Advertisement

Carbon Nanotube-Based Biodegradable Polymeric Nanocomposites: 3Rs (Reduce, Reuse, and Recycle) in the Design

  • Yit Thai OngEmail author
  • Soon Huat Tan
Reference work entry

Abstract

The incorporation of carbon nanotubes (CNTs) into a biodegradable polymeric matrix has been intensively studied in the development of polymeric nanocomposites for the past few decades. Notably, improvements in the physical and chemical properties of the biodegradable polymer matrix have been reported due to the presence of CNTs. However, the use of CNTs has raised concerns related to their potential hazardous effect toward the environment and health. Thus, the implementation of the 3R (reduce, reuse, and recycle) concept in designing CNT-based biodegradable polymer nanocomposites provides a solution to reduce the potential hazards arising from the incorporation of CNTs. Improvement in the physical and chemical properties could extend the lifespan of the CNT-based biodegradable polymer nanocomposites. Furthermore, 3Rs also promote reusability because the CNTs incorporated in the biodegradable polymer nanocomposite can be extracted and recycled for the fabrication of new nanocomposite membranes. The implementation of the 3R concept into biodegradable polymer nanocomposites would certainly reduce the waste of CNTs into the environment at the end of their lifecycle, thus conforming to Green Chemistry and Green Engineering principles.

Notes

Acknowledgment

The authors acknowledge the financial support from the Universiti Tunku Abdul Rahman Research Fund (UTARRF) (account no: UTARRF/2017-C1/O03) and the Fundamental Research Grant Scheme (FRGS) (account no: 6071295).

References

  1. 1.
    Niaounakis M (2015) Definitions of terms and types of biopolymers. In: Biopolymers: applications and trends. William Andrew Publishing, Oxford, pp 1–90.  https://doi.org/10.1016/B978-0-323-35399-1.00001-6CrossRefGoogle Scholar
  2. 2.
    Bari SS, Chatterjee A, Mishra S (2016) Biodegradable polymer nanocomposites: an overview. Polym Rev 56(2):287–328.  https://doi.org/10.1080/15583724.2015.1118123CrossRefGoogle Scholar
  3. 3.
    Vroman I, Tighzert L (2009) Biodegradable polymers. Materials 2(2):307–344.  https://doi.org/10.3390/ma2020307CrossRefGoogle Scholar
  4. 4.
    Chen YJ (2014) Bioplastics and their role in achieving global sustainability. J Chem Pharm Res 6(1):226–231Google Scholar
  5. 5.
    Guilbert S, Feuilloley P, Bewa H, Bellon-maurel V (2005) 19 – Biodegradable polymers in agricultural applications. In: Smith R (ed) Biodegradable polymers for industrial applications. Woodhead Publishing, pp 494–516.  https://doi.org/10.1533/9781845690762.4.494CrossRefGoogle Scholar
  6. 6.
    Van De Velde K, Kiekens P (2002) Biopolymers: overview of several properties and consequences on their applications. Polym Test 21(4):433–442.  https://doi.org/10.1016/s0142-9418(01)00107-6CrossRefGoogle Scholar
  7. 7.
    Ulery BD, Nair LS, Laurencin CT (2011) Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys 49(12):832–864.  https://doi.org/10.1002/polb.22259CrossRefGoogle Scholar
  8. 8.
    Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol 18(2):84–95.  https://doi.org/10.1016/j.tifs.2006.09.004CrossRefGoogle Scholar
  9. 9.
    Monthioux M, Serp P, Flahaut E, Razafinimanana M, Laurent C, Peigney A, Bacsa W, Broto J-M (2007) Introduction to carbon nanotubes. In: Bhushan B (ed) Springer handbook of nanotechnology. Springer Berlin Heidelberg, Berlin/Heidelberg, pp 43–112.  https://doi.org/10.1007/978-3-540-29857-1_3CrossRefGoogle Scholar
  10. 10.
    Liew KM, Kai MF, Zhang LW (2016) Carbon nanotube reinforced cementitious composites: an overview. Composites Part A: Part 1 91:301–323.  https://doi.org/10.1016/j.compositesa.2016.10.020CrossRefGoogle Scholar
  11. 11.
