactions are primarily infiltrated by CD4 and/or CD8 pro-inflammatory cells, later reactions may be dominated by Th2 cells and regulatory T cells. Skin infiltation by T cells is fine-tuned by sets of adhesion molecules and chemokine receptors, whose expression is not rigid, but can be modulated by micro-environmental factors.

After antigenic activation the progeny of primed T cells is released via the efferent lymphatics into the bloodstream. Circulating allergen-specific cells can be challenged in vitro to provide diagnostic parameters for contact hypersensitivity. At least for water-soluble allergens, like metal salts, the degree of allergen-specific proliferation and cytokine production, in particular type-2 cytokines, correlate with clinical allergy. For routine application of a broad spectrum of allergens, culture conditions still need to be improved. For mechanistic in vitro studies in ACD, however, with selected sets of relatively nontoxic allergens, peripheral blood provides an excellent source of lymphocytes and antigen-presenting cells.

ACD reactions can be mediated by classical effector cells, i.e., allergen-specific CD4+ type-1 T cells which, upon triggering by allergen-presenting cells, produce IFN-γ to activate nonspecific inflammatory cells like macrophages. However, CD8 + T cells, and other cytokines, including IL-4, IL-17, and IL-22 can also play major roles in ACD. The conspicuous difference with DTH reactions induced by intradermal administration of protein antigens, i.e., the epidermal infiltrate, can largely be attributed to hapten-induced chemokine release by keratinocytes.


Activation-induced cell death Bandrowski’s base Effector memory T cells Imprinting process Langerhans cells Prehaptens Prohaptens Tetrachlorosalicylanilide 


  1. Abe M, Kondo T, Xu H, Fairchild RL (1996) Interferon-gamma inducible protein (IP-10) expression is mediated by CD8+ T cells and is regulated by CD4+ T cells during the elicitation of contact hypersensitivity. J Invest Dermatol 107:360–366PubMedCrossRefGoogle Scholar
  2. Abe N, Katamura K, Shintaku N, Fukui T, Kiyomasu T, Lio J, Ueno H, Tai G, Mayumi M, Furusho K (1997) Prostaglandin E2 and IL-4 provide naïve CD4+ T cells with distinct inhibitory signals for the priming of IFN-gamma production. Cell Immunol 181:86–92PubMedCrossRefGoogle Scholar
  3. Acuto O, Michel F (2003) CD28-mediated co-stimulation: a quantitative support for TCR signalling. Nat Rev Immunol 3:939–951PubMedCrossRefGoogle Scholar
  4. Adema GJ, Hartgers F, Verstraten R, de Vries E, Marland G, Menon S, Foster J, Xu Y, Nooyen P, McClanahan T, Bacon KB, Figdor CG (1997) A dendritic-cell-derived C–C chemokine that preferentially attracts naïve T cells. Nature 387:713–717PubMedCrossRefGoogle Scholar
  5. Aiba S, Tagami H (1999) Dendritic cell activation induced by various stimuli, e.g. exposure to microorganisms, their products, cytokines, and simple chemicals as well as adhesion to extracellular matrix. J Dermatol Sci 20:1–13CrossRefGoogle Scholar
  6. Allan SE, Broady R, Gregori S, Himmel ME, Locke N, Roncarolo MG, Bacchetta R, Levings MK (2008) CD4+ T-regulatory cells: toward therapy for human diseases. Immunol Rev 223:391–421PubMedCrossRefGoogle Scholar
  7. Altin JG, Sloan EK (1997) The role of CD45 and CD45-associated molecules in T cell activation. Immunol Cell Biol 75:430–445PubMedCrossRefGoogle Scholar
  8. Asada H, Linton J, Katz SI (1997) Cytokine gene expression during the elicitation phase of contact sensitivity – regulation by endogenous IL-4. J Invest Dermatol 108:406–411PubMedCrossRefGoogle Scholar
  9. Asherson GL, Dieli F, Sireci G, Salerno A (1996) Role of IL-4 in delayed type hypersensitivity. Clin Exp Immunol 103:1–4PubMedPubMedCentralCrossRefGoogle Scholar
  10. Austrup F, Vestweber D, Borges E, Lohning M, Brauer R, Herz U, Renz H, Hallmann R, Scheffold A, Radbruch A, Hamann A (1997) P- and E selectin mediate recruitment of T-helper-1 but not T-helper-2 cells into inflamed tissues. Nature 385:81–83PubMedCrossRefGoogle Scholar
  11. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252PubMedCrossRefGoogle Scholar
  12. Bangert C, Friedl J, Stary G, Stingl G, Kopp T (2003) Immunopathologic features of allergic contact dermatitis in humans: participation of plasmacytoid dendritic cells in the pathogenesis of the disease? J Invest Dermatol 121:1409–1418PubMedCrossRefGoogle Scholar
  13. Basso AS, Cheroutre H, Mucida D (2009) More stories on Th17 cells. Cell Res 19(4):399–411PubMedPubMedCentralCrossRefGoogle Scholar
  14. Benson JM, Whitacre CC (1997) The role of clonal deletion and anergy in oral tolerance. Res Immunol 148:533–554PubMedCrossRefGoogle Scholar
  15. Berg DJ, Leach MW, Kuhn R, Rajewsky K, Muller W, Davidson NJ, Rennick D (1995) Interleukin 10 but not interleukin 4 is a natural suppressant of cutaneous inflammatory responses. J Exp Med 182:99–108PubMedCrossRefGoogle Scholar
  16. Bergstresser PR (1989) Sensitization and elicitation of inflammation in contact dermatitis. In: Norris DA (ed) Immune mechanisms in cutaneous disease. Dekker, New York, pp 219–246Google Scholar
  17. Birbeck M (1961) An electron microscope study of basal melanocytes and high level clear cells (Langerhans cells) in vitiligo. J Invest Dermatol 37:51–56CrossRefGoogle Scholar
  18. Blauvelt A, Hwang ST, Udey MC (2003) Allergic and immunologic diseases of the skin. J Allergy Clin Immunol 111:S560–S570PubMedCrossRefGoogle Scholar
  19. Blömeke B, Brans R, Coenraads PJ, Dickel H, Bruckner T, Hein DW, Heesen M, Merk HF, Kawakubo Y (2009) Para-phenylenediamine and allergic sensitization: risk modification by N-acetyltransferase 1 and 2 genotypes. Br J Dermatol 161(5):1130–1135PubMedCrossRefGoogle Scholar
  20. Boerrigter GH, Scheper RJ (1984) Local administration of the cytostatic drug 4-hydroperoxy-cyclophosphamde (4-HPCY) facilitates cell mediated immune reactions. Clin Exp Immunol 58:161–166PubMedPubMedCentralGoogle Scholar
  21. Boerrigter GH, Scheper RJ (1987) Local and systemic desensitization induced by repeated epicutaneous hapten application. J Invest Dermatol 88:3–7PubMedCrossRefGoogle Scholar
  22. Boerrigter GH, de Groot J, Scheper RJ (1986) Intradermal administration of 4-hydoperoxy-cyclophosphamde during contact sensitization potentiates effector T cell responsiveness in draining lymph nodes. Immunopharmacology 11(1):13–20PubMedCrossRefGoogle Scholar
  23. Borges E, Tietz W, Steegmaier M, Moll T, Hallmann R, Hamann A, Vestweber D (1997) P-selectin glycoprotein ligand-1 (PSGL-1) on T helper 1 but not on T helper 2 cells binds to P-selectin and supports migration into inflamed skin. J Exp Med 185:573–578PubMedPubMedCentralCrossRefGoogle Scholar
  24. Bos JD, Meinardi MMHM (2000) The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol 9:165–169PubMedCrossRefGoogle Scholar
  25. Braathen LR (1980) Studies on human epidermal Langerhans cells. III. Induction of T lymphocyte response to nickel sulphate in sensitized individuals. Br J Dermatol 103:517–526PubMedCrossRefGoogle Scholar
  26. Brand CU, Hunger RE, Yawalkar N, Gerber HA, Schaffner T, Braathen LR (1999) Characterization of human skin-derived CD1a-positive lymph cells. Arch Dermatol Res 291:65–72PubMedCrossRefGoogle Scholar
  27. Brasch J, Burgard J, Sterry W (1992) Common pathways in allergic and irritant contact dermatitis. J Invest Dermatol 98:166–170CrossRefGoogle Scholar
  28. Breathnach SM (1988) The Langerhans cell. Centenary review. Br J Dermatol 119:463–469PubMedCrossRefGoogle Scholar
  29. Bretscher PA, Ogunremi O, Menon JN (1997) Distinct immunological states in murine cutaneous leishmaniasis by immunizing with different amounts of antigen: the generation of beneficial, potentially harmful, harmful and potentially extremely harmful states. Behring Inst Mitt 98:153–159Google Scholar
