Advertisement

TiO2/SiO2 Films for Removal of Volatile Organic Compounds (VOCs) from Indoor Air

  • Nataša Novak Tušar
  • Andraž Šuligoj
  • Urška Lavrenčič ŠtangarEmail author
Reference work entry

Abstract

Volatile organic compounds (VOCs) are the major pollutants in indoor air, which significantly impact indoor air quality and thus influence human health. A long-term exposure to VOCs will be detrimental to human health causing sick building syndrome (SBS). Photocatalytic decomposition of VOCs using TiO2 as a photocatalyst is a key technology for air cleaning devices because it can totally convert most VOC pollutants at low concentrations to harmless inorganic products at ambient temperature. UVA light required in the air cleaning device is nowadays a very cheap light source. A common approach to enhance the photocatalytic activity of TiO2 is also to increase its surface area (100–200 m2/g to 400–1000 m2/g). This can be achieved by immobilization of TiO2 on the porous supports such as porous silica and the preparation of such a catalyst in the form of a thin layer using an appropriate carrier. Porous silica is superior support for accommodating photocatalyst nanoparticles because it is chemically inert, possesses high surface area, is transparent to UV radiation, has great physical stability, and has hydrophobic character.

An overview of the design and development of TiO2/SiO2 composite photocatalyst in the form of films with superior activity for removal of VOCs from the polluted air is presented.