    Ando Y, Zhao X, Shimoyama H, Sakai G, Kaneto K (1999) Physical properties of multiwalled carbon nanotubes. Int J Inorg Mater 1(1):77–82CrossRefGoogle Scholar
  12. 12.
    Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tománek D, Fischer JE, Smalley RE (1996) Crystalline ropes of metallic carbon nanotubes. Science 273(5274):483–487CrossRefGoogle Scholar
  13. 13.
    Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16):5194–5205CrossRefGoogle Scholar
  14. 14.
    Kumari L, Zhang T, GH D, Li WZ, Wang QW, Datye A, KH W (2009) Synthesis, microstructure and electrical conductivity of carbon nanotube–alumina nanocomposites. Ceram Int 35(5):1775–1781.  https://doi.org/10.1016/j.ceramint.2008.10.005CrossRefGoogle Scholar
  15. 15.
    Amirian M, Nabipour Chakoli A, Cai W, Sui J (2013) Effect of functionalized multiwalled carbon nanotubes on thermal stability of poly (L-LACTIDE) biodegradable polymer. Scientia Iranica 20(3):1023–1027.  https://doi.org/10.1016/j.scient.2013.05.019CrossRefGoogle Scholar
  16. 16.
    Sinha Ray S (2013) 5 – Environmentally friendly polymer nanocomposites using polymer matrices from renewable sources. In: Environmentally friendly polymer nanocomposites. Woodhead Publishing, pp 89–156.  https://doi.org/10.1533/9780857097828.1.89CrossRefGoogle Scholar
  17. 17.
    HY Y, Qin ZY, Sun B, Yang XG, Yao JM (2014) Reinforcement of transparent poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by incorporation of functionalized carbon nanotubes as a novel bionanocomposite for food packaging. Compos Sci Technol 94:96–104.  https://doi.org/10.1016/j.compscitech.2014.01.018CrossRefGoogle Scholar
  18. 18.
    Ma X, Yu J, Wang N (2008) Glycerol plasticized-starch/multiwall carbon nanotube composites for electroactive polymers. Compos Sci Technol 68(1):268–273.  https://doi.org/10.1016/j.compscitech.2007.03.016CrossRefGoogle Scholar
  19. 19.
    Cheng YK, Yeang QW, Mohamed AR, Tan SH (2014) Study on the reusability of multiwalled carbon nanotubes in biodegradable chitosan nanocomposites. Polym-Plast Technol Eng 53(12):1236–1250.  https://doi.org/10.1080/03602559.2014.891237CrossRefGoogle Scholar
  20. 20.
    Ong YT, Ahmad AL, Zein SHS, Sudesh K, Tan SH (2011) Poly(3-hydroxybutyrate)-functionalised multi-walled carbon nanotubes/chitosan green nanocomposite membranes and their application in pervaporation. Sep Purif Technol 76(3):419–427CrossRefGoogle Scholar
  21. 21.
    Wu D, Wu L, Zhang M, Zhao Y (2008) Viscoelasticity and thermal stability of polylactide composites with various functionalized carbon nanotubes. Polym Degrad Stab 93(8):1577–1584.  https://doi.org/10.1016/j.polymdegradstab.2008.05.001CrossRefGoogle Scholar
  22. 22.
    Xu JZ, Chen T, Yang CL, Li ZM, Mao YM, Zeng BQ, Hsiao BS (2010) Isothermal crystallization of poly(l-lactide) induced by graphene nanosheets and carbon nanotubes: a comparative study. Macromolecules 43(11):5000–5008.  https://doi.org/10.1021/ma100304nCrossRefGoogle Scholar
  23. 23.
    Yoon JT, Lee SC, Jeong YG (2010) Effects of grafted chain length on mechanical and electrical properties of nanocomposites containing polylactide-grafted carbon nanotubes. Compos Sci Technol 70(5):776–782.  https://doi.org/10.1016/j.compscitech.2010.01.011CrossRefGoogle Scholar
  24. 24.