  30. Bridoux F, Badou A, Saoudi A, Bernard L, Druet E, Pasquier R, Druet P, Pelletier L (1997) Transforming growth factor beta (TGF-beta)-dependent inhibition of T helper cell 2 (Th2)-induced autoimmunity by self-major histocompatibility complex (MHC) class II-specific, regulatory CD4+ T cell lines. J Exp Med 185:1769–1775PubMedPubMedCentralCrossRefGoogle Scholar
  31. Buchanan KL, Murphy JW (1997) Kinetics of cellular infiltration and cytokine production during the efferent phase of a delayed-type hypersensitivity reaction. Immunology 90:189–197PubMedPubMedCentralCrossRefGoogle Scholar
  32. Budinger L, Hertl M (2000) Immunologic mechanisms in hypersensitivity reactions to metal ions: an overview. Allergy 55:108–115PubMedCrossRefGoogle Scholar
  33. Calder PC, Bevan SJ, Newsholme EA (1992) The inhibition of T-lymphocyte proliferation by fatty acids is via an eicosanoid-independent mechanism. Immunology 75:108–115PubMedPubMedCentralGoogle Scholar
  34. Cantrell D (1996) T cell receptor signal transduction pathways. Annu Rev Immunol 14:259–274PubMedCrossRefGoogle Scholar
  35. Carroll JM, Crompton T, Seery JP, Watt FM (1997) Transgenic mice expressing IFN-gamma in the epidermis have eczema, hair hypopigmentation, and hair loss. J Invest Dermatol 108:412–422PubMedCrossRefGoogle Scholar
  36. Caux C, Ait-Yahia S, Chemin K, de Bouteiller O, Dieu-Nosjean MC, Homey B, Massacrier C, Vanbervliet B, Zlotnik A, Vicari A (2000) Dendritic cell biology and regulation of dendritic cell trafficking by chemokines. Springer Semin Immunopathol 22:345–369PubMedCrossRefGoogle Scholar
  37. Cavani A, Mei D, Guerra E, Corinti S, Giani M, Pirrotta L, Puddu P, Girolomoni G (1998) Patients with allergic contact dermatitis to nickel and nonallergic individuals display different nickel-specific T cell responses. Evidence for the presence of effector CD8+ and regulatory CD4+ T cells. J Invest Dermatol 111:621–628PubMedCrossRefGoogle Scholar
  38. Cavani A, Nasorri F, Ottaviani C, Sebastiani S, De Pita O, Girolomoni G (2003) Human CD25+ regulatory T cells maintain immune tolerance to nickel in healthy, nonallergic individuals. J Immunol 171:5760–5768PubMedCrossRefGoogle Scholar
  39. Cella M, Sallusto F, Lanzavecchia A (1997) Origin, maturation and antigen presenting function of dendritic cells. Curr Opin Immunol 9:10–16PubMedCrossRefGoogle Scholar
  40. Chase MW (1946) Inhibition of experimental drug allergy by prior feeding of the sensitizing agent. Proc Soc Exp Biol Med 61:257–259PubMedCrossRefGoogle Scholar
  41. Christensen OB, Beckstead JH, Daniels TE, Maibach HI (1985) Pathogenesis of orally induced flare-up reactions at old patch sites in nickel allergy. Acta Derm Venereol 65:298–304PubMedGoogle Scholar
  42. Claessen AME, von Blomberg BME, de Groot J, Wolvers DAE, Kraal G, Scheper RJ (1996) Reversal of mucosal tolerance by subcutaneous administration of interleukin-12 at the site of attempted sensitization. Immunology 88:363–367PubMedPubMedCentralCrossRefGoogle Scholar
  43. Constant SL, Bottomly K (1997) Induction of Th1 and Th2 CD4+ T cell responses: the alternate approaches. Annu Rev Immunol 15:297–322PubMedCrossRefGoogle Scholar
  44. Constant SL, Pfeiffer C, Woodard A, Pasqualini T, Bottomly K (1995) Extent of T cell receptor ligation can determine the functional differentiation of naïve CD4+ T cells. J Exp Med 5:1591–1596CrossRefGoogle Scholar
  45. Coulter EM, Jenkinson C, Farrell J, Lavergne SN, Pease C, White A, Aleksic M, Basketter D, Williams DP, King C, Pirmohamed M, Park BK, Naisbitt DJ (2010) Measurement of CD4+ and CD8+ T-lymphocyte cytokine secretion and gene expression changes in p-phenylenediamine allergic patients and tolerant individuals. J Invest Dermatol 130:161–174PubMedCrossRefGoogle Scholar
  46. Crivellato E, Vacca A, Ribatti D (2004) Setting the stage: an anatomist’s view of the immune system. Trends Immunol 25:210–217PubMedCrossRefGoogle Scholar
  47. Croft M, So T, Duan W, Soroosh P (2009) The significance of OX40 and OX40L to T-cell biology and immune disease. Immunol Rev 229(1):173–191PubMedPubMedCentralCrossRefGoogle Scholar
  48. Cumberbatch M, Dearman RJ, Kimber I (1997) Interleukin 1-beta and the stimulation of Langerhans cell migration – comparisons with tumour necrosis factor alpha. Arch Dermatol Res 289:277–284PubMedCrossRefGoogle Scholar
  49. Cutolo M, Seriolo B, Villaggio B, Pizzorni C, Craviotto C, Sulli A (2002) Androgens and estrogens modulate the immune and inflammatory responses in rheumatoid arthritis. Ann N Y Acad Sci 966:131–142PubMedCrossRefGoogle Scholar
  50. Czernielewski SM, Demarchez M (1987) Further evidence for the self-reproducing capacity of Langerhans cells in human skin. J Invest Dermatol 88:17–20PubMedCrossRefGoogle Scholar
  51. Dabbagh K, Lewis DB (2003) Toll-like receptors and T-helper-1/T-helper-2 responses. Curr Opin Infect Dis 16:199–204PubMedCrossRefGoogle Scholar
  52. Davis SJ, van der Merwe PA (2003) TCR triggering: co-receptor-dependent or -independent? Trends Immunol 24:624–626PubMedCrossRefGoogle Scholar
  53. De Panfilis G (1998) CD8+ cytolytic T lymphocytes and the skin. Exp Dermatol 7:121–131PubMedCrossRefGoogle Scholar
  54. Demeure CE, Yang LP, Desjardins C, Raynauld P, Delespesse G (1997) Prostaglandin E-2 primes naïve T cells for the production of anti-inflammatory cytokines. Eur J Immunol 27:3526–3531PubMedCrossRefGoogle Scholar
  55. Dieli F, Ptak W, Sireci G, Romano GC, Potestio M, Salerno A, Asherson GL (1998) Cross-talk between V-beta-8(+) and gamma-delta(+) T lymphocytes in contact sensitivity. Immunology 93:469–477PubMedPubMedCentralCrossRefGoogle Scholar
  56. Dieu M-C, Vanbervliet B, Vicari A, Bridon J-M, Oldham E, Ait-Yahia S, Brière F, Zlotnik A, Lebecque S, Caux C (1998) Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J Exp Med 188:373–386PubMedPubMedCentralCrossRefGoogle Scholar
  57. Divkovic M, Pease CK, Gerberick GF, Basketter DA (2005) Hapten-protein binding: from theory to practical application in the in vitro prediction of skin sensitization. Contact Dermatitis 53(4):189–200PubMedCrossRefGoogle Scholar
  58. Dong C (2008) TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol 8(5):337–348PubMedCrossRefGoogle Scholar
  59. Dong C, Nurieva RI, Prasad DV (2003) Immune regulation by novel costimulatory molecules. Immunol Res 28:39–48PubMedCrossRefGoogle Scholar
  60. Dvorak HF, Mihm MC Jr, Dvorak AM (1976) Morphology of delayed-type hypersensitivity reactions in man. J Invest Dermatol 64:391–401CrossRefGoogle Scholar
  61. Edele F, Esser PR, Lass C, Laszczyk MN, Oswald E, Strüh CM, Rensing-Ehl A, Martin SF (2007) Innate and adaptive immune responses in allergic contact dermatitis and autoimmune skin diseases. Inflamm Allergy Drug Targets 6(4):236–244PubMedCrossRefGoogle Scholar
  62. Eliasson E, Kenna JG (1996) Cytochrome P450 2E1 is a cell surface autoantigen in halothane hepatitis. Mol Pharmacol 50:573–582PubMedGoogle Scholar
  63. Enk AH, Katz SI (1992a) Early molecular events in the induction phase of contact sensitivity. Proc Natl Acad Sci U S A 89:1398–1402PubMedPubMedCentralCrossRefGoogle Scholar
  64. Enk AH, Katz SI (1992b) Identification and induction of keratinocyte-derived IL-10. J Immunol 149:92–95PubMedGoogle Scholar
  65. Enk AH, Angeloni VL, Udey MC, Katz SI (1993) An essential role for Langerhans cell-derived IL-1b in the initiation of primary immune responses in skin. J Immunol 150:3698–3704PubMedGoogle Scholar
  66. Epling GA, Wells JL, Yoon UC (1988) Photochemical transformations in salicylanilide photoallergy. Photochem Photobiol 47:167–171PubMedCrossRefGoogle Scholar
  67. Epstein WL (1987) The poison ivy picker of Pennypack Park: the continuing saga of poison ivy. J Invest Dermatol 88:7–9CrossRefGoogle Scholar
  68. Epstein SP, Baer RL, Thorbecke GJ, Belsito DV (1991) Immunosuppressive effects of transforming growth factor beta: inhibition of the induction of Ia antigen on Langerhans cells by cytokines and of the contact hypersensitivity response. J Invest Dermatol 96:832–837PubMedCrossRefGoogle Scholar