References

  1. 1.
    Alvaro M, Aprile C, Benitez M et al (2006) Photocatalytic activity of structured mesoporous TiO2 materials. J Phys Chem B 110:6661–6665.  https://doi.org/10.1021/jp0573240CrossRefGoogle Scholar
  2. 2.
    Bloh JZ, Dillert R, Bahnemann DW (2012) Designing optimal metal-doped photocatalysts: correlation between photocatalytic activity, doping ratio, and particle size. J Phys Chem C 116: 25558–25562.  https://doi.org/10.1021/jp307313zCrossRefGoogle Scholar
  3. 3.
    Chang J, Waclawik ER (2014) Colloidal semiconductor nanocrystals: controlled synthesis and surface chemistry in organic media. RSC Adv 4:23505.  https://doi.org/10.1039/c4ra02684eCrossRefGoogle Scholar
  4. 4.
    Chen W, Zhang JS, Zhang Z (2005) Performance of air cleaners for removing multiple volatile organic compounds in indoor air. ASHRAE Trans 111:1101–1114.  https://doi.org/10.1039/978-1-84755-231-0CrossRefGoogle Scholar
  5. 5.
    Childs LP, Ollis DF (1980) Is photocatalysis catalytic? J Catal 66:383–390.  https://doi.org/10.1016/0021-9517(80)90041-XCrossRefGoogle Scholar
  6. 6.
    Černigoj U, Kete M, Lavrenčič Štangar U (2010) Development of a fluorescence-based method for evaluation of self-cleaning properties of photocatalytic layers. Catal Today 151:46–52.  https://doi.org/10.1016/j.cattod.2010.03.043CrossRefGoogle Scholar
  7. 7.
    Černigoj U, Štangar UL, Trebše P et al (2006) Photocatalytically active TiO2 thin films produced by surfactant-assisted sol–gel processing. Thin Solid Films 495:327–332.  https://doi.org/10.1016/j.tsf.2005.08.240CrossRefGoogle Scholar
  8. 8.
    Černigoj U, Štangar UL, Trebše P et al (2007) Degradation of neonicotinoid insecticides by different advanced oxidation processes and studying the effect of ozone on TiO2 photocatalysis. Appl Catal B Environ 75:229–238.  https://doi.org/10.1016/j.apcatb.2007.04.014CrossRefGoogle Scholar
  9. 9.
    Gao X, Wachs IE (1999) Titania–silica as catalysts: molecular structural characteristics and physico-chemical properties. Catal Today 51:233–254.  https://doi.org/10.1016/S0920-5861(99)00048-6CrossRefGoogle Scholar
  10. 10.
    Inturi SNR, Boningari T, Suidan M, Smirniotis PG (2014) Visible-light-induced photodegradation of gas phase acetonitrile using aerosol-made transition metal (V, Cr, Fe, Co, Mn, Mo, Ni, Cu, Y, Ce, and Zr) doped TiO2. Appl Catal B Environ 144:333–342.  https://doi.org/10.1016/j.apcatb.2013.07.032CrossRefGoogle Scholar
  11. 11.
    Kete M, Pliekhova O, Matoh L, Štangar UL (2017) Design and evaluation of a compact photocatalytic reactor for water treatment. Environ Sci Pollut Res 1–15.  https://doi.org/10.1007/s11356-017-9895-3CrossRefGoogle Scholar
  12. 12.
    Kozuch S, Martin JML (2012) “Turning over” definitions in catalytic cycles. ACS Catal 2: 2787–2794.  https://doi.org/10.1021/cs3005264CrossRefGoogle Scholar
  13. 13.
    Kumar S, Ojha K, Ganguli AK (2017) Interfacial charge transfer in photoelectrochemical processes. Adv Mater Interfaces 4:1600981CrossRefGoogle Scholar
  14. 14.
    Kuwahara Y, Yamashita H (2011) Efficient photocatalytic degradation of organics diluted in water and air using TiO2 designed with zeolites and mesoporous silica materials. J Mater Chem 21:2407–2416.  https://doi.org/10.1039/C0JM02741CCrossRefGoogle Scholar
  15. 15.
    Liao Y, Xie C, Liu Y et al (2012) Comparison on photocatalytic degradation of gaseous formaldehyde by TiO2, ZnO and their composite. Ceram Int 38:4437–4444.  https://doi.org/10.1016/j.ceramint.2012.03.016CrossRefGoogle Scholar
  16. 16.
    Liu G, Wang T, Zhou W et al (2015a) Crystal-facet-dependent hot-electron transfer in plasmonic-Au/semiconductor heterostructures for efficient solar photocatalysis. J Mater Chem C 3:7538–7542.  https://doi.org/10.1039/C5TC01406ACrossRefGoogle Scholar
  17. 17.
    Liu S, Tang Z-R, Sun Y et al (2015b) One-dimension-based spatially ordered architectures for solar energy conversion. Chem Soc Rev 44:5053–5075.  https://doi.org/10.1039/C4CS00408FCrossRefGoogle Scholar
  18. 18.
    Liu Z, Zhang X, Murakami T, Fujishima A (2008) Sol–gel SiO2/TiO2 bilayer films with self-cleaning and antireflection properties. Sol Energy Mater Sol Cells 92:1434–1438.  https://doi.org/10.1016/j.solmat.2008.06.005CrossRefGoogle Scholar
