Advertisement

Nanobioremediation: Ecofriendly Application of Nanomaterials

  • Mohammad RizwanEmail author
  • Minhaz Uddin Ahmed
Reference work entry

Abstract

Nanoparticles (NPs) or nanomaterials (NMs) or nanostructure materials (NSMs) or nanoclusters (NCs) or nanocomposites (NCMPs) exhibit unique physical properties, chemical properties, and biochemical properties; and hence it has received much attention from scientists and researchers in different fields of sciences, engineering, and technology. Applications of NPs or NMs or NSMs or NCs or (NCMPs) have also increased in different areas of environmental sciences including bioremediation. Bioremediation provides a good cleanup strategy for some types of waste such as effluent, agriculture, and domestic waste; but as it is expected, it is not effective for all. Therefore, NPs or NMs or NSMs or NCs or NCMPs may be applied for rapid, effective, and efficient bioremediation, which will not only have less toxic effect on microorganism; it will also improve the microbial efficiency and activity for the rapid degradations of specific organic waste and to reduce the toxic and hazardous effect of heavy metals. The use of NPs or NMs or NSMs or NCs or NCMPs will be rapid, efficient, effective, and economic. In this chapter, we have summarized the major type of NPs or NMs or NSMs or NCs that have been currently used for bioremediation of waste, wastewater, and toxic materials.

Keywords

Nanoscience Nanotechnology Nanoparticles Nanomaterials Nanostructure materials Nanoclusters Nanocomposites Bioremediation Environmental sciences Waste and wastewater Heavy metals Toxic materials Nanobioremediation Microorganism Ecofriendly Economical 

Notes

Funding

This work was partly supported by Brunei Research Council [Grant# BRC-10] of Negara Brunei Darussalam