    Famá L, Rojo PG, Bernal C, Goyanes S (2012) Biodegradable starch based nanocomposites with low water vapor permeability and high storage modulus. Carbohydr Polym 87(3):1989–1993.  https://doi.org/10.1016/j.carbpol.2011.10.007CrossRefGoogle Scholar
  25. 25.
    Chen J, Loo LS, Wang K (2011) Enhanced mechanical properties of novel chitosan nanocomposite fibers. Carbohydr Polym 86(3):1151–1156.  https://doi.org/10.1016/j.carbpol.2011.06.013CrossRefGoogle Scholar
  26. 26.
    Saeed K, Park S-Y, Lee H-J, Baek J-B, Huh W-S (2006) Preparation of electrospun nanofibers of carbon nanotube/polycaprolactone nanocomposite. Polymer 47(23):8019–8025.  https://doi.org/10.1016/j.polymer.2006.09.012CrossRefGoogle Scholar
  27. 27.
    Barrau S, Vanmansart C, Moreau M, Addad A, Stoclet G, Lefebvre JM, Seguela R (2011) Crystallization behavior of carbon nanotube-polylactide nanocomposites. Macromolecules 44(16):6496–6502.  https://doi.org/10.1021/ma200842nCrossRefGoogle Scholar
  28. 28.
    Wu D, Wu L, Zhou W, Zhang M, Yang T (2010) Crystallization and biodegradation of polylactide/carbon nanotube composites. Polym Eng Sci 50(9):1721–1733.  https://doi.org/10.1002/pen.21695CrossRefGoogle Scholar
  29. 29.
    Kobashi K, Villmow T, Andres T, Pötschke P (2008) Liquid sensing of melt-processed poly(lactic acid)/multi-walled carbon nanotube composite films. Sensors Actuators B Chem 134(2):787–795.  https://doi.org/10.1016/j.snb.2008.06.035CrossRefGoogle Scholar
  30. 30.
    Kuan CF, Chen CH, Kuan HC, Lin KC, Chiang CL, Peng HC (2008) Multi-walled carbon nanotube reinforced poly (l-lactic acid) nanocomposites enhanced by water-crosslinking reaction. J Phys Chem Solids 69(5–6):1399–1402.  https://doi.org/10.1016/j.jpcs.2007.10.061CrossRefGoogle Scholar
  31. 31.
    Dinesh B, Bianco A, Ménard-Moyon C (2016) Designing multimodal carbon nanotubes by covalent multi-functionalization. Nanoscale 8(44):18596–18611.  https://doi.org/10.1039/c6nr06728jCrossRefGoogle Scholar
  32. 32.
    Mallakpour S, Soltanian S (2016) Surface functionalization of carbon nanotubes: fabrication and applications. RSC Adv 6(111):109916–109935.  https://doi.org/10.1039/c6ra24522fCrossRefGoogle Scholar
  33. 33.
    Ali FB, Mohan R (2010) Thermal, mechanical, and rheological properties of biodegradable polybutylene succinate/carbon nanotubes nanocomposites. Polym Compos 31(8):1309–1314.  https://doi.org/10.1002/pc.20913CrossRefGoogle Scholar
  34. 34.
    Villmow T, Pötschke P, Pegel S, Häussler L, Kretzschmar B (2008) Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly(lactic acid) matrix. Polymer 49(16):3500–3509.  https://doi.org/10.1016/j.polymer.2008.06.010CrossRefGoogle Scholar
  35. 35.
    Qi H, Schulz B, Vad T, Liu J, Mäder E, Seide G, Gries T (2015) Novel carbon nanotube/cellulose composite fibers as multifunctional materials. ACS Appl Mater Interfaces 7(40):22404–22412.  https://doi.org/10.1021/acsami.5b06229CrossRefGoogle Scholar
  36. 36.
    Kim H-S, Chae YS, Park BH, Yoon J-S, Kang M, Jin H-J (2008) Thermal and electrical conductivity of poly(l-lactide)/multiwalled carbon nanotube nanocomposites. Curr Appl Phys 8(6):803–806.  https://doi.org/10.1016/j.cap.2007.04.032CrossRefGoogle Scholar
  37. 37.