  69. Faria AM, Weiner HL (2006) Oral tolerance and TGF-beta-producing cells. Inflamm Allergy Drug Targets 5(3):179–190PubMedCrossRefGoogle Scholar
  70. Ferber I, Schönrich G, Schenkel J, Mellor AL, Hämmerling GJ, Arnold B (1994) Levels of peripheral T cell tolerance induced by different doses of tolerogen. Science 263:674–676PubMedCrossRefGoogle Scholar
  71. Flier J, Boorsma DM, Bruynzeel DP, van Beek PJ, Stoof TJ, Scheper RJ, Willemze R, Tensen CP (1999) The CXCR3 activating chemokines IP-10, MIG and IP-9 are expressed in allergic but not in irritant patch test reactions. J Invest Dermatol 113:574–578PubMedCrossRefGoogle Scholar
  72. Foreman KE, Vaporciyan AA, Bonish BK, Jones ML, Johnson KJ, Glovsky MM, Eddy SM, Ward PA (1994) C5a-induced expression of P-selectin in endothelial cells. J Clin Invest 94:1147–1155PubMedPubMedCentralCrossRefGoogle Scholar
  73. Fowler E, Weiner HL (1997) Oral tolerance: elucidation of mechanisms and application to treatment of autoimmune diseases. Biopolymers 43:323–335PubMedCrossRefGoogle Scholar
  74. Fuhlbrigge RC, Kieffer JD, Armerding D, Kupper TS (1997) Cutaneous lymphocyte antigen is a specialized form of PSGL-1 expressed on skin-homing T cells. Nature 389:978–981PubMedCrossRefGoogle Scholar
  75. Furue M, Chang CH, Tamaki K (1996) Interleukin-1 but not tumor necrosis factor a synergistically upregulates the granulocyte-macrophage colony-stimulating factor-induced B7–1 expression of murine Langerhans cells. Br J Dermatol 135:194–198PubMedCrossRefGoogle Scholar
  76. Fyhrquist-Vanni N, Alenius H, Lauerma A (2007) Contact dermatitis. Dermatol Clin 25(4):613–623PubMedCrossRefGoogle Scholar
  77. Gajewski TF, Fitch FW (1988) Antiproliferative effect of IFN-gamma in immune regulation. I. IFN-gamma inhibits the proliferation of Th2 but not Th1 murine helper T lymphocyte clones. J Immunol 140:4245–4252PubMedGoogle Scholar
  78. Gascoigne NR, Zal T (2004) Molecular interactions at the T cell-antigen-presenting cell interface. Curr Opin Immunol 16:114–119PubMedCrossRefGoogle Scholar
  79. Gaspari AA, Jenkins MK, Katz SI (1988) Class II MCH-bearing keratinocytes induce antigen-specific unresponsiveness in hapten-specific TH1 clones. J Immunol 141:2216–2220PubMedGoogle Scholar
  80. Geenen V, Brilot F (2003) Role of the thymus in the development of tolerance and autoimmunity towards the neuroendocrine system. Ann N Y Acad Sci 992:186–195PubMedCrossRefGoogle Scholar
  81. Gell PDH, Coombs RRA, Lachman R (1975) Clinical aspects of immunology, 3rd edn. Blackwell, LondonGoogle Scholar
  82. Gerberick F, Aleksic M, Basketter D, Casati S, Karlberg AT, Kern P, Kimber I, Lepoittevin JP, Natsch A, Ovigne JM, Rovida C, Sakaguchi H, Schultz T (2008) Chemical reactivity measurement and the predicitve identification of skin sensitisers. The report and recommendations of ECVAM Workshop 64. Altern Lab Anim 36(2):215–242PubMedCrossRefGoogle Scholar
  83. Girolomoni G, Gisondi P, Ottaviani C, Cavani A (2004) Immunoregulation of allergic contact dermatitis. J Dermatol 31:264–270PubMedCrossRefGoogle Scholar
  84. Goebeler M, Meinardus-Hager G, Roth J, Goerdt S, Sorg C (1993) Nickel chloride and cobalt chloride, two common contact sensitizers, directly induce expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and endothelial leukocyte adhesion molecule (ELAM-1) by endothelial cells. J Invest Dermatol 100:759–765PubMedCrossRefGoogle Scholar
  85. Goebeler M, Roth J, Brocker EB, Sorg C, Schulze-Osthoff K (1995) Activation of nuclear factor-kappa B and gene expression in human endothelial cells by the common haptens nickel and cobalt. J Immunol 155:2459–2467PubMedGoogle Scholar
  86. Grewe M, Bruijnzeel-Koomen CA, Schöpf E, Thepen T, Langeveld-Wildschut AG, Ruzicka T, Krutmann J (1998) A role for Th1 and Th2 cells in the immunopathogenesis of atopic dermatitis. Immunol Today 19(8):359–361PubMedCrossRefGoogle Scholar
  87. Griem P, Wulferink M, Sachs B, Gonzales JB, Gleichmann E (1998) Allergic and autoimmune reactions to xenobiotics: how do they arise? Immunol Today 19:133–141PubMedCrossRefGoogle Scholar
  88. Groux H, Sornasse T, Cottrez F, de Vries JE, Coffman RL, Roncarolo MG, Yssel H (1997) Induction of human T helper cell type-1 differentiation results in loss of IFN-g receptor b-chain expression. J Immunol 158:5627–5631PubMedGoogle Scholar
  89. Groves RW, Allen MH, Ross EL, Barker JN, MacDonald DM (1995) Tumor necrosis factor alpha is pro-inflammatory in normal human skin and modulates cutaneous adhesion molecule expression. Br J Dermatol 132:345–352PubMedCrossRefGoogle Scholar
  90. Gunn MD, Tangemann K, Tam C, Cyster JG, Rosen SD, Williams LT (1998) A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naïve T lymphocytes. Proc Natl Acad Sci U S A 95:258–263PubMedPubMedCentralCrossRefGoogle Scholar
  91. Hafler DA, Kent SC, Pietrusewicz MJ, Khoury SJ, Weiner HL, Fukaura H (1997) Oral administration of myelin induces antigen-specific TGF-beta 1 secreting T cells in patients with multiple sclerosis. Ann N Y Acad Sci 835:120–131PubMedCrossRefGoogle Scholar
  92. Haig DM, Hopkins J, Miller HRP (1999) Local immune responses in afferent and efferent lymph. Immunology 96:155–163PubMedPubMedCentralCrossRefGoogle Scholar
  93. Herzog WR, Meade R, Pettinicchi A, Ptak W, Askenase PW (1989) Nude mice produce a T cell-derived antigen-binding factor that mediates the early component of delayed-type hypersensitivity. J Immunol 142:1803–1812PubMedGoogle Scholar
  94. Heufler C, Koch F, Schuler G (1988) Granulocyte/macrophage colony-stimulating factor and interleukin 1 mediate the maturation of epidermal Langerhans cells into potent immunostimulatory dendritic cells. J Exp Med 167:700–705PubMedCrossRefGoogle Scholar
  95. Hill S, Edwards AJ, Kimber I, Knight SC (1990) Systemic migration of dendritic cells during contact sensitization. Immunology 71:277–281PubMedPubMedCentralGoogle Scholar
  96. Hindsen M, Christensen OB (1992) Delayed hypersensitivity reactions following allergic and irritant inflammation. Acta Derm Venereol 72:220–221PubMedGoogle Scholar
  97. Hindsen M, Bruze M, Christensen OB (2001) Flare-up reactions after oral challenge with nickel in relation to challenge dose and intensity and time of previous patch test reactions. J Am Acad Dermatol 44:616–623PubMedCrossRefGoogle Scholar
  98. Hoath SB, Leahy DG (2003) The organization of human epidermis: functional epidermal units and phi proportionality. J Invest Dermatol 121:1440–1446PubMedCrossRefGoogle Scholar
  99. Hoefakker S, Caubo M, van Herve EHM, Roggeveen MJ, Boersma WJA, Van’t Joost T, Notten WRF, Claassen E (1995) In vivo cytokine profiles in allergic and irritant contact dermatitis. Contact Dermatitis 33:258–266CrossRefGoogle Scholar
  100. Hommel M (2004) On the dynamics of T-cell activation in lymph nodes. Immunol Cell Biol 82:62–66PubMedCrossRefGoogle Scholar
  101. Honig SM, Fu S, Mao X, Yopp A, Gunn MD, Randolph GJ, Bromberg JS (2003) FTY720 stimulates multidrug transporter- and cysteinyl leukotriene-dependent T cell chemotaxis to lymph nodes. J Clin Invest 111:627–637PubMedPubMedCentralCrossRefGoogle Scholar
  102. Houck G, Saeed S, Stevens GL, Morgan MB (2004) Eczema and the spongiotic dermatoses: a histologic and pathogenic update. Semin Cutan Med Surg 23:39–45PubMedCrossRefGoogle Scholar
  103. Hoyer KK, Dooms H, Barron L, Abbas AK (2008) Interleukin-2 in the development and control of inflammatory disease. Immunol Rev 226:19–28PubMedCrossRefGoogle Scholar
  104. Iliev ID, Mileti E, Matteoli G, Chieppa M, Rescigno M (2009) Intestinal epithelial cells promote colitis-protective regulatory T-cell differentiation through dendritic cell conditioning. Mucosal Immunol 2(4):340–350PubMedCrossRefGoogle Scholar
  105. Inaba K, Schuler G, Witmer MD, Valinsky J, Atassi B, Steinman RM (1986) Immunologic properties of purified epidermal Langerhans cells. Distinct requirements for stimulation of unprimed and sensitized T lymphocytes. J Exp Med 164:605–613PubMedCrossRefGoogle Scholar
