Advertisement

Processing and Characterization of Bio-composites

  • Pramendra Kumar Bajpai
  • Furkan Ahmad
  • Vijay ChaudharyEmail author
Reference work entry

Abstract

Plastic waste and ecological imbalance present a challenge in front of engineers to replace the existing synthetic materials by sustainable bio-degradable materials. Offsetting the use of synthetic fibers and resin, bio-degradable fiber and resin are being widely accepted for the processing of bio-composites. These composites have potential application in various industrial and commercial areas. This chapter covers the detailed study about the processing and characterization of bio-composites. Primary processing techniques of bio-composites such as hand layup, compression molding, injection molding, etc., have been covered in this chapter. Detailed discussions on mechanical characterization and thermal characterization of the fabricated bio-composites have been included in this chapter.

References

  1. 1.
    Koronis G, Silva A, Fontul M (2013) Green composites: a review of adequate materials for automotive applications. Compos Part B 44:120–127CrossRefGoogle Scholar
  2. 2.
    Dicker MPM, Duckworth PF, Baker AB, Francois G, Hazzard MK, Weaver PM (2013) Green composites: a review of material attributes and complementary applications. Compos Part A.  https://doi.org/10.1016/j.compositesa.2013.10.014CrossRefGoogle Scholar
  3. 3.
    Awal A, Rana M, Sain M (2014) Thermorheological and mechanical properties of cellulose reinforced PLA bio-composites. Mech Mater.  https://doi.org/10.1016/j.mechmat.2014.09.009CrossRefGoogle Scholar
  4. 4.
    Porras A, Maranon A, Ashcroft IA (2016) Thermo-mechanical characterization of Manicaria Saccifera natural fabric reinforced poly-lactic acid composite lamina. Compos Part A 81:105–110CrossRefGoogle Scholar
  5. 5.
    Boumhaout M, Boukhattem L, Hamdi H, Benhamou B, Nouh FA (2017) Thermomechanical characterization of a bio-composite building material: mortar reinforced with date palm fibers mesh. Constr Build Mater 135:241–250CrossRefGoogle Scholar
  6. 6.
    Jumaidin R, Sapuan SM, Jawaid M, Ishak MR, Sahari J (2017) Thermal, mechanical, and physical properties of seaweed/sugar palm fibre reinforced thermoplastic sugar palm Starch/Agar hybrid composites. Int J Biol Macromol.  https://doi.org/10.1016/j.ijbiomac.2017.01.079CrossRefGoogle Scholar
  7. 7.
    Oliver-Ortega H, Granda LA, Espinach FX, Mendez JA, Julian F, Mutje P (2016) Tensile properties and micromechanical analysis of stone groundwood from softwood reinforced bio-based polyamide11 composites. Compos Sci Technol 132:123–130CrossRefGoogle Scholar
  8. 8.
    Shibata S, Cao Y, Fukumoto I (2008) Flexural modulus of the unidirectional and random composites made from biodegradable resin and bamboo and kenaf fibres. Compos Part A 39:640–646CrossRefGoogle Scholar
  9. 9.
    Arao Y, Fujiura T, Itani S, Tanaka T (2015) Strength improvement in injection-molded jute-fiber-reinforced polylactide green-composites. Compos Part B 68:200–206CrossRefGoogle Scholar
  10. 10.
    Wu C (2015) Renewable resource-based green composites of surface-treated spent coffee grounds and polylactide: characterisation and biodegradability. Polym Degrad Stab 121:51–59CrossRefGoogle Scholar
  11. 11.
    Jayaramudu J, Reddy GSM, Varaprasad K, Sadiku ER, Ray SS, Rajulu AV (2013) Preparation and properties of biodegradable films from Sterculia urens short fiber/cellulose green composites. Carbohydr Polym 93:622–627CrossRefGoogle Scholar
  12. 12.
    Khan YH, Islam A, Sarwar A, Gull N, Khan SM, Munawar MA, Zia S, Sabir A, Shafiq M, Jamil T (2016) Novel green nano composites films fabricated by indigenously synthesized graphene oxide and chitosan. Carbohydr Polym.  https://doi.org/10.1016/j.carbpol.2016.03.031CrossRefGoogle Scholar
  13. 13.
    Kafi AA, Magniez K, Fox BL (2011) Effect of manufacturing process on the flexural, fracture toughness, and thermo-mechanical properties of bio-composites. Compos Part A 42:993–999CrossRefGoogle Scholar