    Memon MA (2010) Integrated solid waste management based on the 3R approach. J Mater Cycles Waste Manage 12(1):30–40.  https://doi.org/10.1007/s10163-009-0274-0CrossRefGoogle Scholar
  38. 38.
    Yano J, Sakai SI (2016) Waste prevention indicators and their implications from a life cycle perspective: a review. J Mater Cycles Waste Manage 18(1):38–56.  https://doi.org/10.1007/s10163-015-0406-7CrossRefGoogle Scholar
  39. 39.
    Srinivas H (2015) Understanding the 3R concept. https://www.gdrc.org/uem/waste/3r-understanding.html. Accessed June 2017
  40. 40.
    Takiguchi H, Takemoto K (2008) Japanese 3R policies based on material flow analysis. J Ind Ecol 12(5–6):792–798.  https://doi.org/10.1111/j.1530-9290.2008.00093.xCrossRefGoogle Scholar
  41. 41.
    Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM (2010) Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym Degrad Stab 95(11):2126–2146.  https://doi.org/10.1016/j.polymdegradstab.2010.06.007CrossRefGoogle Scholar
  42. 42.
    Ashby MF, Ferreira PJ, Schodek DL (2009) Chapter 7: Nanomaterials: properties. In: Nanomaterials, nanotechnologies and design. Butterworth-Heinemann, Boston, pp 199–255.  https://doi.org/10.1016/B978-0-7506-8149-0.00009-XCrossRefGoogle Scholar
  43. 43.
    Goh PS, Ismail AF, Ng BC (2014) Directional alignment of carbon nanotubes in polymer matrices: contemporary approaches and future advances. Composites Part A 56:103–126.  https://doi.org/10.1016/j.compositesa.2013.10.001CrossRefGoogle Scholar
  44. 44.
    Xie XL, Mai YW, Zhou XP (2005) Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng R Rep 49(4):89–112CrossRefGoogle Scholar
  45. 45.
    Fischer JE, Zhou W, Vavro J, Llaguno MC, Guthy C, Haggenmueller R, Casavant MJ, Walters DE, Smalley RE (2003) Magnetically aligned single wall carbon nanotube films: preferred orientation and anisotropic transport properties. J Appl Phys 93(4):2157–2163.  https://doi.org/10.1063/1.1536733CrossRefGoogle Scholar
  46. 46.
    Cheng Q, Wang J, Jiang K, Li Q, Fan S (2008) Fabrication and properties of aligned multiwalled carbon nanotube-reinforced epoxy composites. J Mater Res 23(11):2975–2983.  https://doi.org/10.1557/jmr.2008.0356CrossRefGoogle Scholar
  47. 47.
    Raravikar NR, Schadler LS, Vijayaraghavan A, Zhao Y, Wei B, Ajayan PM (2005) Synthesis and characterization of thickness-aligned carbon nanotube – polymer composite films. Chem Mater 17(5):974–983.  https://doi.org/10.1021/cm0485254CrossRefGoogle Scholar
  48. 48.
    Hinds BJ, Chopra N, Rantell T, Andrews R, Gavalas V, Bachas LG (2004) Aligned multiwalled carbon nanotube membranes. Science 303(5654):62–65CrossRefGoogle Scholar
  49. 49.
    Armentano I, Del Gaudio C, Bianco A, Dottori M, Nanni F, Fortunati E, Kenny JM (2009) Processing and properties of poly(ε-caprolactone)/carbon nanofibre composite mats and films obtained by electrospinning and solvent casting. J Mater Sci 44(18):4789–4795.  https://doi.org/10.1007/s10853-009-3721-3CrossRefGoogle Scholar
  50. 50.
    Li W, Wang Q, Dai J (2006) Anisotropic properties of aligned SWNT modified poly (methyl methacrylate) nanocomposites. Bull Mater Sci 29(3):313–316.  https://doi.org/10.1007/bf02706502CrossRefGoogle Scholar
  51. 51.
    Song Z, Hou X, Zhang L, Wu S (2010) Enhancing crystallinity and orientation by hot-stretching to improve the mechanical properties of electrospun partially aligned polyacrylonitrile (PAN) nanocomposites. Materials 4(4):621–632.  https://doi.org/10.3390/ma4040621CrossRefGoogle Scholar
  52. 52.