  106. Inaba K, Schuler G, Steinman RM (1993) GM-CSF – a granulocyte/macrophage/dendritic cell stimulating factor. In: Van Furth R (ed) Hemopoietic growth factors and mononuclear phagocytes. Karger, Basel, pp 187–196Google Scholar
  107. Inerot A, Moller H (2000) Symptoms and signs reported during patch testing. Am J Contact Dermatol 11:49–52CrossRefGoogle Scholar
  108. Isaksson M, Bruze M (2003) Late patch-test reactions to budesonide need not be a sign of sensitization induced by the test procedure. Am J Contact Dermatol 14:154–156Google Scholar
  109. Itano AA, Jenkins MK (2003) Antigen presentation to naive CD4 T cells in the lymph node. Nat Immunol 4:733–739PubMedCrossRefGoogle Scholar
  110. Iversen L, Johansen C (2008) Inflammasomes and inflammatory caspases in skin inflammation. Expert Rev Mol Diagn 8(6):697–705PubMedCrossRefGoogle Scholar
  111. Izcue A, Coombes JL, Powrie F (2009) Regulatory lymphocytes and intestinal inflammation. Annu Rev Immunol 27:313–338PubMedCrossRefGoogle Scholar
  112. Jakob T, Udey MC (1998) Regulation of E-cadherin mediated adhesion in Langerhans cell-like dendritic cells by inflammatory mediators that mobilize Langerhans cells in vivo. J Immunol 160:4067–4073PubMedGoogle Scholar
  113. Jakob T, Ring J, Udey MC (2001) Multistep navigation of Langerhans/dendritic cells in and out of the skin. J Allergy Clin Immunol 108:688–696PubMedCrossRefGoogle Scholar
  114. Jensen CS, Menne T, Lisby S, Kristiansen J, Veien NK (2003) Experimental systemic contact dermatitis from nickel: a dose–response study. Contact Dermatitis 49:124–132PubMedPubMedCentralCrossRefGoogle Scholar
  115. Kalinski P, Hilkens CMU, Snijders A, Snijdewint FGM, Kapsenberg ML (1997) IL-12 deficient dendritic cells, generated in the presence of prostaglandin E2, promote type-2 cytokine production in maturing human naïve T helper cells. J Immunol 159:28–35PubMedGoogle Scholar
  116. Kalinski P, Schuitemaker JH, Hilkens CM, Kapsenberg ML (1998) Prostaglandin E2 induces the final maturation of IL-12 deficient CD1a + CD83+ dendritic cells. J Immunol 161:2804–2809PubMedGoogle Scholar
  117. Kalish RS, Wood JA, LaPorte A (1994) Processing of urushiol (poison ivy) hapten by both endogenous and exogenous pathways for presentation to T cells in vitro. J Clin Invest 93:2039–2047PubMedPubMedCentralCrossRefGoogle Scholar
  118. Kanerva L, Hyry H, Jolanki R, Hytonen M, Estlander T (1997) Delayed and immediate allergy caused by methylhexahydrophthalic anhydride. Contact Dermatitis 36:34–38PubMedCrossRefPubMedCentralGoogle Scholar
  119. Kang KF, Kubin M, Cooper KD, Lessin SR, Trinchieri G, Rook AH (1996) IL-12 synthesis by human Langerhans cells. J Immunol 156:1402–1407PubMedGoogle Scholar
  120. Karlberg AT, Bergström MA, Börje A, Luthman K, Nilsson JL (2008) Allergic contact dermatitis–formation, structural requirements, and reactivity of skin sensitizers. Chem Res Toxicol 21(1):53–69PubMedCrossRefGoogle Scholar
  121. Kidd P (2003) Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Altern Med Rev 8:223–246PubMedGoogle Scholar
  122. Kim CH, Broxmeyer HE (1999) Chemokines: signal lamps for trafficking of T and B cells for development and effector function. J Leukoc Biol 65:6–15PubMedCrossRefGoogle Scholar
  123. Kimber I, Cumberbatch M (1992) Dendritic cells and cutaneous immune responses to chemical allergens. Toxicol Appl Pharmacol 117:137–146PubMedCrossRefGoogle Scholar
  124. Kimber I, Dearman RJ (2002) Allergic contact dermatitis: the cellular effectors. Contact Dermatitis 46:1–5PubMedCrossRefGoogle Scholar
  125. Kimber I, Dearman RJ (2003) What makes a chemical an allergen? Ann Allergy Asthma Immunol 90:28–31PubMedCrossRefGoogle Scholar
  126. Kimber I, Dearman RJ, Cumberbatch M, Huby RJ (1998) Langerhans cells and chemical allergy. Curr Opin Immunol 10:614–619PubMedCrossRefGoogle Scholar
  127. Kimber I, Basketter DA, Gerberick GF, Dearman RJ (2002) Allergic contact dermatitis. Int Immunopharmacol 2:201–211PubMedCrossRefGoogle Scholar
  128. Kitagaki H, Fujisawa S, Watanabe K, Hayakawa K, Shiohara T (1995) Immediate-type hypersensitivity response followed by late reaction is induced by repeated epicutaneous application of contact sensitizing agents in mice. J Invest Dermatol 105:749–755PubMedCrossRefGoogle Scholar
  129. Knop J, Stremmer R, Neumann C, Dc Maeyer D, Macher E (1982) Interferon inhibits the suppressor T cell response of delayed-type hypersensitivity. Nature 296:775–776CrossRefGoogle Scholar
  130. Kobayashi Y (1997) Langerhans cells produce type IV collagenase (MMP-9) following epicutaneous stimulation with haptens. Immunology 90:496–501PubMedPubMedCentralCrossRefGoogle Scholar
  131. Kondo S, Sauder DN (1995) Epidermal cytokines in allergic contact dermatitis. J Am Acad Dermatol 33:786–800PubMedCrossRefGoogle Scholar
  132. Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 cells (review). Annu Rev Immunol 27:485–517. PMID: 19132915PubMedCrossRefGoogle Scholar
  133. Kothny-Wilkes G, Kulms D, Poppelmann B, Luger TA, Kubin M, Schwarz T (1998) Interleukin-1 protects transformed keratinocytes from tumor necrosis factor-related apoptosis-inducing ligand. J Biol Chem 273:29247–29253PubMedCrossRefGoogle Scholar
  134. Krasteva M, Nicolas JF, Chabeau G, Garrigue JL, Bour H, Thivolet J, Schmitt D (1993) Dissociation of allergenic and immunogenic functions in contact sensitivity to para-phenylenediamine. Int Arch Allergy Immunol 102:200–204PubMedPubMedCentralCrossRefGoogle Scholar
  135. Kubo M, Ransom J, Webb D, Hashimoto Y, Tada T, Nakayama T (1997) T-cell subset-specific expression of the IL-4 gene is regulated by a silencer element and STAT6. EMBO J 16(13):4007–4020PubMedPubMedCentralCrossRefGoogle Scholar
  136. Kuchroo VK, Byrne MC, Atsumi Y, Greenfeld E, Connol JH, Whitters MJ, O’Hara RM, Collins M, Dorf ME (1991) T cell receptor alpha chain plays a critical role in antigen-specific suppressor cell function. Proc Natl Acad Sci U S A 88:8700–8704PubMedPubMedCentralCrossRefGoogle Scholar
  137. Kumar V, Sercarz E (1998) Induction or protection from experimental autoimmune encephalomyelitis depends on the cytokine secretion profile of TCR peptide-specific regulatory CD4 T cells. J Immunol 161:6585–6591PubMedGoogle Scholar
  138. Kuo CT, Leiden JM (1999) Transcriptional regulation of T lymphocyte development and function. Annu Rev Immunol 17:149–187PubMedCrossRefGoogle Scholar
  139. Lalani I, Bhol K, Ahmed AR (1997) Interleukin-10 biology, role in inflammation and autoimmunity. Ann Allergy Asthma Immunol 79:469–484PubMedCrossRefGoogle Scholar
  140. Langerhans P (1868) Über die nerven der menschlichen haut. Virchows Arch Pathol Anat 44:325–337CrossRefGoogle Scholar
  141. Lappin MB, Kimber I, Norval M (1996) The role of dendritic cells in cutaneous immunity. Arch Dermatol Res 288:109–121PubMedCrossRefGoogle Scholar
  142. Larsson A, Moller H, Björkner B, Bruze M (1997) Morphology of endogenous flare-up reactions in contact allergy to gold. Acta Derm Venereol 77:474–479PubMedGoogle Scholar
  143. Lawrence JN, Dickson FM, Benford DJ (1997) Skin irritant-induced cytotoxicity and prostaglandin E-2 release in human skin keratinocyte cultures. Toxicol Vitro 11:627–631CrossRefGoogle Scholar
  144. Lepoittevin JP (2006) Metabolism versus chemical transformation or pro- versus prehaptens? Contact Dermatitis 54(2):73–74CrossRefGoogle Scholar
  145. Li QJ, Dinner AR, Qi S, Irvine DJ, Huppa JB, Davis MM, Chakraborty AK (2004) CD4 enhances T cell sensitivity to antigen by coordinating Lck accumulation at the immunological synapse. Nat Immunol 5:791–799PubMedCrossRefGoogle Scholar
  146. Liberato DJ, Byers VS, Ennick RG, Castagnoli N (1981) Region specific attack of nitrogen and sulfur nucleophiles on quinones from poison oak/ivy catechols (urushiols) and analogues as models for urushiol-protein conjugate formation. J Med Chem 24:28–33PubMedCrossRefGoogle Scholar
