Advertisement

Radiation-Resistant Solar Cells: Recent Updates and Future Prospective

  • Khuram AliEmail author
  • Yasir Javed
Reference work entry

Abstract

The stability of a solar cell lifetime and performance in radiation harsh environments is a challenging field for today’s modern photovoltaics technology. Radiation environment, especially, charge particles (i.e., electrons or protons) presence strongly influences the performance of solar cells. Such high energy radiations are mostly used to analyze ionization/displacement damage effects in solar cells and these cannot be avoided in the space environment. Charge particle radiations can produce defects in the crystal orientation of semiconductors and the devices based on semiconductor materials. Further additional energy levels or recombination centers are introduced within the p-type or n-type materials. Ultimately, the expected performance or efficiency is disturbed in such devices or solar cells. These centers are responsible of electron-hole pairs near the mid gap. Electrons are trapped in these centers which decrease the minority carriers’ lifetime of solar cell. Ultimately electrical characteristics are changed and overall performance of solar cell is degraded. Further, different characteristics to investigate radiation effects on solar cells are discussed. Measurement of depletion layer widths can help in diagnosing radiation effects as the broadening of widths in the micrometer range occur after irradiation. Conductance method is another widely used technique to investigate the effect of density of interface centers on the efficiency of silicon solar cells. These techniques are used to measure trap time constants and to extract the density of trap centers.

Keywords

Radiations Lattice defects Solar cells Ionization Displacement Recombination centers Passivation Conductance Annealing Interface traps 