  19. 19.
    López-Muñoz M-J, van Grieken R, Aguado J, Marugán J (2005) Role of the support on the activity of silica-supported TiO2 photocatalysts: structure of the TiO2/SBA-15 photocatalysts. Catal Today 101:307–314.  https://doi.org/10.1016/j.cattod.2005.03.017CrossRefGoogle Scholar
  20. 20.
    Marschall R (2014) Semiconductor composites: strategies for enhancing charge carrier separation to improve photocatalytic activity. Adv Funct Mater 24:2421–2440.  https://doi.org/10.1002/adfm.201303214CrossRefGoogle Scholar
  21. 21.
    Marschall R, Wang L (2014) Non-metal doping of transition metal oxides for visible-light photocatalysis. Catal Today 225:111–135.  https://doi.org/10.1016/j.cattod.2013.10.088CrossRefGoogle Scholar
  22. 22.
    Maučec D, Šuligoj A, Ristić A et al (2017) Titania versus zinc oxide nanoparticles on mesoporous silica supports as photocatalysts for removal of dyes from wastewater at neutral pH. Catal Today.  https://doi.org/10.1016/j.cattod.2017.05.061CrossRefGoogle Scholar
  23. 23.
    Novak Tušar N, Jank S, Gläser R (2011) Manganese-containing porous silicates: synthesis, structural properties and catalytic applications. ChemCatChem 3:254–269.  https://doi.org/10.1002/cctc.201000311CrossRefGoogle Scholar
  24. 24.
    Novotná P, Zita J, Krýsa J et al (2008) Two-component transparent TiO2/SiO2 and TiO2/PDMS films as efficient photocatalysts for environmental cleaning. Appl Catal B Environ 79:179–185.  https://doi.org/10.1016/j.apcatb.2007.10.012CrossRefGoogle Scholar
  25. 25.
    Obee TN, Brown RT (1995) TiO2 Photocatalysis for indoor air applications: effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene. Environ Sci Technol 29:1223–1231.  https://doi.org/10.1021/es00005a013CrossRefGoogle Scholar
  26. 26.
    Pan X, Yang M-Q, Fu X et al (2013) Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nanoscale 5:3601.  https://doi.org/10.1039/c3nr00476gCrossRefGoogle Scholar
  27. 27.
    Perathoner S, Lanzafame P, Passalacqua R et al (2006) Use of mesoporous SBA-15 for nanostructuring titania for photocatalytic applications. Microporous Mesoporous Mater 90: 347–361.  https://doi.org/10.1016/j.micromeso.2005.10.024CrossRefGoogle Scholar
  28. 28.
    Qian X, Fuku K, Kuwahara Y et al (2014) Design and functionalization of photocatalytic systems within mesoporous silica. ChemSusChem 7:1528–1536.  https://doi.org/10.1002/cssc.201400111CrossRefGoogle Scholar
  29. 29.
    Rodrigues S, Ranjit KT, Uma S et al (2005) Single-step synthesis of a highly active visible-light photocatalyst for oxidation of a common indoor air pollutant: acetaldehyde. Adv Mater 17: 2467–2471.  https://doi.org/10.1002/adma.200402064CrossRefGoogle Scholar
  30. 30.
    Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chemie Int Ed 50:2904–2939CrossRefGoogle Scholar
  31. 31.
    Su J, Zou X, Chen J-S (2014) Self-modification of titanium dioxide materials by Ti 3+ and/or oxygen vacancies: new insights into defect chemistry of metal oxides. RSC Adv 4: 13979–13988.  https://doi.org/10.1039/C3RA47757FCrossRefGoogle Scholar
  32. 32.
    Šuligoj A, Lavrenčič Štangar U, Novak Tušar N (2014) Photocatalytic air-cleaning using TiO2 nanoparticles in porous silica substrate. Chem Pap 68:1265–1272.  https://doi.org/10.2478/s11696-014-0553-7CrossRefGoogle Scholar
  33. 33.
    Šuligoj A, Štangar UL, Ristić A et al (2016) TiO2–SiO2 films from organic-free colloidal TiO2 anatase nanoparticles as photocatalyst for removal of volatile organic compounds from indoor air. Appl Catal B Environ 184:119–131.  https://doi.org/10.1016/j.apcatb.2015.11.007CrossRefGoogle Scholar
  34. 34.
    Tasbihi M, Călin I, Šuligoj A et al (2017) Photocatalytic degradation of gaseous toluene by using TiO2 nanoparticles immobilized on fiberglass cloth. J Photochem Photobiol A Chem 336:89–97.  https://doi.org/10.1016/j.jphotochem.2016.12.025CrossRefGoogle Scholar
  35. 35.
    Tasbihi M, Kete M, Raichur AM et al (2012) Photocatalytic degradation of gaseous toluene by using immobilized titania/silica on aluminum sheets. Environ Sci Pollut Res 19:3735–3742.  https://doi.org/10.1007/s11356-012-0864-6CrossRefGoogle Scholar