References

  1. 1.
    Rizwan M, Mohd-Naim NF, Ahmed MU (2018) Trends and advances in electrochemiluminescence nanobiosensors. Sensors 18:1–28CrossRefGoogle Scholar
  2. 2.
    Bawa R, Bawa SR, Maebius SB, Flynn T, Wei C (2005) Protecting new ideas and inventions in nanomedicine with patents. Nanomedicine 1:150–158CrossRefGoogle Scholar
  3. 3.
    Lövestam G, Rauscher H, Roebben G, Klüttgen BS, Gibson N, Putaud J-P, Stamm H (2010) Considerations on a definition of nanomaterial for regulatory purposes. Publications Office of the European Union, LuxembourgGoogle Scholar
  4. 4.
    Ramos AP, Cruz MAE, Tovani CB, Ciancaglini P (2017) Biomedical applications of nanotechnology. Biophys Rev 9:79–89CrossRefGoogle Scholar
  5. 5.
    He X, Hwang HM (2016) Nanotechnology in food science: functionality, applicability, and safety assessment. J Food Drug Anal 24:671–681CrossRefGoogle Scholar
  6. 6.
    Sharma N, Ojha H, Bharadwaj A, Pathak DP, Sharma RK (2015) Preparation and catalytic applications of nanomaterials: a review. RSC Adv 5:53381–53403CrossRefGoogle Scholar
  7. 7.
    Peng H-S, Chiu DT (2015) Soft fluorescent nanomaterials for biological and biomedical imaging. Chem Soc Rev 44:4699–4722CrossRefGoogle Scholar
  8. 8.
    Hussein AK (2015) Applications of nanotechnology in renewable energies-a comprehensive overview and understanding. Renew Sustain Energy Rev 42:460–476CrossRefGoogle Scholar
  9. 9.
    Ibrahim RK, Hayyan M, AlSaadi MA, Hayyan A, Ibrahim S (2016) Environmental application of nanotechnology: air, soil, and water. Environ Sci Pollut Res Int 23:13754–13788CrossRefGoogle Scholar
  10. 10.
    Galdames A, Mendoza A, Orueta M, de Soto García IS, Sánchez M, Virto I, Vilas JL (2017) Development of new remediation technologies for contaminated soils based on the application of zero-valent iron nanoparticles and bioremediation with compost. Resour Effic Technol 3:166–176CrossRefGoogle Scholar
  11. 11.
    Kurzydlowski KJ (2006) Physical, chemical, and mechanical properties of nanostructured materials. Mater Sci 42:85–94.  https://doi.org/10.1007/s11003-006-0060-2CrossRefGoogle Scholar
  12. 12.
    Wang EC, Wang AZ (2014) Nanoparticles and their applications in cell and molecular biology. Integr Biol (Camb) 6:9–26CrossRefGoogle Scholar
  13. 13.
    Wang J, Yin W, He X, Wang Q, Guo M, Chen S (2016) Good biocompatibility and sintering properties of zirconia nanoparticles synthesized via vapor-phase hydrolysis. Sci Rep 6:35020.  https://doi.org/10.1038/srep35020CrossRefGoogle Scholar
  14. 14.
    Anjum M, Miandad R, Waqas M, Gehany F, Barakat MA (2016) Remediation of wastewater using various nanomaterials. Arab J Chem.  https://doi.org/10.1016/j.arabjc.2016.10.004
  15. 15.
    Lees ZM, Senior E (1995) Bioremediation: a practical solution to land pollution. In: Kirkwood RC, Longley AJ (eds) Clean technology and the environment. Springer, DordrechtGoogle Scholar
  16. 16.
    Sode S, Bruhn A, Balsby TJS, Larsen MM, Gotfredsen A, Rasmussen MB (2013) Bioremediation of reject water from anaerobically digested waste water sludge with macroalgae (Ulva lactuca, Chlorophyta). Bioresour Technol 146:426–435CrossRefGoogle Scholar
  17. 17.
    Xin J, Mingchao MA, Jun LI, Anhuai LU, Zuoshen Z (2008) Bacterial diversity of active sludge in wastewater treatment plant. Earth Sci Front 15:163–168CrossRefGoogle Scholar
  18. 18.
    El-Kassas HY, Mohamed LA (2014) Bioremediation of the textile waste effluent by Chlorella vulgaris. Egypt J Aquat Res 40:301–308CrossRefGoogle Scholar
  19. 19.
    Kumar SS, Kadier A, Malyan SK, Ahmad A, Bishnoi NR (2017) Phytoremediation and rhizoremediation: uptake, mobilization and sequestration of heavy metals by plants. In: Singh D, Singh H, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Springer, SingaporeGoogle Scholar
  20. 20.
    McIntyre T (2003) Phytoremediation of heavy metals from soils. In: Tsao DT (ed) Phytoremediation. Advances in biochemical engineering/biotechnology, vol 78. Springer, Berlin/HeidelbergGoogle Scholar
  21. 21.