  14. 14.
    Idicula M, Sreekumar PA, Joseph K, Thomas S (2009) Natural fiber hybrid composites – a comparison between compression molding and resin transfer molding. Polym Compos.  https://doi.org/10.1002/pc.20706CrossRefGoogle Scholar
  15. 15.
    Sreekumar PA, Joseph K, Unnikrishnan G, Thomas S (2007) A comparative study on mechanical properties of sisal-leaf fibre-reinforced polyester composites prepared by resin transfer and compression moulding techniques. Compos Sci Technol 67:453–461CrossRefGoogle Scholar
  16. 16.
    Bakare FO, Ramamoorthy SK, Akesson D, Skrifvars M Thermomechanical properties of bio-based composites made from a lactic acid thermoset resin and flax/basalt fibre reinforcements. Compos Part A.  https://doi.org/10.1016/j.compositesa.2015.09.002CrossRefGoogle Scholar
  17. 17.
    Kim K-W, Lee B-H, Kim H-J, Sriroth K, Dorgan JR (2012) Thermal and mechanical properties of cassava and pineapple flours-filled PLA bio-composites. J Therm Anal Calorim 108:1131–1139CrossRefGoogle Scholar
  18. 18.
    Sahoo S, Misra M, Mohanty AK (2011) Enhanced properties of lignin-based biodegradable polymer composites using injection moulding process. Compos Part A 42:1710–1718CrossRefGoogle Scholar
  19. 19.
    Mohanty AK, Tummala P, Liu W, Misra M, Mulukutla PV, Drzal LT (2005) Injection molded biocomposites from soy protein based bioplastic and short industrial hemp fiber. J Polym Environ 13:279–285CrossRefGoogle Scholar
  20. 20.
    Liu W, Drzal LT, Mohanty AK, Misra M (2007) Influence of processing methods and fiber length on physicalproperties of kenaf fiber reinforced soy based biocomposites. Compos Part B 38:352–359CrossRefGoogle Scholar
  21. 21.
    Feldmann M, Bledzki AK (2014) Bio-based polyamides reinforced with cellulosic fibres – processing and properties. Compos Sci Technol 100:113–120CrossRefGoogle Scholar
  22. 22.
    Memon A, Nakai A (2013) Mechanical properties of jute spun yarn/PLA tubular braided composite by pultrusion molding. Energy Procedia 34:818–829CrossRefGoogle Scholar
  23. 23.
    Misri S, Sapuan SM, Leman Z, Ishak MR (2014) Torsional behaviour of filament wound kenaf yarn fibre reinforced unsaturated polyester composite hollow shafts. Mater Des.  https://doi.org/10.1016/j.matdes.2014.09.073CrossRefGoogle Scholar
  24. 24.
    Sevkat E, Tumer H (2013) Residual torsional properties of composite shafts subjected to impact loadings. Mater Des 51:956–967CrossRefGoogle Scholar
  25. 25.
    Cuinat-Guerraz N, Dumont M-J, Hubert P (2016) Environmental resistance of flax/biobased epoxy and flax/polyurethane composites manufactured by resin transfer moulding. Compos Part A.  https://doi.org/10.1016/j.compositesa.2016.05.018CrossRefGoogle Scholar
  26. 26.
    Dweib MA, Hu B, Shenton HW, Wool RP (2006) Bio-based composite roof structure: Manufacturing and processing issues. Compos Struct 74:379–388CrossRefGoogle Scholar
  27. 27.
    Boey FYC, Lye SW (1992) Void reduction in autoclave processing of thermoset composites Part 1: high pressure effects on void reduction. Composites 23:261–265CrossRefGoogle Scholar
  28. 28.
    Essabir H, Bensalah MO, Rodrigue D, Bouhfid R, Qaiss A (2016) Structural, mechanical and thermal properties of bio-based hybrid composites from waste coir residues: Fibers and shell particles. Mech Mater 93:134–144CrossRefGoogle Scholar
  29. 29.
    Song KH, Kim IS (2013) Effects of plasticizer on the mechanical properties of kenaf/starch bio-composites. Fibers Polym 14:2135–2140CrossRefGoogle Scholar
  30. 30.
    Shah DU, Porter D, Vollrath F (2014) Can silk become an effective reinforcing fibre? A property comparison with flax and glass reinforced composites. Compos Sci Technol 101:173–183CrossRefGoogle Scholar
  31. 31.
    Chaudhary V, Bajpai PK, Maheshwari S (2017) Studies on mechanical and morphological characterization of developed jute/hemp/flax reinforced hybrid composites for structural applications. J Nat Fibers.  https://doi.org/10.1080/15440478.2017.1320260CrossRefGoogle Scholar