  147. Lider O, Cahalon L, Gilat D, Hershkoviz R, Siegel D, Margalit R, Shoseyov O, Cohen IR (1995) A disaccharide that inhibits tumor necrosis factor alpha is formed from the extracellular matrix by the enzyme heparinase. Proc Natl Acad Sci U S A 92:5037–5041PubMedPubMedCentralCrossRefGoogle Scholar
  148. Lonati A, Licenziati S, Marcelli M, Canaris D, Pasolini G, Caruso A, de Panfilis G (1998) Quantitative analysis “at the single cell level” of the novel CD28-CD11b- subpopulation of CD8+ T lymphocytes. ESDR meeting, CologneCrossRefGoogle Scholar
  149. Lord GM, Matarese G, Howard LK, Baker RJ, Bloom SR, Lechler RI (1998) Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 394:897–901PubMedCrossRefGoogle Scholar
  150. Luger TA (2002) Neuromediators–a crucial component of the skin immune system. J Dermatol Sci 30(2):87–93PubMedCrossRefGoogle Scholar
  151. Luger TA, Lotti T (1998) Neuropeptides: role in inflammatory skin diseases. J Eur Acad Dermatol Venereol 10:207–211PubMedCrossRefGoogle Scholar
  152. Lundeberg L, Mutt V, Nordlind K (1999) Inhibitory effect of vasoactive intestinal peptide on the challenge phase of allergic contact dermatitis in humans. Acta Derm Venereol 79:178–182PubMedCrossRefGoogle Scholar
  153. Ma J, Wing J-H, Guo Y-J, Sy M-S, Bigby M (1994) In vivo treatment with anti-ICAM-1 and antiLFA-1 antibodies inhibits contact sensitization-induced migration of epidermal Langerhans cells to regional lymph nodes. Cell Immunol 158:389–399PubMedCrossRefGoogle Scholar
  154. Macatonia SE, Knight SC, Edwards AJ, Griffiths S, Fryer P (1987) Localization of antigen on lymph node dendritic cells after exposure to the contact sensitizer fluorescein isothiocyanate. Functional and morphological studies. J Exp Med 166:1654–1667PubMedCrossRefGoogle Scholar
  155. Marchal G, Seman M, Milon G, Truffa-Bachi P, Zilberfarb V (1982) Local adoptive transfer of skin delayed-type hypersensitivity initiated by a single T lymphocyte. J Immunol 129:954–958PubMedGoogle Scholar
  156. Marone G, Spadaro G, Patella V, Genovese A (1994) The clinical relevance of basophil releasability. J Allergy Clin Immunol 94:1293–1303PubMedCrossRefGoogle Scholar
  157. Matura M (1998) Contact allergy to locally applied corticosteroids. Thesis, LeuvenGoogle Scholar
  158. Mayer L, Sperber K, Chan L, Child J, Toy L (2001) Oral tolerance to protein antigens. Allergy 56:12–15PubMedCrossRefGoogle Scholar
  159. Merk HF, Abel J, Baron JM, Krutmann J (2004) Molecular pathways in dermatotoxicology. Toxicol Appl Pharmacol 195:267–277PubMedCrossRefGoogle Scholar
  160. Mestas J, Hughes CC (2004) Of mice and not men: differences between mouse and human immunology. J Immunol 172:2731–2738PubMedCrossRefGoogle Scholar
  161. Miller SD, Sy M-S, Claman HN (1977) The induction of hapten-specific T cell tolerance using hapten-modified lymphoid membranes. II. Relative roles of suppressor T cells and clone inhibition in the tolerant state. Eur J Immunol 7:165–170PubMedCrossRefGoogle Scholar
  162. Milon G, Marchal G, Seman M, Truffa-Bachi P (1981) A delayed-type hypersensitivity reaction initiated by a single T lymphocyte. Agents Actions 11:612–614PubMedCrossRefGoogle Scholar
  163. Moed H, Boorsma DM, Stoof TJ, von Blomberg BM, Bruynzeel DP, Scheper RJ, Gibbs S, Rustemeyer T (2004a) Nickel-responding T cells are CD4+ CLA+ CD45RO+ and express chemokine receptors CXCR3, CCR4 and CCR10. Br J Dermatol 151:32–41PubMedCrossRefGoogle Scholar
  164. Moed H, Boorsma DM, Tensen CP, Flier J, Jonker MJ, Stoof TJ, Von Blomberg BM, Bruynzeel DP, Scheper RJ, Rustemeyer T, Gibbs S (2004b) Increased CCL27-CCR10 expression in allergic contact dermatitis: implications for local skin memory. J Pathol 204:39–46PubMedCrossRefGoogle Scholar
  165. Mokyr MB, Kalinichenko T, Gorelik L, Bluestone JA (1998) Realization of the therapeutic potential of CTLA-4 blockade in low-dose chemotherapy-treated tumor-bearing mice. Cancer Res 58:5301–5304PubMedGoogle Scholar
  166. Morel PA, Oriss TB (1998) Crossregulation between Th1 and Th2 cells. Crit Rev Immunol 18:275–303PubMedCrossRefGoogle Scholar
  167. Morfin R, Lafaye P, Cotillon AC, Nato F, Chmielewski V, Pompon D (2000) 7 alpha-hydroxy-dehydroepiandrosterone and immune response. Ann N Y Acad Sci 917:971–982PubMedCrossRefGoogle Scholar
  168. Morgan DJ, Kreuwel HTC, Sherman LA (1999) Antigen concentration and precursor frequency determine the rate of CD8(+) T cell tolerance to peripherally expressed antigens. J Immunol 163:723–727PubMedGoogle Scholar
  169. Morris DL (1998) Intradermal testing and sublingual in desensitization for nickel. Cutis 61:129–132PubMedGoogle Scholar
  170. Moser B, Loetscher M, Piali L, Loetscher P (1998) Lymphocyte responses to chemokines. Int Rev Immunol 16:323–3244PubMedCrossRefGoogle Scholar
  171. Moser K, Kriwet K, Naik A, Kalia YN, Guy RH (2001) Passive skin penetration enhancement and its quantification in vitro. Eur J Pharm Biopharm 52:103–112PubMedCrossRefGoogle Scholar
  172. Moulon C, Vollmer J, Weltzien H-U (1995) Characterization of processing requirements and metal crossreactivities in T cell clones from patients with allergic contact dermatitis to nickel. Eur J Immunol 25:3308–3315PubMedCrossRefGoogle Scholar
  173. Mucida D, Salek-Ardakani S (2009) Regulation of TH17 cells in the mucosal surfaces. J Allergy Clin Immunol 123(5):997–1003PubMedPubMedCentralCrossRefGoogle Scholar
  174. Murphy K, Travers P, Walport M (eds) (2008) Janeway’s immunobiology, 7th edn. Garland Science/Taylor & Francis Group, New York/OxfordGoogle Scholar
  175. Mutschler J, Giménez-Arnau E, Foertsch L, Gerberick GF, Lepoittevin JP (2009) Mechanistic assessment of peptide reactivity assay to predict skin allergens with Kathon CG isothiazolinones. Toxicol Vitro 23(3): 439–446CrossRefGoogle Scholar
  176. Nagira M, Imai T, Hieshima K, Kusuda J, Ridanpaa M, Takagi S, Nishimura M, Kakizaki M, Nomiyama H, Yoshie O (1997) Molecular cloning of a novel human CC chemokine secondary lymphoid-tissue chemokine that is a potent chemoattractant for lymphocytes and mapped to chromosome 9p13. J Biol Chem 272:19518–19524PubMedCrossRefGoogle Scholar
  177. Naisbitt DJ (2004) Drug hypersensitivity reactions in skin: understanding mechanisms and the development of diagnostic and predictive tests. Toxicology 194:179–196PubMedCrossRefGoogle Scholar
  178. Nakamura T, Kamogawa Y, Bottomly K, Flavell RA (1997a) Polarization of IL-4- and IFN-gamma-producing CD4(+) T cells following activation of naive CD4(+) T cells. J Immunol 158:1085–1094PubMedGoogle Scholar
  179. Nakamura T, Lee RK, Nam SY, Podack ER, Bottomly K, Flavell RA (1997b) Roles of IL-4 and IFN-g in stabilizing the T helper cell type-1 and 2 phenotype. J Immunol 158:2648–2653PubMedGoogle Scholar
  180. Nataf S, Davoust N, Ames RS, Barnum SR (1999) Human T cells express the C5a receptor and are chemoattracted to C5a. J Immunol 162:4018–4023PubMedGoogle Scholar
  181. Ngo VN, Tang LH, Cyster JG (1998) Epstein-Barr virus-induced molecule 1 ligand chemokine is expressed by dendritic cells in lymphoid tissues and strongly attracts naïve T cells and activated B cells. J Exp Med 188:181–191PubMedPubMedCentralCrossRefGoogle Scholar
  182. O’Garra A (1998) Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity 8:275–283PubMedCrossRefGoogle Scholar
  183. Ohshima Y, Tanaka Y, Tozawa H, Takahashi Y, Maliszewski C, Delespesse C (1997) Expression and function of OX40 ligand on human dendritic cells. J Immunol 159:3838–3848PubMedGoogle Scholar
  184. Orange JS, Biron CA (1996) An absolute and restricted requirement for IL-12 in natural killer cell IFN-g production and antiviral defense. J Immunol 156:1138–1142PubMedGoogle Scholar
  185. Orteu CH, Poulter LW, Rustin MHA, Sabin CA, Salmon M, Akbar AN (1998) The role of apoptosis in the resolution of T cell-mediated cutaneous inflammation. J Immunol 161:1619–1629PubMedGoogle Scholar
  186. Oukka M (2008) Th17 cells in immunity and autoimmunity. In: Ann Rheum Dis 67(Suppl 3):iii26–iii29Google Scholar