    Golodyaev GP, Kostenkov NM, Oznobikhin VI (2009) Bioremediation of Oil-Contaminated Soils by Composting. Eurasian Soil Sci 42:926.  https://doi.org/10.1134/S1064229309080110CrossRefGoogle Scholar
  22. 22.
    Ekperusi OA, Aigbodion FI (2015) Bioremediation of petroleum hydrocarbons from crude oilcontaminated soil with the earthworm: Hyperiodrilus africanus. 3 Biotech 5:957.  https://doi.org/10.1007/s13205-015-0298-1CrossRefGoogle Scholar
  23. 23.
    Shankar S, Kansrajh C, Dinesh MG et al (2014) Application of indigenous microbial consortia in bioremediation of oil-contaminated soils. Int J Environ Sci Technol 11:367.  https://doi.org/10.1007/s13762-013-0366-1CrossRefGoogle Scholar
  24. 24.
    Mukherjee AK, Bordoloi NK (2011) Bioremediation and reclamation of soil contaminated with petroleum oil hydrocarbons by exogenously seeded bacterial consortium: a pilot-scale study. Environ Sci Pollut Res Int 18:471–478CrossRefGoogle Scholar
  25. 25.
    Dott W, Feidieker D, Steiof M, Becker PM, Kämpfer P (1995) Comparison of ex situ and in situ techniques for bioremediation of hydrocarbon-polluted soils. Int Biodeterior Biodegradation 35:301–316CrossRefGoogle Scholar
  26. 26.
    Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32:1–18CrossRefGoogle Scholar
  27. 27.
    Kardam A, Raj K, Srivastava S (2012) Green nanotechnology for bioremediation of toxic metals from waste water. In: Khemani L, Srivastava M, Srivastava S (eds) Chemistry of phytopotentials: health, energy and environmental perspectives. Springer, Berlin/HeidelbergGoogle Scholar
  28. 28.
    Majumder DR (2012) Bioremediation: copper nanoparticles from electronic-waste. Int J Eng Sci Technol 4:4380–4389Google Scholar
  29. 29.
    Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher K, Wang C, Linehan JC, Matson DW, Penn RL, Driessen MD (2005) Characterization and properties of metallic iron nanoparticles, spectroscopy, electrochemistry, and kinetics. J Environ Sci Technol 39:1221–1230CrossRefGoogle Scholar
  30. 30.
    Quan X, Yang SG, Ruan XL, Zhao HM (2005) Preparation of titania nanotubes and their environmental applications as electrode. Environ Sci Technol 39:3770–3775CrossRefGoogle Scholar
  31. 31.
    Windt WD, Aelterman P, Verstraete W (2005) Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Environ Microbiol 7:314–325CrossRefGoogle Scholar
  32. 32.
    Shan GB, Xing JM, Zhang YH, Liu HZ (2005) Biodesulfurization of dibenzothiophene by microbial cells coated with magnetite nanoparticles. Appl Environ Microbiol 71:4497–4502CrossRefGoogle Scholar
  33. 33.
    Kim Y-H, Carraway ER (2000) Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons. Environ Sci Technol 34:2014–2017CrossRefGoogle Scholar
  34. 34.
    Mueller NC, Braun J, Bruns J, Černík M, Rissing P, Rickerby D, Nowack B (2012) Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environ Sci Pollut Res 19:550–558CrossRefGoogle Scholar
  35. 35.
    Kanel SR, Manning B, Charlete L, Choi H (2005) Removal of arsenic (III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39:1291–1298CrossRefGoogle Scholar
  36. 36.
    Kanel SR, Grenèche J-M, Choi H (2006) Arsenic (V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40:2045–2050CrossRefGoogle Scholar
  37. 37.
    Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr (VI) and Pb (II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34:2564–2569CrossRefGoogle Scholar
  38. 38.
    Schrick B, Blough JL, Jones AD, Mallouk TE (2002) Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel−iron nanoparticles. Chem Mater 14:5140–5147CrossRefGoogle Scholar
  39. 39.
    Wang C-B, Zhang W-X (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31:2154–2156CrossRefGoogle Scholar
  40. 40.
    Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT, Joo SW, Hanifehpour Y, Nejati-Koshki K, Pashaei-Asl R (2014) Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett 9:1–10CrossRefGoogle Scholar
  41. 41.
    Madaan K, Kumar S, Poonia N, Lather V, Pandita D (2014) Dendrimers in drug delivery and targeting: drug-dendrimer interactions and toxicity issues. J Pharm Bioallied Sci 6:139–150CrossRefGoogle Scholar
  42. 42.