References

  1. 1.
    Hu Z, He S, Yang D (2006) Radiation effects of protons and electrons on backfield silicon solar cells. In: Protection of materials and structures from the space environment. Springer, Dordrecht (Netherland) pp 1–8Google Scholar
  2. 2.
    Srour J, Marshall CJ, Marshall PW (2003) Review of displacement damage effects in silicon devices. IEEE Trans Nucl Sci 50(3):653–670CrossRefGoogle Scholar
  3. 3.
    Summers GP et al (1993) Damage correlations in semiconductors exposed to gamma, electron and proton radiations. IEEE Trans Nucl Sci 40(6):1372–1379CrossRefGoogle Scholar
  4. 4.
    Reddy IN et al (2013) Development of SiO2 based thin film on metal foils for space application. Ceram Int 39(7):8493–8498CrossRefGoogle Scholar
  5. 5.
    Yamaguchi M (2001) Radiation-resistant solar cells for space use. Sol Energy Mater Sol Cells 68(1):31–53CrossRefGoogle Scholar
  6. 6.
    Curtin DJ, Statler RL (1975) Review of radiation damage to silicon solar cells. IEEE Trans Aerosp Electron Syst AES-11(4):499–513CrossRefGoogle Scholar
  7. 7.
    Tada H et al (1982) Solar cell radiation handbook, vol 1. Jet Propulsion Lab., California Inst. of Tech.; Pasadena, CA, (USA)Google Scholar
  8. 8.
    Evans RD, Noyau A (1955) The atomic nucleus, vol 582. McGraw-Hill, New YorkGoogle Scholar
  9. 9.
    Claeys C, Simoen E (2002) Radiation effects in advanced semiconductor materials and devices. Springer, BerlinCrossRefGoogle Scholar
  10. 10.
    Hisamatsu T et al (1999) Photoluminescence study of silicon solar cells irradiated with large fluence electrons or protons. Radiat Phys Chem 53(1):25–30CrossRefGoogle Scholar
  11. 11.
    Corbett JW (1966) Solid state physics vol 7: electron radiation damage in semiconductors and metals. Academic press, New York (USA)Google Scholar
  12. 12.
    Bourgoin JC, de Angelis N (2001) Radiation-induced defects in solar cell materials. Sol Energy Mater Sol Cells 66(1–4):467–477CrossRefGoogle Scholar
  13. 13.
    Rao A et al (2009) Effect of 8 MeV electrons on Au/n-Si Schottky diodes. Int J Pure Appl Phys 5(1):55–62Google Scholar
  14. 14.
    Nicollian EH, Brews JR (1982) MOS (metal oxide semiconductor) physics and technology, vol 1987. Wiley, New YorkGoogle Scholar
  15. 15.
    Kao W et al (2010) Effect of interface states on sub-threshold response of III–V MOSFETs, MOS HEMTs and tunnel FETs. Solid State Electron 54(12):1665–1668CrossRefGoogle Scholar
  16. 16.
    Dienes GJ (1953) Radiation effects in solids. Annu Rev Nucl Sci 2(1):187–220CrossRefGoogle Scholar
  17. 17.
    Ma TP, Dressendorfer PV (1989) Ionizing radiation effects in MOS devices and circuits. Wiley, New YorkGoogle Scholar
  18. 18.
    Spieler H (1997) Introduction to radiation-resistant semiconductor devices and circuits. In: AIP conference proceedings. IOP Institute of Physics Publishing, Argonne, Illinois (USA)Google Scholar
  19. 19.
    Lovell S (1979) An introduction to radiation dosimetry. CUP Archive, Cambridge, London (UK)Google Scholar
  20. 20.
    Billington DS, Crawford JH (1961) Radiation damage in solids. Princeton University Press, PrincetonGoogle Scholar
  21. 21.
    Wigner EP (1992) Theoretical physics in the metallurgical laboratory of Chicago. In: Weinberg A (ed) Nuclear energy. Springer, Berlin/Heidelberg, pp 452–458CrossRefGoogle Scholar
  22. 22.
    Loferski JJ, Rappaport P (1959) Displacement thresholds in semiconductors. J Appl Phys 30(8):1296–1299CrossRefGoogle Scholar
  23. 23.
    Slater JC (1951) The effects of radiation on materials. J Appl Phys 22(3):237–256CrossRefGoogle Scholar
  24. 24.
    Klein CA (1959) Radiation-induced energy levels in silicon. J Appl Phys 30(8):1222–1231CrossRefGoogle Scholar
  25. 25.
    Hill DE (1959) Electron bombardment of silicon. Phys Rev 114(6):1414CrossRefGoogle Scholar
  26. 26.
    Summers GP et al (1994) A new approach to damage prediction for solar cells exposed to different radiations. In: first world conference on photovoltaic energy conversion, 1994, conference record of the twenty fourth. IEEE photovoltaic specialists conference. IEEE, Waikoloa, HI, (USA)Google Scholar
  27. 27.
    Yamaguchi M et al (1996) Mechanism for the anomalous degradation of Si solar cells induced by high fluence 1 MeV electron irradiation. Appl Phys Lett 68(22):3141–3143CrossRefGoogle Scholar
  28. 28.
    Taylor SJ et al (1997) Type conversion in irradiated silicon diodes. Appl Phys Lett 70(16):2165–2167CrossRefGoogle Scholar
  29. 29.
    Taylor SJ et al (1997) Investigation of carrier removal in electron irradiated silicon diodes. J Appl Phys 82(7):3239–3249CrossRefGoogle Scholar
  30. 30.
    Kawasuso A et al (1995) An annealing study of defects induced by electron irradiation of Czochralski-grown Si using a positron lifetime technique. Appl Surf Sci 85:280–286CrossRefGoogle Scholar
  31. 31.
    Lalita J et al (1996) Defect evolution in MeV ion-implanted silicon. Nucl Instrum Methods Phys Res, Sect B 120(1–4):27–32CrossRefGoogle Scholar