  187. Ozawa H, Nakagawa S, Tagami H, Aiba S (1996) Interleukin-1b and granulocyte-macrophage colony stimulating factor mediate Langerhans cell maturation differently. J Invest Dermatol 106:441–445PubMedCrossRefGoogle Scholar
  188. Panzani RC, Schiavino D, Nucera E, Pellegrino S, Fais G, Schinco G, Patriarca G (1995) Oral hyposensitization to nickel allergy: preliminary clinical results. Int Arch Allergy Immunol 107:251–254PubMedCrossRefGoogle Scholar
  189. Park SH, Chiu YH, Jayawardena J, Roark J, Kavita U, Bendelac A (1998) Innate and adaptive functions of the CD1 pathway of antigen presentation. Semin Immunol 10:391–398PubMedCrossRefGoogle Scholar
  190. Patlewicz GY, Basketter DA, Pease CK, Wilson K, Wright ZM, Roberts DW, Bernard G, Arnau EG, Lepoittevin JP (2004) Further evaluation of quantitative structure–activity relationship models for the prediction of the skin sensitization potency of selected fragrance allergens. Contact Dermatitis 50:91–97PubMedCrossRefGoogle Scholar
  191. Perez VL, Lederer JA, Lichtman AH, Abbas AK (1995) Stability of Th1 and Th2 populations. Int Immunol 7:869–875PubMedCrossRefGoogle Scholar
  192. Piccirillo CA, Thornton AM (2004) Cornerstone of peripheral tolerance: naturally occurring CD4+ CD25+ regulatory T cells. Trends Immunol 25:374–380PubMedCrossRefGoogle Scholar
  193. Pober JS, Bevilacqua MP, Mendrick DL, Lapierre LA, Fiers W, Gimbrone MA Jr (1986) Two distinct monokines, interleukin 1 and tumor necrosis factor, each independently induce biosynthesis and transient expression of the same antigen on the surface of cultured human vascular endothelial cells. J Immunol 136:1680–1687PubMedGoogle Scholar
  194. Polak L (1980) Immunological aspects of contact sensitivity. An experimental study. Monogr Allergy 15:4–60Google Scholar
  195. Polak L, Rinck C (1978) Mechanism of desensitization in DNCH-contact sensitive guinea pigs. J Invest Dermatol 70:98–104PubMedCrossRefGoogle Scholar
  196. Polak L, Turk JL (1968a) Studies on the effect of systemic administration of sensitizers in guinea-pigs with contact sensitivity to inorganic metal compounds. II. The flare-up of previous test sites of contact sensitivity and the development of a generalized rash. Clin Exp Immunol 3:253–262PubMedPubMedCentralGoogle Scholar
  197. Polak L, Turk SL (1968b) Studies on the effect of systemic administration of sensitizers in guinea pigs with contact sensitivity to inorganic metal compounds. I. The induction of immunological unresponsiveness in already sensitized animals. Clin Exp Immunol 3:245–251PubMedPubMedCentralGoogle Scholar
  198. Price AA, Cumberbatch M, Kimber I (1997) α6 integrins are required for Langerhans cell migration from the epidermis. J Exp Med 186:1725–1735PubMedPubMedCentralCrossRefGoogle Scholar
  199. Probst P, Küntzlin D, Fleischer B (1995) TH2-type infiltrating T cells in nickel-induced contact dermatitis. Cell Immunol 165:134–140PubMedCrossRefGoogle Scholar
  200. Pulendran B (2004) Modulating TH1/TH2 responses with microbes, dendritic cells, and pathogen recognition receptors. Immunol Res 29:187–196PubMedCrossRefGoogle Scholar
  201. Quezada SA, Jarvinen LZ, Lind EF, Noelle RJ (2004) CD40/CD154 interactions at the interface of tolerance and immunity. Annu Rev Immunol 22:307–328PubMedCrossRefGoogle Scholar
  202. Rambukhana A, Bos JD, Irik D, Menko WJ, Kapsenberg ML, Das PK (1995) In situ behaviour of human Langerhans cells in skin organ culture. Lab Investig 73:521–531Google Scholar
  203. Randolph GJ (2001) Dendritic cell migration to lymph nodes: cytokines, chemokines, and lipid mediators. Semin Immunol 13:267–274PubMedCrossRefGoogle Scholar
  204. Redegeld FA, Nijkamp FP (2003) Immunoglobulin free light chains and mast cells: pivotal role in T-cell-mediated immune reactions? Trends Immunol 24:181–185PubMedCrossRefGoogle Scholar
  205. Richters CD, Hoekstra MJ, van Baare J, Du Pont JS, Hoefsmit EC, Kamperdijk EW (1994) Isolation and characterization of migratory human skin dendritic cells. Clin Exp Immunol 98:330–336PubMedPubMedCentralCrossRefGoogle Scholar
  206. Robbiani DF, Finch RA, Jager D, Muller WA, Sartorelli AC, Randolph GJ (2000) The leukotriene C(4) transporter MRP1 regulates CCL19 (MIP-3beta, ELC)-dependent mobilization of dendritic cells to lymph nodes. Cell 103:757–768PubMedCrossRefGoogle Scholar
  207. Roberts DW, Lepoittevin J-P (1998) Allergic contact dermatitis: the molecular basis. In: Lepoittevin J-P, Basketter DA, Goossens A, Karlberg A-T (eds) . Springer, Berlin/Heidelberg/New York, pp 81–1118CrossRefGoogle Scholar
  208. Rogge L, Barberis-Maino L, Biffi M, Passini N, Presky DH, Gubler U, Sinigaglia F (1997) Selective expression of an interleukin-12 receptor component by human T helper 1 cells. J Exp Med 185:825–831PubMedPubMedCentralCrossRefGoogle Scholar
  209. Romagnani S (2006) Regulation of the T cell response. Clin Exp Allergy 36(11):1357–1366PubMedCrossRefGoogle Scholar
  210. Romani N, Holzmann S, Tripp CH, Koch F, Stoitzner P (2003) Langerhans cells – dendritic cells of the epidermis. Acta Pathol Microbiol Immunol Scand 111:725–740CrossRefGoogle Scholar
  211. Ross R, Gilitzer C, Kleinz R, Schwing J, Kleinert H, Forstermann U, Reske-Kunz AB (1998) Involvement of NO in contact hypersensitivity. Int Immunol 10:61–69PubMedCrossRefGoogle Scholar
  212. Rothenberg ME (2010) Innate sensing of nickel. Nat Immunol 11(9):781–782PubMedCrossRefGoogle Scholar
  213. Rowe A, Bunker CB (1998) Interleukin-4 and the interleukin-4 receptor in allergic contact dermatitis. Contact Dermatitis 38:36–39PubMedCrossRefGoogle Scholar
  214. Rowe A, Farrell AM, Bunker CB (1997) Constitutive endothelial and inducible nitric oxide synthase in inflammatory dermatoses. Br J Dermatol 136:18–23PubMedCrossRefGoogle Scholar
  215. Rustemeyer T, von Blomberg BME, de Ligter S, Frosch PJ, Scheper RJ (1999) Human T lymphocyte priming in vitro by haptenated autologous dendritic cells. Clin Exp Immunol 117:209–216PubMedPubMedCentralCrossRefGoogle Scholar
  216. Rustemeyer T, de Groot J, von Blomberg BME, Frosch PJ, Scheper RJ (2001) Induction of tolerance and cross-tolerance to methacrylate contact sensitizers. Toxicol Appl Pharmacol 176:195–202PubMedCrossRefGoogle Scholar
  217. Rustemeyer T, de Groot J, von Blomberg BME, Frosch PJ, Scheper RJ (2002) Assessment of contact allergen cross-reactivity by retesting. Exp Dermatol 11:257–265PubMedCrossRefGoogle Scholar
  218. Rustemeyer T, von Blomberg BME, van Hoogstraten IMW, Bruynzeel DP, Scheper RJ (2004) Analysis of effector and regulatory immune-reactivity to nickel. Clin Exp Allergy 34(9):1458–1466PubMedCrossRefGoogle Scholar
  219. Saeki H, Moore AM, Brown MJ, Hwan ST (1999) Secondary lymphoid-tissue chemokine (SLC) and CC chemokine receptor 7 (CCR7) participate in the emigration pathway of mature dendritic cells from the skin to regional lymph nodes. J Immunol 162:2472–2475PubMedGoogle Scholar
  220. Saint-Mezard P, Krasteva M, Chavagnac C, Bosset S, Akiba H, Kehren J, Kanitakis J, Kaiserlian D, Nicolas JF, Berard F (2003) Afferent and efferent phases of allergic contact dermatitis (ACD) can be induced after a single skin contact with haptens: evidence using a mouse model of primary ACD. J Invest Dermatol 120:641–647PubMedCrossRefGoogle Scholar
  221. Sallusto F, Lanzavecchia A, Mackay CR (1998a) Chemokines and chemokine receptors in T-cell priming and Th1/Th2-mediated responses. Immunol Today 19:568–574PubMedCrossRefGoogle Scholar
  222. Sallusto F, Schaerli P, Loetscher P, Schaniel C, Lenig D, Mackay CR, Qin S, Lanzavecchia A (1998b) Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur J Immunol 28:2760–2769PubMedCrossRefGoogle Scholar
  223. Sallusto F, Palermo B, Lenig D, Miettinen M, Matikainen S, Julkunen I, Forster R, Burgstahler R, Lipp M, Lanzavecchia A (1999) Distinct patterns and kinetics of chemokine production regulate dendritic cell function. Eur J Immunol 29:1617–1625PubMedCrossRefGoogle Scholar
