Identification of Skin Irritants and Allergens by In Vivo and In Vitro Methods

  • Rasika ReddyEmail author
  • Howard I. Maibach
  • Viswanath Reddy Belum
  • Geetanjali Sethi
  • Philip Hewitt
Reference work entry


Skin is prone to developing allergic, irritant, and urticarial reactions in response to contact with a number of drugs and chemicals on a daily basis. Hence, a variety of assays (in vivo and in vitro) have been developed to determine absorption through the skin and their ability to cause skin reactions.

Absorption of substances through skin is influenced by a number of factors such as concentration/pH of the chemical at the skin surface, type of vehicle, integrity of the skin, subject’s age, and the surface area exposed.

In vivo percutaneous absorption assays have been conducted in a number of animal models and involve the measurement of radiolabeled chemicals containing 14C or 3H in urine and/or feces after applying a known quantity of the chemical on the skin. In vitro percutaneous penetration assays are conducted in excised human or animal skin using radioactively tagged chemicals.

Understanding the structure and biological activity of any agent (quantitative structure-activity relationship (QSAR)) helps in determining the potential allergenicity of chemicals with similar structures.

A great deal of advancement has taken place with regard to testing the irritant potential of a substance, and many new in vitro skin models have been developed for the same.


Irritant dermatitis Skin irritant In vitro method In vivo method Contact urticaria 