    Zhao X, Ye L (2011) Structure and properties of highly oriented polyoxymethylene/multi-walled carbon nanotube composites produced by hot stretching. Compos Sci Technol 71(10):1367–1372.  https://doi.org/10.1016/j.compscitech.2011.05.011CrossRefGoogle Scholar
  53. 53.
    Abdalla M, Dean D, Theodore M, Fielding J, Nyairo E, Price G (2010) Magnetically processed carbon nanotube/epoxy nanocomposites: morphology, thermal, and mechanical properties. Polymer 51(7):1614–1620.  https://doi.org/10.1016/j.polymer.2009.05.059CrossRefGoogle Scholar
  54. 54.
    Prolongo SG, Meliton BG, Del Rosario G, Ureña A (2013) New alignment procedure of magnetite-CNT hybrid nanofillers on epoxy bulk resin with permanent magnets. Compos Part B 46:166–172.  https://doi.org/10.1016/j.compositesb.2012.10.002CrossRefGoogle Scholar
  55. 55.
    Sharma A, Tripathi B, Vijay YK (2010) Dramatic improvement in properties of magnetically aligned CNT/polymer nanocomposites. J Membr Sci 361(1–2):89–95.  https://doi.org/10.1016/j.memsci.2010.06.005CrossRefGoogle Scholar
  56. 56.
    Shi D, He P, Zhao P, Guo FF, Wang F, Huth C, Chaud X, Bud’Ko SL, Lian J (2011) Magnetic alignment of Ni/Co-coated carbon nanotubes in polystyrene composites. Compos Part B 42(6):1532–1538.  https://doi.org/10.1016/j.compositesb.2011.04.014CrossRefGoogle Scholar
  57. 57.
    Ma C, Zhang W, Zhu Y, Ji L, Zhang R, Koratkar N, Liang J (2008) Alignment and dispersion of functionalized carbon nanotubes in polymer composites induced by an electric field. Carbon 46(4):706–710.  https://doi.org/10.1016/j.carbon.2008.01.019CrossRefGoogle Scholar
  58. 58.
    Oliva-Avilés AI, Avilés F, Sosa V (2011) Electrical and piezoresistive properties of multi-walled carbon nanotube/polymer composite films aligned by an electric field. Carbon 49(9):2989–2997.  https://doi.org/10.1016/j.carbon.2011.03.017CrossRefGoogle Scholar
  59. 59.
    Sharma A, Vijay YK (2012) Effect of electric field variation in alignment of SWNT/PC nanocomposites. Int J Hydrog Energy 37(4):3945–3948.  https://doi.org/10.1016/j.ijhydene.2011.03.166CrossRefGoogle Scholar
  60. 60.
    Zhu YF, Ma C, Zhang W, Zhang RP, Koratkar N, Liang J (2009) Alignment of multiwalled carbon nanotubes in bulk epoxy composites via electric field. J Appl Phys 105(5).  https://doi.org/10.1063/1.3080243CrossRefGoogle Scholar
  61. 61.
    Sinha Ray S (2013) 1 – Introduction to environmentally friendly polymer nanocomposites. In: Environmentally friendly polymer nanocomposites. Woodhead Publishing, pp 3–24.  https://doi.org/10.1533/9780857097828.1.3CrossRefGoogle Scholar
  62. 62.
    U.S.E.P.A. (2017) Recycling basics. https://www.epa.gov/recycle/recycling-basics. Accessed July 2017
  63. 63.
    Dommergues Y, Mangenot F (1972) Ecologie Microbienne du Sol. Masson & Cie, ParisGoogle Scholar
  64. 64.
    Chen H, Bei J, Wang S (2000) Hydrolytic degradation of polyester-polyether block copolymer based on polycaprolactone/poly(ethylene glycol)/ polylactide. Polym Adv Technol 11(4):180–184CrossRefGoogle Scholar
  65. 65.