    Hayati B, Arami M, Maleki A, Pajootan E (2015) Application of dendrimer/titania nanohybrid for the removal of phenol from contaminated wastewater. Desalin Water Treat 57:6809–6819CrossRefGoogle Scholar
  43. 43.
    Rongnan G, Xiusheng G, Demei Y, Jiajuan H (2012) Application research in water treatment of PAMAM dendrimer. Chem Ind Eng Prog 31:671–675Google Scholar
  44. 44.
    Thines RK, Mubarak NM, Nizamuddin S, Sahu JN, Abdullah EC, Ganesan P (2017) Application potential of carbon nanomaterials in water and wastewater treatment: a review. J Taiwan Inst Chem Eng 72:116–133CrossRefGoogle Scholar
  45. 45.
    Smith SC, Rodrigues DF (2015) Carbon-based nanomaterials for removal of chemical and biological contaminants from water: a review of mechanisms and applications. Carbon 91:122–143CrossRefGoogle Scholar
  46. 46.
    Bina B, Pourzamani H, Rashidi A, Amin MM (2012) Ethylbenzene removal by carbon nanotubes from aqueous solution. J Environ Public Health 2012:Article ID 817187, 8 pagesGoogle Scholar
  47. 47.
    Li Y, Liu F, Xia B, Du Q, Zhang P, Wang D, Wang Z, Xia Y (2010) Removal of copper from aqueous solution by carbon nanotube/calcium alginate composites. J Hazard Mater 177:876–880CrossRefGoogle Scholar
  48. 48.
    Kandah MI, Meunier JL (2007) Removal of nickel ions from water by multi-walled carbon nanotubes. J Hazard Mater 146:283–288CrossRefGoogle Scholar
  49. 49.
    Gong JL, Wang B, Zeng GM, Yang CP, Niu CG, Niu QY, Zhou JW, Liang Y (2009) Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. J Hazard Mater 164:1517–1522CrossRefGoogle Scholar
  50. 50.
    Qiang Y, Sharma A, Paszczynski A, Meyer D (2007) Conjugates of magnetic nanoparticle-enzyme for bioremediation. In: Proceedings of the 2007 NSTI nanotechnology conference and trade show, vol 4, pp 656–659Google Scholar
  51. 51.
    Hegedus I, Nagy E (2009) Comparison of the structure and the stability of single enzyme nanoparticles. Hung J Ind Chem Veszprem 37:123–130Google Scholar
  52. 52.
    Kim J, Jia H, Lee C-w, Chung S-w, Kwak JH, Shin Y, Dohnalkova A, Kim B-G, Wang P, Grate JW (2006) Single enzyme nanoparticles in nanoporous silica: a hierarchical approach to enzyme stabilization and immobilization. Enzyme Microb Technol 39:474–480CrossRefGoogle Scholar
  53. 53.
    Yang Z, Si S, Zhang C (2008) Magnetic single-enzyme nanoparticles with high activity and stability. Biochem Biophys Res Commun 367:169–175CrossRefGoogle Scholar
  54. 54.
    Tungittiplakorn W, Cohen C, Lion LW (2005) Engineered polymeric nanoparticles for bioremediation of hydrophobic contaminants. Environ Sci Technol 39:1354–1358CrossRefGoogle Scholar
  55. 55.
    Tungittiplakorn W, Lion LW, Cohen C, Kim J-Y (2004) Engineered polymeric nanoparticles for soil remediation. Environ Sci Technol 38:1605–1610CrossRefGoogle Scholar
  56. 56.
    Bargar JR, Bernier-Latmani R, Giammar DE, Tebo BM (2008) Biogenic uraninite nanoparticles and their importance for uranium remediation. Elements 4:407–412CrossRefGoogle Scholar
  57. 57.
    Gardea-Torresdey JL, Peralta-Videa JR, de la Rosa G, Parsons JG (2005) Phytoremediation of heavy metals and study of the metal coordination by X-ray absorption spectroscopy. Coord Chem Rev 249:1797–1810CrossRefGoogle Scholar
  58. 58.
    Mohsenzadeh F, Rad AC (2012) Bioremediation of heavy metal pollution by nano-particles of noaea mucronata. Int J Biosci Biochem Bioinformatics 2:85–89Google Scholar
  59. 59.
    Fernandes JP, Mucha AP, Francisco T, Gomes CR, Almeida CMR (2017) Silver nanoparticles uptake by salt marsh plants-implications for phytoremediation processes and effects in microbial community dynamics. Mar Pollut Bull.  https://doi.org/10.1016/j.marpolbul.2017.03.052CrossRefGoogle Scholar
  60. 60.
    Araújo R, Castro ACM, Fiúza A (2015) The use of nanoparticles in soil and water remediation processes. In: 5th international conference on advanced nano materials, materials today: proceedings, vol 2, pp 315–320CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Biosensors and Biotechnology Laboratory, Chemistry Department, Faculty of SciencesUniversiti Brunei DarussalamGadongBrunei Darussalam

Personalised recommendations