  1. Ale IS, Maibach HI (2007) Mechanisms in irritant and allergic contact dermatitis. In: Zhai H, Maibach HI, Wilhelm K-P (eds) Marzulli and Maibach’s Dermatotoxicology, 7th edn. CRC Press, Boca RatonGoogle Scholar
  2. Alepee N, Carine T, Robert C, Amsellem C, Roux M, Doucet O, Pachot J, Melont M, de Fraissinette A (2010) A catch-up validation study on reconstructed human epidermis (SkinEthic RHE) for full replacement of the Draize skin irritation test. Toxicol In Vitro 24:257–266PubMedCrossRefGoogle Scholar
  3. Andersen KE, Maibach HI (1984) Multiple-application delayed-onset contact urticaria: possible relation to certain unusual formalin and textile reactions. Contact Dermatitis 10:227–234PubMedCrossRefGoogle Scholar
  4. Anderson K, Maibach H (1985) Contact allergy predictive tests in Guinea pigs. Karger, BaselGoogle Scholar
  5. Anderson C, Sundberg K, Groth O (1986) Animal model for assessment of skin irritancy. Contact Dermatitis 15:143–151PubMedCrossRefGoogle Scholar
  6. Ball N, Cagen S, Carrillo JC, Certa H, Eigler D, Emter R, Faulhammer F, Garcia C, Graham C, Haux C, Kolle S, Kreiling R, Natsch A, Mehling A (2011) Evaluating the sensitization potential of surfactants: integrating data from the local lymph node assay, guinea pig maximization test, and in vitro methods in a weight-of-evidence approach. Regul Toxicol Pharmacol 60: 289–400CrossRefGoogle Scholar
  7. Baran R, Maibach H (eds) (1998) Textbook of cosmetic dermatology. Martin Dunitz, LondonGoogle Scholar
  8. Bartek MJ, LaBudde JA (1975) Percutaneous absorption in vitro. In: Maibach HI (ed) Animal models in dermatology. Churchill Livingstone, New York, pp 103–120Google Scholar
  9. Bartek MJ, LaBudde JA, Maibach HI (1972) Skin permeability in vivo: comparison in rat, rabbit, pig and man. J Invest Dermatol 58:114–123PubMedCrossRefGoogle Scholar
  10. Bloch B, Steiner-Wourlisch A (1930) Die Sensibilisierung des Meerschweinchens gegen Prirneln. Arch Dermatol Syphilol 162:349–378CrossRefGoogle Scholar
  11. Bronaugh RL, Collier S (1991) Protocol for in vitro percutaneous absorption studies. In: Bronaugh RL, Maibach HI (eds) In vitro percutaneous absorption: principles, fundamentals and applications. CRC Press, Boca Raton, pp 237–242Google Scholar
  12. Bronaugh RL, Maibach HI (eds) (1985) Percutaneous absorption: mechanisms methodology-drug delivery. Marcel Dekker, New YorkGoogle Scholar
  13. Bronaugh RL, Maibach HI (eds) (1991) In vitro percutaneous absorption: principles, fundamentals and applications. CRC Press, Boca RatonGoogle Scholar
  14. Bronaugh RL, Kraeling MEK, Yourick JJ (2005) Determination of percutaneous absorption by in vitro techniques. In: Bronaugh RL, Maibach HI (eds) Percutaneous absorption: drugs-cosmetics-mechanisms-methodology. Taylor & Francis Informa, New York, pp 265–268CrossRefGoogle Scholar
  15. Buehler EV (1964) A new method for detecting potential sensitizers using the guinea pig. Toxicol Appl Pharmacol 6:341CrossRefGoogle Scholar
  16. Cagen SZ, Malley LA, Parker CM, Gardiner TH, Van Gelder GA, Jud VA (1984) Pyrethroid-mediated skin sensory stimulation characterized by a new behavioral paradigm. Toxicol Appl Pharmacol 76:270–279PubMedCrossRefGoogle Scholar
  17. Draize JH (1955) Procedures for the appraisal of the toxicity of chemicals in foods, drugs, and cosmetics. VIII. Dermal toxicity. Food Drug Cosmetic Law J 10: 722–731Google Scholar
  18. Draize JH, Woodard G, Calvery HO (1944) Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membrane. J Pharmacol Exp Ther 82:377–390Google Scholar
  19. Dugard PH (1986) Absorption through the skin: theory, in vitro techniques and their applications. Food Chem Toxicol 24:749–753PubMedCrossRefGoogle Scholar
  20. Emery BE, Edwards LD (1940) The pharmacology of soaps. II. The irritant action of soaps on human skin. J Am Pharm Assoc (Wash) 29:251–254CrossRefGoogle Scholar
  21. EPA (U.S. Environmental Protective Agency) (1984) Pesticide assessment guidelines. Subdivison F: Hazard evaluation – human and domestic animals, Revised Ed. PB 86-108958, Series 81–6Google Scholar
  22. Eskes C, van Vliet E, Maibach H (2017) Alternatives for dermal toxicity testing. Springer, ChamCrossRefGoogle Scholar
  23. Feldman RJ, Maibach HI (1967) Regional variations in percutaneous penetration of [14C] cortisone in man. J Invest Dermatol 48:181–183CrossRefGoogle Scholar
  24. Franz TI (1975) Percutaneous absorption on the relevance of in vitro data. J Invest Dermatol 64:190–195PubMedCrossRefGoogle Scholar
  25. Frosch PJ (1982) Irritancy of soap and detergent bars. In: Frost P, Horwitz SN (eds) Principles of cosmetics for the dermatologist. CV Mosby, St. Louis, pp 5–12Google Scholar
  26. Frosch PJ, Kligman AM (1977) A method for appraising the stinging capacity of topically applied substances. J Soc Cosmet Chem 28:197–207Google Scholar
  27. Frosch PJ, Kligman AM (1979) The Duhring chamber: an improved technique for epicutaneous testing of irritant and allergic reactions. Contact Dermatitis 5:73–81PubMedCrossRefGoogle Scholar
  28. Galbiati V, Papale A, Marinovich M, Gibbs S, Roggen E, Corsini E (2017) Development of an in vitro method to estimate the sensitization induction level of contact allergens. Toxicol Lett 271:1–11PubMedCrossRefGoogle Scholar
  29. Gibbs S, Corsini E, Spiekstra S, Galbiati V, Fuchs H, DeGeorge G, Troese M, Hayden P, Deng W, Roggen E (2013) An epidermal equivalent assay for identification and ranking potency of contact sensitizers. Toxicol Appl Pharmacol 272:529–541PubMedCrossRefGoogle Scholar
  30. Gimenez-Arnau A, Maibach H (2015) Contact urticaria syndrome. CRS Press, Boca RatonGoogle Scholar
  31. Guillot JP, Gonnnet JF, Clement C, Caillard L, Truhaut R (1982) Evaluation of the cutaneous-irritation potential of 56 compounds. Food Chem Toxicol 20:563–572PubMedCrossRefGoogle Scholar
  32. Hayes BB, Patrick E, Maibach HI (2007) Dermatotoxicology. In: Hayes AW (ed) Principles and methods of toxicology, 5th edn. Informa Healthcare, New York, pp 1359–1405Google Scholar
  33. Henderson CR, Riley EC (1945) Certain statistical considerations in patch testing. J Invest Dermatol 6:227–230CrossRefGoogle Scholar
  34. Hostynek JJ, Magee PS (1997) Fragrance allergens: classification and ranking by QSAR. Toxicol In Vitro 11:377–384PubMedCrossRefGoogle Scholar
  35. Hostynek JJ, Lauerma AI, Magee PS, Bloom E, Maibach HI (1995) A local lymph-node assay validation study of a structure-activity relationship model for contact allergens. Arch Dermatol Res 287:567–571PubMedCrossRefGoogle Scholar
  36. Hostynek JJ, Magee PS, Maibach HI (1996) QSAR predictive of contact allergy: scope and limitations. In: Elsner P, LaChapelle JM, Wahlberg JE (eds) Prevention of contact dermatitis. Karger, Basel, pp 18–27Google Scholar
  37. Hotchkiss SAM (1992) Skin as a xenobiotic metabolising organ. In: Gibson GG (ed) Progress in drug metabolism, vol 13. Taylor and Francis, London, pp 217–262Google Scholar
  38. Jadassohn J (1895) Zur kenntniss der medicamentosen dermatosen. Verhdlg Deutsch Derm Gesellsch 5:103Google Scholar
  39. Jung K, Lee S, Jang W, Jung H, Heo Y, Park Y, Bae S, Lim K, Seok S (2014) KeraSkin-VM: a novel reconstructed human epidermis model for skin irritation tests. Toxicol In Vitro 28:742–750PubMedCrossRefGoogle Scholar
  40. Kaminsky M, Szivos MM, Brown KR (1986) Application of the hill top patch test chamber to dermal irritancy testing in the albino rabbit. J Toxicol Cutan Ocul Toxicol 5:81–87CrossRefGoogle Scholar
  41. Kero M, Hannuksela M (1980) Guinea pig maximization test, open epicutaneous test and chamber test in induction of delayed contact hypersensitivity. Contact Dermatitis 6:341–344PubMedCrossRefGoogle Scholar
  42. Klecak G (1983) Identification of contact allergens: predictive tests in animals. In: Marzulli FN, Maibach HI (eds) Dermatotoxicology. Hemisphere, New York, pp 193–236Google Scholar
  43. Klecak G (1985) The Freund’s complete adjuvant test and the open epicutaneous test. In: Andersen KE, Maibach HI (eds) Contact allergy predictive tests in guinea pigs. Karger, Basel, pp 152–171Google Scholar
  44. Kligman AM (1983) A biological brief on percutaneous absorption. Drug Dev Ind Pharm 19:521–560CrossRefGoogle Scholar
  45. Kligman AM, Wooding WM (1967) A method for the measurement and evaluation of irritants on human skin. J Invest Dermatol 49:78–94PubMedCrossRefGoogle Scholar
  46. Kreiling R, Hollnagel HM, Hareng L, Eigler D, Lee MS, Griem P, Dreeben B, Kleber M, Albrecht A, Garcia C, Wendel A (2008) Comparison of the skin sensitizing potential of unsaturated compounds as assessed by the murine local lymph node assay (LLNA) and the guinea pig maximization test (GPMT). Food Chem Toxicol 46:1896–1904PubMedCrossRefGoogle Scholar
  47. Lahti A (1980) Nonimmunologic contact urticaria. Acta Derm Venereol Suppl (Stockh) 60:1–49Google Scholar
  48. Lahti A, Maibach HI (1984) An animal model for nonimmunologic contact urticaria. Toxicol Appl Pharmacol 76:219–224PubMedCrossRefGoogle Scholar
  49. Lahti A, Maibach HI (1985) Species specificity of nonimmunologic contact urticaria: guinea pig, rat and mouse. J Am Acad Dermatol 13:66–69PubMedCrossRefGoogle Scholar
  50. Landsteiner K, Chase MW (1937) Studies on the sensitization of animals with simple chemical compounds. IV. Anaphylaxis induced by picryl chloride and 2:4 dinitrochlorobenzene. J Exp Med 66:337–351PubMedPubMedCentralCrossRefGoogle Scholar
  51. Landsteiner K, Jacobs J (1935) Studies on the sensitization of animals with simple chemical compounds. J Exp Med 61:643–656PubMedPubMedCentralCrossRefGoogle Scholar
  52. Landsteiner K, Jacobs J (1936) Studies on the sensitization of animals with simple chemical compounds. II. J Exp Med 64:625–639PubMedPubMedCentralCrossRefGoogle Scholar
  53. Lanman B, Elvers WB, Howard CS (1968) The role of human patch testing in a product development program. In: Proceedings of the joint conference of cosmetic sciences. The Toilet Goods Association, Washington, DC, pp 135–145Google Scholar