    Hurrell S, Cameron RE (2001) Polyglycolide: degradation and drug release. Part I: changes in morphology during degradation. J Mater Sci Mater Med 12(9):811–816.  https://doi.org/10.1023/a:1017925019985CrossRefGoogle Scholar
  66. 66.
    Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci (Oxford) 23(7):1273–1335CrossRefGoogle Scholar
  67. 67.
    Armentano I, Dottori M, Puglia D, Kenny JM (2008) Effects of carbon nanotubes (CNTs) on the processing and in-vitro degradation of poly(dl-lactide-co-glycolide)/CNT films. J Mater Sci Mater Med 19(6):2377–2387.  https://doi.org/10.1007/s10856-007-3276-2CrossRefGoogle Scholar
  68. 68.
    Zhao Y, Qiu Z, Yang W (2008) Effect of functionalization of multiwalled nanotubes on the crystallization and hydrolytic degradation of biodegradable poly(L-lactide). J Phys Chem B 112(51):16461–16468.  https://doi.org/10.1021/jp805230eCrossRefGoogle Scholar
  69. 69.
    Tsuji H, Kawashima Y, Takikawa H, Tanaka S (2007) Poly(l-lactide)/nano-structured carbon composites: conductivity, thermal properties, crystallization, and biodegradation. Polymer 48(14):4213–4225.  https://doi.org/10.1016/j.polymer.2007.05.040CrossRefGoogle Scholar
  70. 70.
    U.S.E.P.A. (2016) What’s green engineering. http://www.epa.gov/oppt/greenengineering/pubs/whats_ge.html. Accessed 30 Dec 2016
  71. 71.
    Anastas PT, Zimmerman JB (2003) Design through the 12 principles of green engineering. Environ Sci Technol 37(5):94A–101ACrossRefGoogle Scholar
  72. 72.
    Ong YT, Ahmad AL, Zein SHS, Sudesh K, Tan SH (2016) Rebuttal to the comment on article “poly(3-hydroxybutyrate)-functionalised multi-walled carbon nanotubes/chitosan green nanocomposite membranes and their application in pervaporation”. Sep Purif Technol 158:94–95.  https://doi.org/10.1016/j.seppur.2015.11.042CrossRefGoogle Scholar
  73. 73.
    Ong YT, Ahmad AL, Zein SHS, Tan SH (2015) Reply to “non green perspective on biodegradable polymer nanocomposites”. Braz J Chem Eng 32(4):976.  https://doi.org/10.1590/0104-6632.20150324r20150178CrossRefGoogle Scholar
  74. 74.
    Knight W, Curtis M (2002) Measuring your ecodesign [end-of-life disassembly]. Manuf Eng 81(2):64–69.  https://doi.org/10.1049/me:20020204CrossRefGoogle Scholar
  75. 75.
    Kates RW, Clark WC, Corell R, Hall JM, Jaeger CC, Lowe I, McCarthy JJ, Schellnhuber HJ, Bolin B, Dickson NM, Faucheux S, Gallopin GC, Grübler A, Huntley B, Jäger J, Jodha NS, Kasperson RE, Mabogunje A, Matson P, Mooney H, Moore Iii B, O’Riordan T, Svedin U (2001) Environment and development: sustainability science. Science 292(5517):641–642.  https://doi.org/10.1126/science.1059386CrossRefGoogle Scholar
  76. 76.
    International Organization for Standardizations (2006) Environmental management: lifecycle assessment – principles and framework (ISO 14040). ISO, Geneva. https://www.iso.org/standard/37456.html. Accessed May 2017
  77. 77.
    Isaacs JA, Tanwani A, Healy ML (2006) Environmental assessment of SWNT production. In: IEEE International Symposium on Electronics and the Environment, pp 38–41.  https://doi.org/10.1109/isee.2006.1650028CrossRefGoogle Scholar
  78. 78.
    Khanna V, Bakshi BR, Lee LJ (2007) Life cycle energy analysis and environmental life cycle assessment of carbon nanofibers production. In: IEEE International Symposium on Electronics and the Environment, pp 128–133.  https://doi.org/10.1109/isee.2007.369380CrossRefGoogle Scholar
  79. 79.