  224. Sallusto F, Geginat J, Lanzavecchia A (2004) Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol 22:745–763PubMedCrossRefGoogle Scholar
  225. Scheper RJ, von Blomberg BME, Boerrigter GH, Bruynzeel D, van Dinther A, Vos A (1983) Induction of local memory in the skin. Role of local T cell retention. Clin Exp Immunol 51:141–148PubMedPubMedCentralGoogle Scholar
  226. Scheper RJ, van Dinther-Janssen AC, Polak L (1985) Specific accumulation of hapten-reactive T cells in contact sensitivity reaction sites. J Immunol 134:1333–1336PubMedGoogle Scholar
  227. Schmidt M, Raghavan B, Müller V, Vogl T, Fejer G, Tchaptchet S, Keck S, Kalis C, Nielsen PJ, Galanos C, Roth J, Skerra A, Martin SF, Freudenberg MA, Goebeler M (2010) Crucial role for human Toll-like receptor 4 in the development of contact allergy to nickel. Nat Immunol 11(9):814–819PubMedCrossRefGoogle Scholar
  228. Schnuch A, Westphal GA, Muller MM, Schulz TG, Geier J, Brasch J, Merk HF, Kawakubo Y, Richter G, Koch P, Fuchs T, Gutgesell T, Reich K, Gebhardt M, Becker D, Grabbe J, Szliska C, Aberer W, Hallier E (1998) Genotype and phenotype of N-acetyltransferase 2 (NAT2) polymorphism in patients with contact allergy. Contact Dermatitis 38:209–211PubMedCrossRefGoogle Scholar
  229. Schoenberger SP, Toes REM, Vandervoort EIH, Offringa R, Melief CJM (1998) T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 393:480–483PubMedCrossRefGoogle Scholar
  230. Schon MP, Zollner TM, Boehncke WH (2003) The molecular basis of lymphocyte recruitment to the skin: clues for pathogenesis and selective therapies of inflammatory disorders. J Invest Dermatol 121:951–962PubMedCrossRefGoogle Scholar
  231. Schuler G, Steinman RM (1985) Murine epidermal Langerhans cells mature into potent immune-stimulatory dendritic cells in vitro. J Exp Med 161:526–546PubMedCrossRefGoogle Scholar
  232. Schwarz A, Grabbe S, Riemann H, Aragane Y, Simon M, Manon S, Andrade S, Luger TA, Zlotnik A, Schwarz T (1994) In vivo effects of interleukin-10 on contact hypersensitivity and delayed-type hypersensitivity reactions. J Invest Dermatol 103:211–216PubMedCrossRefGoogle Scholar
  233. Schwarzenberger K, Udey MC (1996) Contact allergens and epidermal proinflammatory cytokines modulate Langerhans cell E-cadherin expression in situ. J Invest Dermatol 106:553–558PubMedCrossRefGoogle Scholar
  234. Seiffert K, Granstein RD (2006) Neuroendocrine regulation of skin dendritic cells. Ann N Y Acad Sci 1088(1):195–206PubMedCrossRefGoogle Scholar
  235. Semma M, Sagami S (1981) Induction of suppressor T cells to DNFB contact sensitivity by application of sensitizer through Langerhans cell-deficient skin. Arch Dermatol Res 271:361–364PubMedCrossRefGoogle Scholar
  236. Shimizu Y, Newman W, Gopal TV, Horgan KJ, Graber N, Beall LD, van Seventer GA, Shaw S (1991) Four molecular pathways of T cell adhesion to endothelial cells: roles of LFA-1, VCAM-1, and ELAM-1 and changes in pathway hierarchy under different activation conditions. J Cell Biol 113:1203–1212PubMedCrossRefGoogle Scholar
  237. Shirakawa T, Kusaka Y, Morimoto K (1992) Specific IgE antibodies to nickel in workers with known reactivity to cobalt. Clin Exp Allergy 22:213–218PubMedCrossRefGoogle Scholar
  238. Shreedhar V, Giese T, Sung VW, Ullrich SE (1998) A cytokine cascade including prostaglandin E2, IL-4, and IL-10 is responsible for UV-induced systemic immune suppression. J Immunol 160:3783–3789PubMedGoogle Scholar
  239. Silberberg-Sinakin I, Thorbecke GJ, Baer RL, Rosenthal SA, Berezowsky V (1976) Antigen-bearing Langerhans cells in skin, dermal lymphatics, and in lymph nodes. Cell Immunol 25:137–151PubMedCrossRefGoogle Scholar
  240. Skog E (1976) Spontaneous flare-up reactions induced by different amounts of 1,3-dinitro-4-chlorobenzene. Acta Derm Venereol 46:386–395Google Scholar
  241. Steinbrink K, Jonuleit H, Muller G, Schuler G, Knop J, Enk AH (1999) Interleukin-10-treated human dendritic cells induce a melanoma-antigen-specific anergy in CD8(+) T cells resulting in a failure to lyse tumor cells. Blood 93:1634–1642PubMedCrossRefGoogle Scholar
  242. Steinman RM, Hoffman L, Pope M (1995) Maturation and migration of cutaneous dendritic cells. J Invest Dermatol 105:2S–7SPubMedCrossRefGoogle Scholar
  243. Sterry W, Künne N, Weber-Matthiesen K, Brasch J, Mielke V (1991) Cell trafficking in positive and negative patch test reactions: demonstration of a stereotypic migration pathway. J Invest Dermatol 96:459–462PubMedCrossRefGoogle Scholar
  244. Stingl G, Katz SI, Clement L, Green I, Shevach EM (1978) Immunological functions of Ia-bearing epidermal Langerhans cells. J Immunol 121:2005–2013PubMedGoogle Scholar
  245. Streilein JW, Grammer SF (1989) In vitro evidence that Langerhans cells can adopt two functionally distinct forms capable of antigen presentation to T lymphocytes. J Immunol 143:3925–3933PubMedGoogle Scholar
  246. Strobel S, Mowat AM (1998) Immune responses to dietary antigens: oral tolerance. Immunol Today 19:173–181PubMedCrossRefGoogle Scholar
  247. Szepietowski JC, McKenzie RC, Keohane SG, Walker C, Aldridge RD, Hunter JA (1997) Leukaemia inhibitory factor: induction in the early phase of allergic contact dermatitis. Contact Dermatitis 36:21–25PubMedCrossRefGoogle Scholar
  248. Taams LS, van Rensen AJML, Poelen MC, van Els CACM, Besseling AC, Wagenaar JPA, van Eden W, Wauben MHM (1998) Anergic T cells actively suppress T cell responses via the antigen presenting cell. Eur J Immunol 28:2902–2912PubMedCrossRefGoogle Scholar
  249. Taams LS, van Eden W, Wauben MHM (1999) Dose-dependent induction of distinct anergic phenotypes: multiple levels of T cell anergy. J Immunol 162:1974–1981PubMedGoogle Scholar
  250. Taams LS, Boot EPJ, van Eden W, Wauben MHM (2000) Anergic’ T cells modulate the T-cell activating capacity of antigen-presenting cells. J Autoimmun 14:335–341PubMedCrossRefGoogle Scholar
  251. Takatori H, Kanno Y, Chen Z, O’Shea JJ (2008) New complexities in helper T cell fate determination and the implications for autoimmune diseases. Mod Rheumatol 18(6):533–541PubMedPubMedCentralCrossRefGoogle Scholar
  252. Tammaro A, De Marco G, Persechino S, Narcisi A, Camplone G (2009) Allergy to nickel: first results on patients administered with an oral hyposensitization therapy. Int J Immunopathol Pharmacol 22(3):837–840PubMedCrossRefGoogle Scholar
  253. Tang A, Amagai M, Granger LG, Stanley JR, Udey MC (1993) Adhesion of epidermal Langerhans cells to keratinocytes mediated by E-cadherin. Nature 361:82–85PubMedCrossRefGoogle Scholar
  254. Toebak MJ, Moed H, von Blomberg MB, Bruynzeel DP, Gibbs S, Scheper RJ, Rustemeyer T (2006) Intrinsic characteristics of contact and respiratory allergens influence production of polarizing cytokines by dendritic cells. Contact Dermatitis 55(4):238–245PubMedCrossRefGoogle Scholar
  255. Trautmann A, Randriamampita C (2003) Initiation of TCR signalling revisited. Trends Immunol 24:425–428PubMedCrossRefGoogle Scholar
  256. Tsuji RF, Geba GP, Wang Y, Kawamoto K, Matis LA, Askenase PW (1997) Required early complement activation in contact sensitivity with generation of local C5-dependent chemotactic activity, and late T cell interferon g: a possible initiating role of B cells. J Exp Med 186:1015–1026PubMedPubMedCentralCrossRefGoogle Scholar
  257. Turk JL (1975) Delayed hypersensitivity, 2nd edn. North-Holland, AmsterdamGoogle Scholar
  258. Ulrich P, Grenet O, Bluemel J, Vohr HW, Wiemann C, Grundler O, Suter W (2001) Cytokine expression profiles during murine contact allergy: T helper 2 cytokines are expressed irrespective of the type of contact allergen. Arch Toxicol 75(8):470–479PubMedCrossRefGoogle Scholar
  259. Uotila P (1996) The role of cyclic AMP and oxygen intermediates in the inhibition of cellular immunity in cancer. Cancer Immunol Immunother 43:1–9PubMedCrossRefGoogle Scholar
  260. van Beelen AJ, Teunissen MB, Kapsenberg ML, de Jong EC (2007) Interleukin-17 in inflammatory skin disorders. Curr Opin Allergy Clin Immunol 7(5):374–381PubMedCrossRefGoogle Scholar