  32. 32.
    Bourgoin JC, Corbett JW (1972) A new mechanism for interstistitial migration. Phys Lett A 38(2):135–137CrossRefGoogle Scholar
  33. 33.
    Hu Z, He S, Yang D (2004) Effect of <200 keV proton radiation on electric properties of silicon solar cells at 77 K. Nucl Instrum Methods Phys Res, Sect B 217(2):321–326CrossRefGoogle Scholar
  34. 34.
    Hu Z, He S, Yang D (2006) Radiation effects of protons and electrons on backfield silicon solar cells. In: Kleiman J (ed) Protection of materials and structures from the space environment. Springer, Dordrecht (Netherlands) pp 1–8Google Scholar
  35. 35.
    Suzuki A (1998) High-efficiency silicon space solar cells. Sol Energy Mater Sol Cells 50(1):289–303CrossRefGoogle Scholar
  36. 36.
    Hisamatsu T et al (1998) Radiation degradation of large fluence irradiated space silicon solar cells. Sol Energy Mater Sol Cells 50(1–4):331–338CrossRefGoogle Scholar
  37. 37.
    Emtsev VV et al. Frenkel pairs and impurity-defect interactions in p-type silicon irradiated with fast electrons and gamma-rays at low temperatures. In: Materials science forum. Trans Tech Publications, Reinhardstrasse, Zurich (Switzerland)CrossRefGoogle Scholar
  38. 38.
    Ziegler JF, Biersack JP, Ziegler MD (2008) SRIM, the stopping and range of ions in matter. SRIM Co, ChesterGoogle Scholar
  39. 39.
    Joachain CJ (1975) Quantum collision theory. North-Holand Publishing Co, Amsterdam (Netherland)Google Scholar
  40. 40.
    Berger MJ, Seltzer SM (1982) Stopping powers and ranges of electrons and positrons. Washington, DC, National Bureau of Standards, Springfield, VA (USA)Google Scholar
  41. 41.
    Seltzer SM, Berger MJ (1982) Procedure for calculating the radiation stopping power for electrons. Int J Appl Radiat Isotop 33(11):1219–1226CrossRefGoogle Scholar
  42. 42.
    Seltzer SM, Berger MJ (1982) Evaluation of the collision stopping power of elements and compounds for electrons and positrons. Int J Appl Radiat Isot 33(11):1189–1218CrossRefGoogle Scholar
  43. 43.
    Bethe HA, Ashkin J (1953) Passage of radiations through matter. Exp Nucl Phys 1(Part II):309Google Scholar
  44. 44.
    Heitler W (1954) The quantum theory of radiation. Courier Dover Publications, New York (USA)Google Scholar
  45. 45.
    Jelley NA (1990) Fundamentals of nuclear physics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  46. 46.
    Arya AP (1966) Fundamentals of nuclear physics. Allyn and Bacon, Boston, MA (USA)Google Scholar
  47. 47.
    Marmier P, Sheldon E (1969) Physics of nuclei and particles. Academic Press, New York (USA)Google Scholar
  48. 48.
    Lapp RE, Andrews HL (1954) Nuclear radiation physics. Prentice-Hall, New York (USA)Google Scholar
  49. 49.
    Katz L, Penfold A (1952) Range-energy relations for electrons and the determination of beta-ray end-point energies by absorption. Rev Mod Phys 24(1):28CrossRefGoogle Scholar
  50. 50.
    Srour J, Hartmann R (1989) Enhanced displacement damage effectiveness in irradiated silicon devices. IEEE Trans Nucl Sci 36(6):1825–1830CrossRefGoogle Scholar
  51. 51.
    Braäunig D, Wulf F (1994) Atomic displacement and total ionizing dose damage in semiconductors. Radiat Phys Chem 43(1):105–127CrossRefGoogle Scholar
  52. 52.
    Loferski J, Rappaport P (1958) Radiation damage in Ge and Si detected by carrier lifetime changes: damage thresholds. Phys Rev 111(2):432CrossRefGoogle Scholar
  53. 53.
    Flicker H, Loferski J, Scott-Monck J (1962) Radiation defect introduction rates in n-and p-type silicon in the vicinity of the radiation damage threshold. Phys Rev 128(6):2557CrossRefGoogle Scholar
  54. 54.
    Flicker H, Patterson W III (1966) Theoretical calculation of the direct production of Divacancies in silicon. J Appl Phys 37(13):4998–4999CrossRefGoogle Scholar
  55. 55.
    Baicker JA (1963) Recombination and trapping in normal and electron-irradiated silicon. Phys Rev 129(3):1174CrossRefGoogle Scholar
  56. 56.
    Shockley W (1949) The theory of p-n junctions in semiconductors and p-n junction transistors. Bell Syst Tech J 28(3):435–489CrossRefGoogle Scholar
  57. 57.
    Shockley W (1950) Electrons and holes in semiconductors: with applications to transistor electronics. Toronto, ON (Canada)Google Scholar
  58. 58.
    Sah R-Y, Noyce RN, Shockley W (1957) Carrier generation and recombination in pn junctions and pn junction characteristics. Proc IRE 45(9):1228–1243CrossRefGoogle Scholar
  59. 59.
    Moll J (1958) The evolution of the theory for the voltage-current characteristic of pn junctions. Proc IRE 46(6):1076–1082CrossRefGoogle Scholar
  60. 60.
    Sze SM, Ng KK (2006) Physics of semiconductor devices. John Wiley & Sons, Inc, New Jersey (USA)CrossRefGoogle Scholar
  61. 61.
    Hussain I et al (2012) Interface trap characterization and electrical properties of Au-ZnO nanorod Schottky diodes by conductance and capacitance methods. J Appl Phys 112(6):064506CrossRefGoogle Scholar