  32. 32.
    Maiti M, Kaith BS, Jindal R, Jana AK (2010) Synthesis and characterization of corn starch based green composites reinforced with Saccharum spontaneum L graft copolymers prepared under micro-wave and their effect on thermal, physio-chemical and mechanical properties. Polym Degrad Stab 95:1694–1703CrossRefGoogle Scholar
  33. 33.
    Baghaei B, Skrifvars M (2016) Characterisation of polylactic acid biocomposites made from prepregs composed of woven polylactic acid/hemp–Lyocell hybrid yarn fabrics. Compos Part A 81:139–144CrossRefGoogle Scholar
  34. 34.
    Bajpai PK, Singh I, Madaan J (2012) Comparative studies of mechanical and morphological properties of polylactic acid and polypropylene based natural fiber composites. J Reinf Plast Compos 31:1712–1724CrossRefGoogle Scholar
  35. 35.
    Rout J, Misra M, Tripathy SS, Nayak SK, Mohanty AK (2001) The influence of fibre treatment on the performance of coir-polyester composites. Compos Sci Technol 61:1303–1310CrossRefGoogle Scholar
  36. 36.
    Haque MM, Hasan M, Islam MS, Ali ME (2009) Physico-mechanical properties of chemically treated palm and coir fiber reinforced polypropylene composites. Bioresour Technol 100:4903–4906CrossRefGoogle Scholar
  37. 37.
    Chen S, Cheng L, Huang H, Zou F, Zhao H-P (2017) Fabrication and properties of poly(butylene succinate) biocomposites reinforced by waste silkworm silk fabric. Compos Part A.  https://doi.org/10.1016/j.compositesa.2017.01.004CrossRefGoogle Scholar
  38. 38.
    Asaithambi B, Ganesan G, Kumar SA (2014) Bio-composites: development and mechanical characterization of banana/sisal fibre reinforced poly lactic acid (PLA) hybrid composites. Fibers Polym 15:847–854CrossRefGoogle Scholar
  39. 39.
    Esmaeili N, Bakare FO, Skrifvars M, Afshar SJ, Kesson DA (2014) Mechanical properties for bio-based thermoset composites made from lactic acid, glycerol and viscose fibers. Cellulose.  https://doi.org/10.1007/s10570-014-0500-3CrossRefGoogle Scholar
  40. 40.
    Fombuena V, Bernardi L, Fenollar O, Boronat T, Balart R (2014) Characterization of green composites from biobased epoxy matrices and bio-fillers derived from seashell wastes. Mater Des 57:168–174CrossRefGoogle Scholar
  41. 41.
    Durante M, Langella A, Formisano A, Boccarusso L, Carrino L (2016) Dynamic-mechanical behaviour of bio-composites. Procedia Eng 167:231–236CrossRefGoogle Scholar
  42. 42.
    García-García D, Carbonell A, Samper MD, García-Sanoguera D, Balart R (2015) Green composites based on polypropylene matrix and hydrophobized spend coffee ground (SCG) powder. Compos Part B.  https://doi.org/10.1016/j.compositesb.2015.03.080CrossRefGoogle Scholar
  43. 43.
    Graupner N, Herrmann AS, Mussig J (2009) Natural and man-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites: an overview about mechanical characteristics and application areas. Compos Part A 40:810–821CrossRefGoogle Scholar
  44. 44.
    Bax B, Mussig J (2008) Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Compos Sci Technol.  https://doi.org/10.1016/j.compscitech.2008.01.004CrossRefGoogle Scholar
  45. 45.
    Badawy AAM (2012) Impact behavior of glass fibers reinforced composite laminates at different temperatures. Ain Shams Eng J 3:105–111CrossRefGoogle Scholar
  46. 46.
    Thirmizir MZA, Ishak ZAM, Taib RM, Rahim S, Jani SM (2011) Kenaf-bast-fiber-filled biodegradable poly(butylenesuccinate) composites: effects of fiber loading, fiber length, and maleated poly(butylene succinate) on the flexural and impact properties. J Appl Polym Sci 122:3055–3063CrossRefGoogle Scholar
  47. 47.
    Głowińska E, Datta J, Parcheta P (2017) Effect of sisal fiber filler on thermal properties of bio-based polyurethane composites. J Therm Anal Calorim.  https://doi.org/10.1007/s10973-017-6293-5CrossRefGoogle Scholar
  48. 48.