  261. van de Ven R, Scheffer GL, Scheper RJ, de Gruijl TD (2009) The ABC of dendritic cell development and function. Trends Immunol 30(9):421–429PubMedCrossRefGoogle Scholar
  262. Van Hoogstraten IMW, Andersen JE, von Blomberg BME, Boden D, Bruynzeel DP, Burrows D, JMG C, Dooms-Goossens A, Lahti A, Menné T, Rycroft R, Todd D, KJJ V, Wilkinson JD, Scheper RJ (1989) Preliminary results of a multicenter study on the incidence of nickel allergy in relationship to previous oral and cutaneous contacts. In: Frosch PJ, Dooms-Goossens A, Lachapelle JM, RJG R, Scheper RJ (eds) Current topics in contact dermatitis. Springer, Berlin/Heidelberg/New York, pp 178–184Google Scholar
  263. Van Hoogstraten IMW, von Blomberg BME, Boden D, Kraal G, Scheper RJ (1994) Non-sensitizing epicutaneous skin tests prevent subsequent induction of immune tolerance. J Invest Dermatol 102:80–83PubMedCrossRefGoogle Scholar
  264. Van Loweren H, Meade R, Askenase PW (1983) An early component of delayed type hypersensitivity mediated by T cells and mast cells. J Exp Med 157:1604–1617CrossRefGoogle Scholar
  265. Vestweber D, Blanks JE (1999) Mechanisms that regulate the function of the selectins and their ligands. Physiol Rev 79:181–213PubMedCrossRefGoogle Scholar
  266. Vieira PL, Kalinski P, Wierenga EA, Kapsenberg ML, Dejong EC (1998) Glucocorticoids inhibit bioactive IL-12P70 production by in vitro-generated human dendritic cells without affecting their T cell stimulatory potential. J Immunol 161:5245–5251PubMedGoogle Scholar
  267. Viola A, Lanzavecchia A (1996) T cell activation determined by T cell receptor number and tunable thresholds. Science 273:104–106PubMedCrossRefGoogle Scholar
  268. Virag L, Szabo E, Bakondi E, Bai P, Gergely P, Hunyadi J, Szabo C (2002) Nitric oxide-peroxynitrite-poly(ADP-ribose) polymerase pathway in the skin. Exp Dermatol 11:189–202PubMedCrossRefGoogle Scholar
  269. Von Andrian UH, Mrini C (1998) In situ analysis of lymphocyte migration to lymph nodes. Cell Adhes Commun 6:85–96CrossRefGoogle Scholar
  270. von Blomberg BME, Bruynzeel DP, Scheper RJ (1991) Advances in mechanisms ofallergic contact dermatitis: in vitro and in vivo research. In: Marzulli FN, Maibach HI (eds) Dermatotoxicology, 4th edn. Hemisphere Publishing Corporation, New York, pp 255–362Google Scholar
  271. von Herrath MG (1997) Bystander suppression induced by oral tolerance. Res Immunol 148:541–554CrossRefGoogle Scholar
  272. Waldorf HA, Walsh LJ, Schechter NM, Murphy GF (1991) Early molecular events in evolving cutaneous delayed hypersensitivity in humans. Am J Pathol 138:477–486PubMedPubMedCentralGoogle Scholar
  273. Walker C, Kristensen F, Bettens F, deWeck AL (1983) Lymphokine regulation of activated (G1) lymphocytes. I. Prostaglandin E2-induced inhibition of interleukin 2 production. J Immunol 130:1770–1773PubMedGoogle Scholar
  274. Walsh LJ, Lavker RM, Murphy GF (1990) Determinants of immune cell trafficking in the skin. Lab Investig 63:592–600PubMedGoogle Scholar
  275. Wang B, Esche C, Mamelak A, Freed I, Watanabe H, Sauder DN (2003) Cytokine knockouts in contact hypersensitivity research. Cytokine Growth Factor Rev 14:381–389PubMedCrossRefGoogle Scholar
  276. Wardorf HA, Walsh LJ, Schechter NM (1991) Early cellular events in evolving cutaneous delayed hypersensitivity in humans. Am J Pathol 138:477–486Google Scholar
  277. Weigle WO, Romball CG (1997) CD4+ T-cell subsets and cytokines involved in peripheral tolerance. Immunol Today 18:533–538PubMedCrossRefGoogle Scholar
  278. Weiner HL (1997) Oral tolerance: immune mechanisms and treatment of autoimmune diseases. Immunol Today 18:335–343PubMedCrossRefGoogle Scholar
  279. Weiner HL, Gonnella PA, Slavin A, Maron R (1997) Oral tolerance: cytokine milieu in the gut and modulation of tolerance by cytokines. Res Immunol 148:528–533PubMedCrossRefGoogle Scholar
  280. Weinlich G, Heine M, Stössel H, Zanella M, Stoitzner P, Ortner U, Smolle J, Koch F, Sepp NT, Schuler G, Romani N (1998) Entry into afferent lymphatics and maturation in situ of migrating murine cutaneous dendritic cells. J Invest Dermatol 110:441–448PubMedCrossRefGoogle Scholar
  281. Weiss JM, Sleeman J, Renkl AC, Dittmar H, Termeer CC, Taxis S, Howells N, Hofmann M, Kohler G, Schöpf E, Ponta H, Herrlich P, Simon JC (1997) An essential role for CD44 variant isoforms in epidermal Langerhans cell and blood dendritic cell function. J Cell Biol 137:1137–1147PubMedPubMedCentralCrossRefGoogle Scholar
  282. Wendel GD, Stark BJ, Jamison RB, Molina RD, Sullivan TJ (1985) Penicillin allergy and desensitization in serious infections during pregnancy. N Engl J Med 312:1229–1232PubMedCrossRefGoogle Scholar
  283. Werfel T, Hentschel M, Kapp A, Renz H (1997) Dichotomy of blood- and skin-derived IL-4-producing allergen-specific T cells and restricted V beta repertoire in nickel-mediated contact dermatitis. J Immunol 158:2500–2505PubMedGoogle Scholar
  284. Weston MC, Peachell PT (1998) Regulation of human mast cell and basophil function by cAMP. Gen Pharmacol 31:715–719PubMedCrossRefGoogle Scholar
  285. Wilkinson SM, Mattey DL, Beck MH (1994) IgG antibodies and early intradermal reactions to hydrocortisone in patients with cutaneous delayed-type hypersensitivity to hydrocortisone. Br J Dermatol 131:495–498PubMedCrossRefGoogle Scholar
  286. Willis CM, Young E, Brandon DR, Wilkinson JD (1986) Immunopathological and ultrastructural findings in human allergic and irritant contact dermatitis. Br J Dermatol 115:305–316PubMedCrossRefGoogle Scholar
  287. Wilson NS, Villadangos JA (2004) Lymphoid organ dendritic cells: beyond the Langerhans cells paradigm. Immunol Cell Biol 82:91–98PubMedCrossRefGoogle Scholar
  288. Wong BR, Josien R, Lee SY, Sauter B, Li HL, Steinman RM, Choi YW (1997) TRANCE (Tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor. J Exp Med 186:2075–2080PubMedPubMedCentralCrossRefGoogle Scholar
  289. Wu K, Bi Y, Sun K, Wang C (2007) IL-10-producing type 1 regulatory T cells and allergy. Cell Mol Immunol 4(4):269–275PubMedGoogle Scholar
  290. Yu X, Barnhill RL, Graves DT (1994) Expression of monocyte chemoattractant protein-1 in delayed type hypersensitivity reactions in the skin. Lab Investig 71:226–235PubMedGoogle Scholar
  291. Zembala M, Ashershon GL (1973) Depression of T cell phenomenon of contact sensitivity by T cells from unresponsive mice. Nature 244:227–228PubMedCrossRefGoogle Scholar
  292. Zhang ZY, Michael JG (1990) Orally inducible immune unresponsiveness is abrogated by IFN-gamma treatment. J Immunol 144:4163–4165PubMedGoogle Scholar
  293. Zhang X, Brunner T, Carter L, Dutton RW, Rogers P, Bradley L, Sato T, Reed JC, Green D, Swain SL (1997) Unequal death in T helper cell (Th)1 and Th2 effectors: Th1, but not Th2, effectors undergo rapid Fas/FasL-mediated apoptosis. J Exp Med 185:1837–1849PubMedPubMedCentralCrossRefGoogle Scholar
  294. Zhou L, Littman DR (2009) Transcriptional regulatory networks in Th17 cell differentiation (review). Curr Opin Immunol 21(2):146–152PubMedPubMedCentralCrossRefGoogle Scholar
  295. Zhou L, Chong MM, Littman DR (2009) Plasticity of CD4+ T cell lineage differentiation (review). Immunity 30(5):646–655. PMID: 19464987PubMedCrossRefGoogle Scholar
  296. Zinkernagel RM (2004) On ‘reactivity’ versus ‘tolerance. Immunol Cell Biol 82:343–352PubMedCrossRefGoogle Scholar
  297. Zlotnik A, Morales J, Hedrick JA (1999) Recent advances in chemokines and chemokine receptors. Crit Rev Immunol 19:1–47PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Thomas Rustemeyer
    • 1
    Email author
  • Ingrid M. W. van Hoogstraten
    • 2
  • B. Mary E. von Blomberg
    • 2
  • Rik J. Scheper
    • 2
  1. 1.Department of Dermatology and AllergologyVU University Medical CenterAmsterdamThe Netherlands
  2. 2.Department PathologyVU University Medical CenterAmsterdamThe Netherlands

Personalised recommendations