  62. 62.
    Schroder DK (2006) Semiconductor material and device characterization. John Wiley & Sons, Inc., Hoboken, New Jersey (USA)CrossRefGoogle Scholar
  63. 63.
    Cakar M et al (2007) The conductance and capacitance–frequency characteristics of Au/pyronine-B/p-type Si/Al contacts. Appl Surf Sci 253(7):3464–3468CrossRefGoogle Scholar
  64. 64.
    Bouzidi K, Chegaar M, Bouhemadou A (2007) Solar cells parameters evaluation considering the series and shunt resistance. Sol Energy Mater Sol Cells 91(18):1647–1651CrossRefGoogle Scholar
  65. 65.
    Luque A, Cuevas A, Eguren J (1978) Solar cell behaviour under variable surface recombination velocity and proposal of a novel structure. Solid State Electron 21(5):793–794CrossRefGoogle Scholar
  66. 66.
    Tucci M, de Cesare G (2004) 17% efficiency heterostructure solar cell based on p-type crystalline silicon. J Non-Cryst Solids 338–340:663–667CrossRefGoogle Scholar
  67. 67.
    Plekhanov PS, Negoita MD, Tan TY (2001) Effect of Al-induced gettering and back surface field on the efficiency of Si solar cells. J Appl Phys 90(10):5388–5394CrossRefGoogle Scholar
  68. 68.
    Koval T, Wohlgemuth J, Kinsey B (1996) Dependence of cell performance on wafer thickness for bsf and non-bsf cells. In: Photovoltaic specialists conference, 1996, conference record of the twenty fifth IEEE, IEEE Washington, DC (USA)Google Scholar
  69. 69.
    Ali K, Khan SA, Mat Jafri MZ (2014) Enhancement of silicon solar cell efficiency by using back surface field in comparison of different antireflective coatings. Sol Energy 101:1–7CrossRefGoogle Scholar
  70. 70.
    Hovel HJ, De Souza JP, Marshall ED (2010) Comparison of back interface structure alternatives using two sided optical excitation. In: Photovoltaic specialists conference (PVSC), 2010 35th IEEE, Honolulu, (Hawaii)Google Scholar
  71. 71.
    Kolsi S et al (2012) Effect of Gaussian doping on the performance of a n[sup + ]-p thin film polycrystalline solar cell under illumination. J Renew Sustain Energy 4(2):023118–023112CrossRefGoogle Scholar
  72. 72.
    Selvakumar CR, Roulston DJ, Jain SC, Tsao J (1988) Effective recombination velocity of low–high junctions. Solid State Electron 8:1346–1348CrossRefGoogle Scholar
  73. 73.
    Narasimha S, Rohatgi A, Weeber AW (1999) An optimized rapid aluminum back surface field technique for silicon solar cells. IEEE Trans Electron Devices 46(7):1363–1370CrossRefGoogle Scholar
  74. 74.
    Fossum JG (1977) Physical operation of back-surface-field silicon solar cells. IEEE Trans Electron Devices 24(4):322–325CrossRefGoogle Scholar
  75. 75.
    Slade AM, Honsberg CB, Wenham SR (2001) Impact and options for boron diffusions in buried contact solar cells. Sol Energy Mater Sol Cells 66(1–4):11–15CrossRefGoogle Scholar
  76. 76.
    Doshi P et al (1997) Characterization and application of rapid thermal oxide surface passivation for the highest efficiency RTP silicon solar cells. In: Photovoltaic specialists conference, 1997, conference record of the twenty-sixth IEEE. IEEE, Anaheim, CA (USA)Google Scholar
  77. 77.
    Girisch R, Mertens RP, Van Overstraeten R (1986) Experimental and theoretical evaluation of boron diffused high-low junctions for BSF solar cells. Solid State Electron 29(6):667–676CrossRefGoogle Scholar
  78. 78.
    Lolgen P et al (1993) Aluminium back-surface field doping profiles with surface recombination velocities below 200 cm/s. In: Photovoltaic specialists conference, 1993, conference record of the twenty third IEEE. IEEE, Louisville, KY (USA)Google Scholar
  79. 79.
    Bemski G (1959) Paramagnetic resonance in electron irradiated silicon. J Appl Phys 30(8):1195–1198CrossRefGoogle Scholar
  80. 80.
    Watkins G, Corbett J, Walker R (1959) Spin resonance in electron irradiated silicon. J Appl Phys 30(8):1198–1203CrossRefGoogle Scholar
  81. 81.
    Watkins G, Corbett J (1961) Defects in irradiated silicon. I. Electron spin resonance of the Si-A center. Phys Rev 121(4):1001CrossRefGoogle Scholar
  82. 82.
    Corbett J et al (1961) Defects in irradiated silicon. II. Infrared absorption of the Si-A center. Phys Rev 121(4):1015CrossRefGoogle Scholar
  83. 83.
    Watkins G, Corbett J (1964) Defects in irradiated silicon: electron paramagnetic resonance and electron-nuclear double resonance of the Si-E center. Phys Rev 134(5A):A1359CrossRefGoogle Scholar
  84. 84.
    Wertheim G (1957) Energy levels in electron-bombarded silicon. Phys Rev 105(6):1730CrossRefGoogle Scholar
  85. 85.
    Wertheim G (1958) Electron-bombardment damage in silicon. Phys Rev 110(6):1272CrossRefGoogle Scholar
  86. 86.
    Hirata M et al (1967) Effect of impurities on the annealing behavior of irradiated silicon. J Appl Phys 38(6):2433–2438CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Nano-optoelectronics Research Laboratory, Department of PhysicsUniversity of Agriculture FaisalabadFaisalabadPakistan

Personalised recommendations