    Srinivasa CV, Bharath KN (2011) Impact and hardness properties of areca fiber-epoxy reinforced composites. J Mater Environ Sci 2:351–356Google Scholar
  49. 49.
    Avinash S, Hanumantharaju HG, Vignesh M, Akash S (2014) Investigation of mechanical properties on vinylester based bio-composite with gelatin as randomly distributed filler material. Int J Res Eng Technol 3:252–258Google Scholar
  50. 50.
    Guleria A, Singha AS, Rana RK (2017) Preparation of starch based biocomposites reinforced with mercerized lignocellulosic fibers – evaluation of their thermal, morphological, mechanical and biodegradable properties. Int J Polym Anal Charact.  https://doi.org/10.1080/1023666X.2017.1345558CrossRefGoogle Scholar
  51. 51.
    Julkapli NM, Akil HM (2010) Thermal properties of kenaf-filled chitosan biocomposites. Polym-Plast Technol Eng 49:147–153CrossRefGoogle Scholar
  52. 52.
    Revati R, Majid MSA, Ridzuana MJM, Normahira M, Nasir NFM, Rahman YMN, Gibson AG (2017) Mechanical, thermal and morphological characterisation of 3D porous Pennisetum purpureum/PLA biocomposites scaffold. Mater Sci Eng C 75:752–759CrossRefGoogle Scholar
  53. 53.
    Dayo AQ, Gao B-c, Wang J, W-b L, Derradji M, Shah AH, Babar AA (2017) Natural hemp fiber reinforced polybenzoxazine composites: curing behavior, mechanical and thermal properties. Compos Sci Technol.  https://doi.org/10.1016/j.compscitech.2017.03.024CrossRefGoogle Scholar
  54. 54.
    Berthet M-A, Mayer-Laigle C, Rouau X, Gontard N, Angellier-Coussy H (2017) Sorting natural fibres: a way to better understand the role of fibre size polydispersity on the mechanical properties of biocomposites. Compos Part A.  https://doi.org/10.1016/j.compositesa.2017.01.011CrossRefGoogle Scholar
  55. 55.
    Poddar P, Islam MS, Sultana S, Nur HP, Chowdhury AMS (2016) Mechanical and thermal properties of short arecanut leaf sheath fiber reinforced polypropyline composites: TGA, DSC and SEM analysis. J Mater Sci Eng.  https://doi.org/10.4172/2169-0022.1000270
  56. 56.
    Saba N, Jawaid M, Alothman OY, Paridah MT (2016) A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Constr Build Mater 106:149–159CrossRefGoogle Scholar
  57. 57.
    Reddy MI, Reddy VS (2014) Dynamic mechanical analysis of hemp fiber reinforced polymer matrix composites. Int J Eng Res Technol 3:410–415CrossRefGoogle Scholar
  58. 58.
    Doan T-T-L, Brodowsky H, Mader E (2007) Jute fibre/polypropylene composites II. Thermal, hydrothermal and dynamic mechanical behaviour. Compos Sci Technol 67:2707–2714CrossRefGoogle Scholar
  59. 59.
    Muthuraj R, Misra M, Defersha F, Mohanty AK (2015) Influence of processing parameters on the impact strength of biocomposites: a statistical approach. Compos Part A.  https://doi.org/10.1016/j.compositesa.2015.09.003CrossRefGoogle Scholar
  60. 60.
    Rahman MM, Khan MA (2007) Surface treatment of coir (Cocos nucifera) fibers and its influence on the fibers’ physico-mechanical properties. Compos Sci Technol 67:2369–2376CrossRefGoogle Scholar
  61. 61.
    Kaushik VK, Kumar A, Kalia S (2012) Effect of mercerization and benzoyl peroxide treatment on morphology, thermal stability and crystallinity of sisal fibers. Int J Text Sci 1:101–105CrossRefGoogle Scholar
  62. 62.
    Martins IMG, Magina SP, Oliveira L, Freire CSR, Silvestre AJD, Neto CP, Gandini A (2009) New biocomposites based on thermoplastic starch and bacterial cellulose. Compos Sci Technol 69:2163–2168CrossRefGoogle Scholar
  63. 63.
    Lomelí-Ramíreza MG, Kesturb SG, Manríquez-Gonzálezc R, Iwakiria S, Bolzon de Muniza G, Flores-Sahagund TS (2014) Bio-composites of cassava starch-green coconut fiber: part II – structure and properties. Carbohydr Polym 102:576–583CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Pramendra Kumar Bajpai
    • 1
  • Furkan Ahmad
    • 1
  • Vijay Chaudhary
    • 1
    Email author
  1. 1.Division of Manufacturing Processes and Automation EngineeringNetaji Subhas Institute of Technology (University of Delhi)Dwarka, New DelhiIndia

Personalised recommendations