  54. Magee PS, Hostynek JJ, Maibach HI (1994) A classification model for allergic contact dermatitis. Quant Struct-Act Relat 13:22–33Google Scholar
  55. Magnusson B, Hersle K (1965) Patch test methods. I. A comparative study of six different types of patch tests. Acta Derm Venereol 45:123–128PubMedGoogle Scholar
  56. Maibach H, Honari G (2014) Applied dermatotoxicology: clinical aspects. Elsevier, AmsterdamGoogle Scholar
  57. Maibach HI, Johnson HL (1975) Contact urticaria syndrome. Contact urticaria to diethyltoluamide (immediate-type hypersensitivity). Arch Dermatol 111:726–730CrossRefGoogle Scholar
  58. Marzulli FN, Maibach HI (1973) Antimicrobials: experimental contact sensitization in man. J Soc Cosmet Chem 24:399–421Google Scholar
  59. Marzulli FN, Maibach HI (eds) (1997) Handbook of dermatology. Taylor and Francis, Washington, DCGoogle Scholar
  60. Mathias CG, Maibach HI (1978) Dermatoxicology monographs I. Cutaneous irritation: factors influencing the response to irritants. Clin Toxicol 13:333–346PubMedCrossRefGoogle Scholar
  61. Maurer T, Thomann P, Weirich EG, Hess R (1975) The optimization test in the guinea pig. A method for the predictive evaluation of the contact allergenicity of chemicals. Agents Actions 5:174–179PubMedCrossRefGoogle Scholar
  62. Modjtahedi B, Fortenbach C, Marsano J, Gandhi A, Staab R, Maibach HI (2011) Guinea pig sensitization assays: an experimental comparison of three methods. Cutan Ocul Toxicol 30:129–137PubMedCrossRefGoogle Scholar
  63. Motoyoshi K, Toyoshima Y, Sato M, Yoshimura M (1979) Comparative studies on the irritancy of oils and synthetic perfumes to the skin of rabbit, guinea pig, rat, miniature swine, and man. Cosmet Toiletries 94:41–48Google Scholar
  64. Office of the Federal Registrar, National Archives of Records Service (1985) Code of Federal Regulations. General services administration title 16, parts 1500.50-1500.41Google Scholar
  65. Ostrenga J, Steinmetz C, Poulsen B, Yett S (1971) Significance of vehicle composition. II. Prediction of optimal vehicle composition. J Pharm Sci 60:1180–1183PubMedCrossRefGoogle Scholar
  66. Phillips L, Steinberg M, Maibach HI, Akers WA (1972) A comparison of rabbit and human skin response to certain irritants. Toxicol Appl Pharmacol 21:369–382PubMedCrossRefGoogle Scholar
  67. Prottey C (1978) The molecular basis of skin irritation. In: Breuer MM (ed) Cosmetic science. Academic, London, pp 275–349Google Scholar
  68. Rapaport M, Anderson D, Pierce V (1978) Performance of the 21-day patch test in civilian populations. Cosmet Toiletries 93:29–31Google Scholar
  69. Rougier A, Goldberg L, Maibach H (1994) Irritation: in vitro approaches. In: Rougier A, Goldberg L, Maibach H (eds) In vitro toxicology. Academic, London, pp 23–185Google Scholar
  70. Scheuplein RJ (1978) Permeability of skin: a review of major concepts. Curr Probl Dermatol 7:172–186PubMedCrossRefGoogle Scholar
  71. Scheuplein RJ, Bronaugh RL (1983) Percutaneous absorption. In: Goldsmith LA (ed) Biochemistry and physiology of the skin. Oxford University Press, New York, pp 1255–1295Google Scholar
  72. Shelanski HA (1951) Experience with and considerations of the human patch test method. J Soc Cosmet Chem 2:324–331Google Scholar
  73. Simpson WL, Cramer W (1943) Fluorescence studies of carcinogens in skin. Cancer Res 3:362–369Google Scholar
  74. Trottet L, Maibach H (2017) Dermal drug selection and development. Springer, ChamCrossRefGoogle Scholar
  75. Vijverberg HP, van den Bercken J (1979) Frequency-dependent effects of the pyrethroid insecticide decamethrin in frog myelinated nerve fibers. Eur J Pharmacol 58:501–504PubMedCrossRefGoogle Scholar
  76. von Krogh C, Maibach HI (1982) The contact urticaria syndrome. Semin Dermatol 1:59–66Google Scholar
  77. Weigand DA, Gaylor JR (1974) Irritant reaction in Negro and Caucasian skin. South Med J 67:548–551PubMedCrossRefGoogle Scholar
  78. Wester RC, Maibach HI (1983) Cutaneous pharmacokinetics: 10 steps to percutaneous absorption. Drug Metab Rev 14:169–205PubMedCrossRefGoogle Scholar
  79. Zhai H, Maibach HI, Wilhelm K-P (eds) (2007) Marzulli and Maibach’s Dermatotoxicology, 7th edn. CRC Press, Boca RatonGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Rasika Reddy
    • 1
    • 5
    Email author
  • Howard I. Maibach
    • 2
  • Viswanath Reddy Belum
    • 3
  • Geetanjali Sethi
    • 3
  • Philip Hewitt
    • 4
  1. 1.Department of DermatologyVeterans Affairs Medical CenterSan FranciscoUSA
  2. 2.Department of DermatologyUniversity of CaliforniaSan FranciscoUSA
  3. 3.Wexner Medical Center at The Ohio State UniversityColumbusUSA
  4. 4.Molecular and Cellular Toxicology (MS-DDT-EMT), Early, Genetic and Molecular Toxicology, Toxicology, Merck Serono R&DMerck KGaADarmstadtGermany
  5. 5.UT Southwestern Medical Center in DallasTexasUSA

Personalised recommendations