    Healy ML, Dahlben LJ, Isaacs JA (2008) Environmental assessment of single-walled carbon nanotube processes. J Ind Ecol 12(3):376–393.  https://doi.org/10.1111/j.1530-9290.2008.00058.xCrossRefGoogle Scholar
  80. 80.
    Khanna V, Bakshi BR, Lee LJ (2008) Carbon nanofiber production: life cycle energy consumption and environmental impact. J Ind Ecol 12(3):394–410.  https://doi.org/10.1111/j.1530-9290.2008.00052.xCrossRefGoogle Scholar
  81. 81.
    Kushnir D, Sandén BA (2008) Energy requirements of carbon nanoparticle production. J Ind Ecol 12(3):360–375.  https://doi.org/10.1111/j.1530-9290.2008.00057.xCrossRefGoogle Scholar
  82. 82.
    Singh A, Lou HH, Pike RW, Agboola A, Li X, Hopper JR, Yaws CL (2008) Environmental impact assessment for potential continuous processes for the production of carbon nanotubes. Am J Environ Sci 4(5):522–534CrossRefGoogle Scholar
  83. 83.
    Khanna V, Bakshi BR (2009) Carbon nanofiber polymer composites: evaluation of life cycle energy use. Environ Sci Technol 43(6):2078–2084.  https://doi.org/10.1021/es802101xCrossRefGoogle Scholar
  84. 84.
    Upadhyayula VKK, Meyer DE, Curran MA, Gonzalez MA (2012) Life cycle assessment as a tool to enhance the environmental performance of carbon nanotube products: a review. J Clean Prod 26:37–47CrossRefGoogle Scholar
  85. 85.
    Schlagenhauf L, Nüesch F, Wang J (2014) Release of carbon nanotubes from polymer nanocomposites. Fibers 2(2):108CrossRefGoogle Scholar
  86. 86.
    Schlagenhauf L, Buerki-Thurnherr T, Kuo YY, Wichser A, Nüesch F, Wick P, Wang J (2015) Carbon nanotubes released from an epoxy-based nanocomposite: quantification and particle toxicity. Environ Sci Technol 49(17):10616–10623.  https://doi.org/10.1021/acs.est.5b02750CrossRefGoogle Scholar
  87. 87.
    Nowack B, David RM, Fissan H, Morris H, Shatkin JA, Stintz M, Zepp R, Brouwer D (2013) Potential release scenarios for carbon nanotubes used in composites. Environ Int 59:1–11.  https://doi.org/10.1016/j.envint.2013.04.003CrossRefGoogle Scholar
  88. 88.
    Mailhot B, Morlat-Thérias S, Ouahioune M, Gardette JL (2005) Study of the degradation of an epoxy/amine resin, 1 photo- and thermo-chemical mechanisms. Macromol Chem Phys 206(5):575–584.  https://doi.org/10.1002/macp.200400395CrossRefGoogle Scholar
  89. 89.
    Barkoula NM, Paipetis A, Matikas T, Vavouliotis A, Karapappas P, Kostopoulos V (2009) Environmental degradation of carbon nanotube-modified composite laminates: a study of electrical resistivity. Mech Compos Mater 45(1):21–32.  https://doi.org/10.1007/s11029-009-9059-8CrossRefGoogle Scholar
  90. 90.
    Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monit 13(5):1145–1155.  https://doi.org/10.1039/c0em00547aCrossRefGoogle Scholar
  91. 91.
    Petersen EJ, Zhang L, Mattison NT, O’Carroll DM, Whelton AJ, Uddin N, Nguyen T, Huang Q, Henry TB, Holbrook RD, Chen KL (2011) Potential release pathways, environmental fate, and ecological risks of carbon nanotubes. Environ Sci Technol 45(23):9837–9856.  https://doi.org/10.1021/es201579yCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Petrochemical Engineering, Faculty of Engineering and Green TechnologyUniversiti Tunku Abdul RahmanKamparMalaysia
  2. 2.School of Chemical Engineering, Engineering CampusUniversiti Sains Malaysia, Seri AmpanganNibong Tebal, SPSMalaysia

Personalised recommendations