  36. 36.
    Tasbihi M, Lavrenčič Štangar U, Černigoj U et al (2011) Photocatalytic oxidation of gaseous toluene on titania/mesoporous silica powders in a fluidized-bed reactor. Catal Today 161: 181–188.  https://doi.org/10.1016/j.cattod.2010.08.015CrossRefGoogle Scholar
  37. 37.
    Tasbihi M, Lavrenčič Štangar U, Škapin AS et al (2010) Titania-containing mesoporous silica powders: structural properties and photocatalytic activity towards isopropanol degradation. J Photochem Photobiol A Chem 216:167–178.  https://doi.org/10.1016/j.jphotochem.2010.07.011CrossRefGoogle Scholar
  38. 38.
    Tasbihi M, Štangar UL, Černigoj U, Kogej K (2009) Low-temperature synthesis and characterization of anatase TiO2 powders from inorganic precursors. Photochem Photobiol Sci 8:719.  https://doi.org/10.1039/b817472eCrossRefGoogle Scholar
  39. 39.
    Tuel A, Hubert-Pfalzgraf LGG (2003) Nanometric monodispersed titanium oxide particles on mesoporous silica: synthesis, characterization, and catalytic activity in oxidation reactions in the liquid phase. J Catal 217:343–353.  https://doi.org/10.1016/S0021-9517(03)00078-2CrossRefGoogle Scholar
  40. 40.
    van Grieken R, Aguado J, López-Muñoz MJ, Marugán J (2002) Synthesis of size-controlled silica-supported TiO2 photocatalysts. J Photochem Photobiol A Chem 148: 315–322.  https://doi.org/10.1016/S1010-6030(02)00058-8CrossRefGoogle Scholar
  41. 41.
    Wang S, Ang HM, Tade MO (2007) Volatile organic compounds in indoor environment and photocatalytic oxidation: state of the art. Environ Int 33:694–705.  https://doi.org/10.1016/j.envint.2007.02.011CrossRefGoogle Scholar
  42. 42.
    Wang X, Li F, Hao Y et al (2013) TiO2/SBA-15 composites prepared using H2TiO3 by hydrothermal method and its photocatalytic activity. Mater Lett 99:38–41.  https://doi.org/10.1016/j.matlet.2013.02.060CrossRefGoogle Scholar
  43. 43.
    Yan W, Chen B, Mahurin SM et al (2004) Surface sol−gel modification of mesoporous silica materials with TiO2 for the assembly of ultrasmall gold nanoparticles. J Phys Chem B 108: 2793–2796.  https://doi.org/10.1021/jp037713zCrossRefGoogle Scholar
  44. 44.
    Yang HG, Sun CH, Qiao SZ et al (2008) Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453:638–641.  https://doi.org/10.1038/nature06964CrossRefGoogle Scholar
  45. 45.
    Yang M-Q, Zhang N, Pagliaro M, Xu Y-J (2014) Artificial photosynthesis over graphene-semiconductor composites. Are we getting better? Chem Soc Rev 43:8240–8254.  https://doi.org/10.1039/C4CS00213JCrossRefGoogle Scholar
  46. 46.
    Zhang N, Yang M-Q, Liu S et al (2015) Waltzing with the versatile platform of graphene to synthesize composite photocatalysts. Chem Rev 115:10307–10377.  https://doi.org/10.1021/acs.chemrev.5b00267CrossRefGoogle Scholar
  47. 47.
    Zhang N, Zhang Y, Xu Y-J (2012) Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale 4:5792.  https://doi.org/10.1039/c2nr31480kCrossRefGoogle Scholar
  48. 48.
    Zhang Y, Tang Z-R, Fu X, Xu Y-J (2010) TiO2 −graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2 −graphene truly different from other TiO 2 −carbon composite materials? ACS Nano 4:7303–7314.  https://doi.org/10.1021/nn1024219CrossRefGoogle Scholar
  49. 49.
    Zhang Y, Xiong G, Yao N et al (2001) Preparation of titania-based catalysts for formaldehyde photocatalytic oxidation from TiCl4 by the sol–gel method. Catal Today 68: 89–95.  https://doi.org/10.1016/S0920-5861(01)00295-4CrossRefGoogle Scholar
  50. 50.
    Zhao D, Feng J, Huo Q et al (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552.  https://doi.org/10.1126/science.279.5350.548CrossRefGoogle Scholar
  51. 51.
    Zwilling V, Darque-Ceretti E, Boutry-Forveille A et al (1999) Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf Interface Anal 27:629–637.  https://doi.org/10.1016/0022-5088(77)90043-1CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nataša Novak Tušar
    • 1
    • 2
  • Andraž Šuligoj
    • 1
    • 3
  • Urška Lavrenčič Štangar
    • 3
    • 2
    Email author
  1. 1.National Institute of ChemistryLjubljanaSlovenia
  2. 2.University of Nova GoricaNova GoricaSlovenia
  3. 3.Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations