Optimization of Bulk Heterojunction Organic Photovoltaic Devices

  • Sanjay TiwariEmail author
  • J. V. Yakhmi
  • Sue A. Carter
  • J. Campbell Scott
Reference work entry


Stabilizing the global climate and energy security are the biggest challenges of humanity in this century and thus created substantial political, academic, and industrial interest in the renewable energy resources. Among renewable energy sources, solar photovoltaic has the most promise for becoming a major energy source. In the field of photovoltaic technologies, the organic solar cells represent a transformative technology with great potential for extremely high-throughput manufacturing at very low cost, low environmental impact, mechanical flexibility, molecular tailorability and made from nontoxic, earth-abundant materials with short energy payback times. The introduction of new light absorbing materials, device architectures, and light management structures has resulted in enhancement of the power conversion efficiencies from 2.5% in 2001, to 5% in 2006, to greater than 10% in 2016 for small solar cells, predicting a bright future for organic solar cells. However, before large-scale commercialization and entering a direct competition with state of the art inorganic PV technologies, further improvements especially in the power conversion efficiency are required. It is strange that despite of rapid progress in organic solar cells, there is no standard validation tool for device optimization. The experimental optimization is expensive and time-consuming as reduced feature size needs more complicated and costly manufacturing processes. Thus, simulation and modeling becomes indispensable tool for cost-effective and accurate optimization of such nanoscale devices. Optical modeling enables a quantitative comparison of optical performance of alternative materials, the optimization of the physical structure of the device, finding the dependency of devices efficiency on structure parameters and material properties, the analysis of loss mechanisms, and the calculation of the generation profile for electronic modeling. From the optical point of view, thin-film organic solar cells are multilayer structures, thus interference effects between forward- and backward-going (reflected) light have to be considered in the analysis. The transfer matrix method, where transmission and reflection are calculated for each interface in the stack as well as attenuation in each layer is employed. This chapter summarizes the various optical modeling techniques employed for the optical optimization of bulk heterojunction (BHJ) structure and other OPV solar cells and their corresponding development in recent years based on device physics and its working principle. Optical optimization of PBDTTPD:PCBM BHJ OPV has been carried out with respect to various parameters.


Optical modeling Numerical simulation Organic solar cell, organic photovoltaic (OPV) Polymer solar cell (PSC) Bulk heterojunction Complex index of refraction Transfer matrix formalism 



The author (ST) is grateful to Dr. Ralph Gebauer, Sr. Research Scientist, Abdus Salam ICTP, Italy for guidance and for financial support through Sr. Associateship of the Abdus Salam ICTP, Italy.The author acknowledges support of USIEF & Defence Research & Development Organization ,GOI for financial support through Fulbright Nehru Fellowship and MRP.


  1. 1.
    Espinosa N, Hösel M, Angmo D, Krebs FC (2012) Solar cells with one-day energy payback for the factories of the future. Energ Environ Sci 5(1):5117–5132CrossRefGoogle Scholar
  2. 2.
    Dresselhause MS, Thomas IL (2001) Alternative energy technologies. Nature 414:332–337CrossRefGoogle Scholar
  3. 3.
    Lackner KS (2010) Issues in environmental science and technology. In: Hester RE, Harrison RM (eds) Carbon capture: sequestration and storage, vol 29. Royal Society of Chemistry, p 1–41Google Scholar
  4. 4.
    Tiwari S, Yakhmi JV (2015) Recent advances in luminescent nanomaterials for solid state lighting applications. In: Virk HS (ed) Defect and diffusion forum, vol 361. Trans Tech Publications, p 15–68Google Scholar
  5. 5.
    Shaheen SE, Brabec CJ, Sariciftci NS (2001) 2.5% efficient organic plastic solar cells. Appl Phys Lett 78:841–843CrossRefGoogle Scholar
  6. 6.
    Tang Z, Tress W, Inganäs O (2014) Light trapping in thin film organic solar cells. Mater Today 17:389–396CrossRefGoogle Scholar
  7. 7.
    He Z, Zhong C, Su S, Xu M, Wu H, Cao Y (2012) Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat Photonics 6:591–595. Scholar
  8. 8.
    Heliatek Press Release (2013)
  9. 9.
    Zhicai He, Chengmei Zhong, Shijian Su, Miao Xu, Wu H, Cao Y (2012) Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat Photonics 6:591–595CrossRefGoogle Scholar
  10. 10.
    Brabec CJ, Gowrisanker S, Halls JJ, Laird D, Jia S, Williams SP (2010) Polymer–fullerene bulk-heterojunction solar cells. Adv Mater 22:3839–3856CrossRefGoogle Scholar
  11. 11.
    Hillhouse HW, Beard MC (2009) Solar cells from colloidal nanocrystals: fundamentals, materials, devices, and economics. Curr Opin Colloid Interface Sci 14(2):245–259. Scholar
  12. 12.
    Vervisch W, Biondo S, Rivière G, Duché D, Escoubas L, Torchio P, Simon JJ, Rouzo JL (2011) Optical-electrical simulation of organic solar cells: excitonic modeling parameter influence on electrical characteristics. Appl Phys Lett 98:p253306CrossRefGoogle Scholar
  13. 13.
    Duché D, Escoubas L, Simon JJ, Torchio P, Vervisch W, Flory F (2008) Slow Bloch-modes for enhancing the absorption of light in thin-films for photovoltaic cells. Appl Phys Lett 92:193310. Scholar
  14. 14.
    Tumbleston JR, Ko DH, Samulski ET, Lopez R (2009) Electro-photonic enhancement of bulk heterojunction organic solar cells through photonic crystal photoactive layer. Appl Phys Lett 94:043305. Scholar
  15. 15.
    Koster LJA, Smits ECP, Mihailetchi VD, Blom PWM (2005) Device model for the operation of polymer/fullerene bulk heterojunction solar cells. Phys Rev B 72:085205CrossRefGoogle Scholar
  16. 16.
    Clarke TM, Durrant JR (2010) Charge photogeneration in organic solar cells. Chem Rev 110:6736–6767CrossRefGoogle Scholar
  17. 17.
    Grancini G, Maiuri M, Fazzi D, Petrozza A, Egelhaaf HJ, Brida D, Cerullo G, Lanzani G (2013) Hot exciton dissociation in polymer solar cells. Nat Mater 12:29–33, 594CrossRefGoogle Scholar
  18. 18.
    Scharber MC, Sariciftci NC (2013) Efficiency of bulk-heterojunction organic solar cells. Prog Polym Sci 38(12):1929–1940CrossRefGoogle Scholar
  19. 19.
    Kang H, Kim G, Kim J, Kwon S, Kim H, Lee K (2016) Bulk-heterojunction organic solar cells: five core technologies for their commercialization. Adv Mater 28(36):7821–7861. Scholar
  20. 20.
    You J, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen C, Gao J, Li G, Yang Y (2013) A polymer tandem solar cell with 10.6% power conversion efficiency. Nat Commun 4:1446. Scholar
  21. 21.
    Janssen RA, Nelson J (2013) Factors limiting device efficiency in organic photovoltaics. Adv Mater 25:1847–1858CrossRefGoogle Scholar
  22. 22.
    Bakulin AA, Martyanov DS, Paraschuk DY, Pshenichnikov MS, van Loosdrecht PHMJ (2008) Ultrafast charge photogeneration dynamics in ground-state charge-transfer complexes based on conjugated polymers. J Phys Chem B 112:13730CrossRefGoogle Scholar
  23. 23.
    Sun Y, Welch GC, Leong WL, Takacs CJ, Bazan GC, Heeger AJ (2012) Solution-processed small-molecule solar cells with 6.7% efficiency. Nat Mater 11:44–48CrossRefGoogle Scholar
  24. 24.
    Bundgaard E, Krebs FC (2007) Low band gap polymers for organic photovoltaics. Sol Energy Mater Sol Cells 91:954–985CrossRefGoogle Scholar
  25. 25.
    Junsheng Y, Zheng Y, Huang J (2014) Towards high performance organic photovoltaic cells: a review of recent development in organic photovoltaics. Polymers 6:2473–2509. Scholar
  26. 26.
    Kadem B, Hassan A, Cranton W (2016) Efficient P3HT:PCBM bulk heterojunction organic solar cells; effect of post deposition thermal treatment. J Mater Sci: Mater Electron 27(7):7038–7048Google Scholar
  27. 27.
    Zhang Y, Bovill E, Kingsley J, Buckley AR, Yi H, Iraqi A, Wang T, Lidzey DG (2016) PCDTBT based solar cells: one year of operation under real-world conditions. Sci Rep 6:1–8. Scholar
  28. 28.
    Lu L, Zheng T, Wu Q, Schneider AM, Zhao D, Yu L (2015) Recent advances in bulk heterojunction polymer solar cells. Chem Rev 115(23):12666–12731CrossRefGoogle Scholar
  29. 29.
    Jagadamma LK, Abdelsamie M, Labban E, Aresu A, Ndjawa E, Anjum DH, Beaujuge CD, Amassian PM (2014) Efficient inverted bulk-heterojunction solar cells from low-temperature processing of amorphous ZnO buffer layers. J Mater Chem A 2:13321–13331CrossRefGoogle Scholar
  30. 30.
    Hoppe H, Sariciftci NS (2004) Organic solar cells: an overview. J Mater Res 19(7):1924–1945. Scholar
  31. 31.
    Rand BP, Richter H (ed) (2014) Organic solar cells: fundamentals, devices, and upscaling; Rand BP, Pan Stanford Hoppe H, Sariciftci NS (2004) Organic solar cells: an overview. J Mater Res 19(7)Google Scholar
  32. 32.
    Dennler G, Scharber MC, Brabec CJ (2009) Polymer-fullerene bulk-heterojunction solar cells. Adv Mater 21(13):1323–1338. Scholar
  33. 33.
    Zheng L, Zhou Q, Deng X, Min Y, Gang Y, Cao Y (2004) Methanofullerenes used as electron acceptors in polymer photovoltaic devices. J Phys Chem B 108(32):11921–11926. Scholar
  34. 34.
    Kirchartz T, Pieters BE, Taretto K, Rau U (2008) J Appl Phys 104:094513CrossRefGoogle Scholar
  35. 35.
    Nelson J (2011) Polymer:fullerene bulk heterojunction solar cells. Mater Today 14(10):462–470. Scholar
  36. 36.
    Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ (2006) Design rules for donors in bulk-heterojunction solar cells – towards 10% energy-conversion efficiency. Adv Mater 18(6):789–794. Scholar
  37. 37.
    Ma W, Yang C, Gong X, Lee K, Heeger AJ (2005) Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Funct Mater 15(10):1617–1622. Scholar
  38. 38.
    Li G, Yao Y, Yang H, Shrotriya V, Yang G, Yang Y (2007) Solvent annealing: effect in polymer solar cells based on poly(3-hexylthiophene) and Methanofullerenes. Adv Funct Mater 17(10):1636–1644. Scholar
  39. 39.
    Park SH, Roy A, Serge Beaupré S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photonics 3:297–302. Scholar
  40. 40.
    Persson NK, Inganas O (2005) Simulations of optical processes in organic photovoltaic devices. In: Sun S, Sariciftci NS (eds) Organic photovoltaics: mechanisms, materials and devices. CRC Press, Boca RatonGoogle Scholar
  41. 41.
    Heine C, Morf R (1995) Submicrometer gratings for solar energy applications. Appl Opt 34(14):2476–2482CrossRefGoogle Scholar
  42. 42.
    Roman LS, Inganas O, Granlund T, Nyberg T, Svensson M, Andersson MR, Hummelen J (2000) Trapping light in polymer photodiodes with soft embossed gratings. Adv Mater 12(3):189–195CrossRefGoogle Scholar
  43. 43.
    Li G, Liu L, Wei F (2013) Modelling and simulation of organic photovoltaic cells. In: Zhang M, Li G, Xi N (eds) Modeling and control for micro/nano devices and systems, 1st edn. CRC Press, p 31–51Google Scholar
  44. 44.
    Sariciftci NS (ed) (1998) Primary photoexcitations in conjugated polymers: molecular exciton versus semiconductor band model. World Scientific, SingaporeGoogle Scholar
  45. 45.
    Janssen R (2006) Absorbing infrared light in polymer solar cells, SPIE Newsroom. doi:
  46. 46.
    Dou L, Liu Y, Hong Z, Li G, Yang Y (2015) Low-bandgap near-IR conjugated polymers/molecules for organic electronics. Chem Rev 115:12633–12665. Scholar
  47. 47.
    Mesrane A, Mahrane A, Rahmoune F, Oulebsir A (2017) Theoretical study and simulations of an InGaN dual-junction solar cell. J Electron Mater 46(3):1458. Scholar
  48. 48.
    Hedley JG, Ruseckas A, Samuel IDW (2017) Light harvesting for organic photovoltaics. Chem Rev 117(2):796–837. Scholar
  49. 49.
    Wenping Hu, Fenglian Bai, Xiong Gong, Xiaowei Zhan, Hongbing Fu, Thomas Bjornholm (eds) (2013) Organic optoelectronics, John Wiley & Sons, IncGoogle Scholar
  50. 50.
    Alves H, Molinari AS, Xie H, Morpurgo AF (2008) Metallic conduction at organic charge-transfer interfaces. Nat Mater 7:574–580. Scholar
  51. 51.
    Tessler N, Preezant Y, Rappaport N, Roichman Y (2009) Charge transport in disordered organic materials and its relevance to thin-film devices: a tutorial review. Adv Mater 21(27):2741. Scholar
  52. 52.
    Pivrikas A, Sarıçiftçi NS, Juška G, Österbacka R (2007) A review of charge transport and recombination in polymer/fullerene organic solar cells. Prog Photovolt Res Appl 15(8):677. Scholar
  53. 53.
    Sun SS (2007) Recent progress of organic photovoltaic. In: Yogi Goswami D (ed) Advances in solar energy: an annual review of research and development in renewable energy technologies, Advances in solar energy series, vol 17, 1st edn. Routledge, pp 74–98Google Scholar
  54. 54.
    Tiwari S, Greenham NC, Kabra D (2009) Numerical simulation of single layer polymer light-emitting diodes. Opt Quant Electron 40(14):1267–1272Google Scholar
  55. 55.
    Hu W, Avrutin E, Javaloyes J, Sujecki S, Swillam M (2015) Introduction to the special issue on numerical simulation of optoelectronic devices NUSOD’14. Opt Quant Electron 47(6):1291–1292CrossRefGoogle Scholar
  56. 56.
    Stangl R, Leendertz C, Haschke J (2010) Numerical simulation of solar cells and solar cell characterization methods: the Open-Source on Demand Program AFORS-HET. In: Rugescu RD (ed) Solar energy, IntechGoogle Scholar
  57. 57.
    Taflove A, Hagness SC (2005) Computational electrodynamics: the finite-difference time-domain method, 3rd edn. Artech House, NorwoodzbMATHGoogle Scholar
  58. 58.
    Elsherbeni AZ, Demir V (2009) The finite-difference time-domain method for electromagnetics with MATLAB® simulations. SciTech Publishing, New YorkGoogle Scholar
  59. 59.
    Wei SB, Zhang SQ, Dong H, Wang F (2009) A general FDTD algorithm handling thin dispersive layer. Prog Electromagn Res 18:243–257CrossRefGoogle Scholar
  60. 60.
    Yee KS (1966) Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Antennas Propagat 14:302–307zbMATHCrossRefGoogle Scholar
  61. 61.
    Shlager KL, Schneider JB (1998) A selective survey of the finite-difference time-domain literature. In: Taflove A (ed) Chap 1 in Advances in computational electrodynamics: the finite-difference time-domain method. Artech House IncGoogle Scholar
  62. 62.
    Dewan R, Vasilev I, Jovanov IV, Knipp D (2011) Optical enhancement and losses of pyramid textured thin-film silicon solar cells. J Appl Phys 110(1):013101. Scholar
  63. 63.
    Lacombe J, Sergeev O, Chakanga K, Maydell KV, Agert C (2011) Three dimensional optical modeling of amorphous silicon thin film solar cells using the finite-difference time-domain method including real randomly surface topographies. J Appl Phys 110(2):023102. Scholar
  64. 64.
    Pflaum C, Rahimi Z (2011) An iterative solver for the finite-difference frequency-domain (FDFD) method for the simulation of materials with negative permittivity. Numer Linear Algebra Appl 18(4):653–670. Scholar
  65. 65.
    Solntsev S, Zeman M (2011) Optical modeling of thin-film silicon solar cells with submicron periodic gratings and non conformal layers. Energy Procedia 10:308–312. Scholar
  66. 66.
    Oughstun KE, Cartwright NA (2003) On the Lorentz-Lorenz formula and the Lorentz model of dielectric dispersion. Opt Express 11(13):1541–1546CrossRefGoogle Scholar
  67. 67.
    Krc J, Topic M (2013) Optical modeling and simulation of thin-film photovoltaic devices, 1st edn. CRC Press, p 3–34Google Scholar
  68. 68.
    Haase C, Stiebig H (2006) Optical properties of thin-film silicon solar cells with grating couplers. 14(7):629–641Google Scholar
  69. 69.
    Nevière M, Popov E (2002) Light propagation in periodic media: differential theory and design. CRC PressGoogle Scholar
  70. 70.
    Chen J, Wang Q, Li H (2010) Microstructured design for light trapping in thin-film silicon solar cells. Opt Eng 49(8):088001. Scholar
  71. 71.
    Li ZY, Lin LL (2003) Photonic band structures solved by a plane-wave-based transfer-matrix method. Phys Rev E 67:046607CrossRefGoogle Scholar
  72. 72.
    Tiwari S, Carter S, Scott JC (2014) Optical simulation of quantum dot thin film solar cells. IEEE Recent Advances in Photonics, 14651212. doi:
  73. 73.
    Li L (1996) Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings. J Opt Soc Am A 13(5):1024–1035CrossRefGoogle Scholar
  74. 74.
    Ghosh AK, Feng T (1978) Cyanine organic solar cells. J Appl Phys 49(12):5982–5989CrossRefGoogle Scholar
  75. 75.
    Gondek E (2014) Optical optimization of organic solar cell with bulk heterojunction. Opto-Electron Rev 22(2):77–85.−014−0180−4CrossRefGoogle Scholar
  76. 76.
    Xin Yan Z, BaoXiu M, ZhiQiang G, Wei H (2011) Recent progress in the numerical modeling for organic thin film solar cells. Sci China Phys Mech Astron March 54(3):375–387. Scholar
  77. 77.
    Nam YM, Huh J, Jo WH (2010) Optimization of thickness and morphology of active layer for high performance of bulk-heterojunction organic solar cells. Sol Energy Mater Sol Cells 94:1118–1124CrossRefGoogle Scholar
  78. 78.
    Moulé AJ, Bonekamp JB, Meerholz K (2006) The effect of active layer thickness and composition on the performance of bulk-heterojunction solar cells. J Appl Phys 100:094503CrossRefGoogle Scholar
  79. 79.
    Gunaicha PP(2012) Optical modeling of solar cells theses and dissertations. The University of Toledo Digital Repository Paper 325Google Scholar
  80. 80.
    Zhou, Dayu (2008) Light-trapping enhancement in thin film solar cells with photonic crystals. Retrospective theses and dissertations. Paper 15473Google Scholar
  81. 81.
    Pettersson LAA, Roman LS, Inganas O (1999) Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J Appl Phys 86(1):487–496CrossRefGoogle Scholar
  82. 82.
    Heavens O (1991) Optical properties of thin solid films, Ch. 4. Dover, New York, p 46–95Google Scholar
  83. 83.
    Burkhard GF, Hoke ET, McGehee MD (2010) Accounting for interference, scattering, and electrode absorption to make accurate internal quantum efficiency measurements in organic and other thin solar cells. Adv Mater 22:3293–3297CrossRefGoogle Scholar
  84. 84.
    Tress W (2015) Modelling organic solar cells: theory, experiment, and device simulation. Springer, p 215–271Google Scholar
  85. 85.
    Jung S, Kim KY, Lee YI, Youn JH, Moon HT, Jang J, Kim J (2011) Optical modeling and analysis of organic solar cells with coherent multilayers and incoherent glass substrate using generalized transfer matrix method. Jpn J Appl Phys 50:122301CrossRefGoogle Scholar
  86. 86.
    Peumans P, Yakimov A, Forrest SR (2003) Small molecular weight organic thin-film photodetectors and solar cells. J Appl Phys 93(7):3693–3723CrossRefGoogle Scholar
  87. 87.
    Hoppe H, Arnold N, Sariciftci NS, Meissner D (2003) Modeling the optical absorption within conjugated polymer/fullerene-based bulk-heterojunction organic solar cells. Sol Energy Mater Sol Cells 80(1):105–113; Hoppe H, Arnold N, Meissner D, Sariciftci NS (2004) Modeling of optical absorption in conjugated polymer fullerene bulk-heterojunction plastic solar cells. Thin Solid Films 451–452:589–592Google Scholar
  88. 88.
    Ka Y, Hwang H, Kim C (2017) Hybrid organic tandem solar cell comprising small-molecule bottom and polymer:fullerene top subcells fabricated by thin-film transfer. Sci Rep 7:1942. Scholar
  89. 89.
    Kotlarski JD (2012) Optical and electrical modeling of polymer: fullerene bulk heterojunction solar cells. Groningen: s.nGoogle Scholar
  90. 90.
    Stolterfoht M, Ardalan Armin A, Shoaee S, Kassal I, Burn P, Meredith P (2016) Slower carriers limit charge generation in organic semiconductor light-harvesting systems. Nat Commun 7:11944. Scholar
  91. 91.
    Luo G, Re X, Zhang S, Wu H, Choy WCH, He Z, Cao Y (2016) Small recent advances in organic photovoltaics: device structure and optical engineering optimization on the. Nanoscale 12(12):1547–1571Google Scholar
  92. 92.
    Schroeder BC, Li Z, Brady MA, Faria GC, Ashraf RS, Takacs CJ, Cowart JS, Duong DT, Chiu KH, Tan CH, Cabral JT, Salleo A, Chabinyc ML, Durrant JR, McCulloch I (2014) Enhancing fullerene-based solar cell lifetimes by addition of a fullerene dumbbell. Angew Chem Int Ed 53:12870–12875CrossRefGoogle Scholar
  93. 93.
    Mazzio KA, Luscombe KC (2015) The future of organic photovoltaics. Chem Soc Rev 44:78–90. Scholar
  94. 94.
    Lizin S, Passel SV, Schepper ED, Maes W, Lutsen L, Manca J, Vanderzande D (2013) Life cycle analyses of organic photovoltaics: a review. Energy Environ Sci 6:3136–3149. Scholar
  95. 95.
    Troshin PA, Sariciftci NS (2013) Organic nanomaterials for efficient bulk heterojunction solar cells organic nanomaterials: synthesis, characterization, and device applications. In: Torres T, Bottari G (eds) 1st edn. John Wiley & Sons, Inc.Google Scholar
  96. 96.
    Sun Y, Takacs CJ, Cowan SR, Seo HJ, Gong X, Roy A, Heeger AJ (2011) Efficient, air-stable bulk heterojunction polymer solar cells using MoOx as the anode interfacial layer. Adv Mater 23:2226–2230CrossRefGoogle Scholar
  97. 97.
    Tompkins HG, McGahan WA (1999) Spectroscopic ellipsometry and reflectometry. John Wiley & Sons, New YorkGoogle Scholar
  98. 98.
    Dittmer JJ (2001) Dye/polymer blends for organic solar cells PhD theses, University of CambridgeGoogle Scholar
  99. 99.
    Wan MWV, Friend RH, Greenham NC (2000) Modelling of interference effects in anisotropic conjugated polymer devices. Thin Solid Films 363:310CrossRefGoogle Scholar
  100. 100.
    Wong SYQ, Wong HY, Tan CS, Meng HF (2014) Performance optimization of organic solar cells. IEEE Photonics J 6(4):1. Scholar
  101. 101.
    Moule AJ, Meerholz K (2007) Minimizing optical losses in bulk heterojunction polymer solar cells. Appl Phys B Lasers Opt 86:721–727CrossRefGoogle Scholar
  102. 102.
    Ameri T, Dennler G, Waldauf C, Denk P, Forberich K, Scharber MC, Brabec CJ, Hingerl K (2008) Realization, characterization and optical modeling of inverted bulk-heterojunction organic solar cells. J Appl Phys 103:084506CrossRefGoogle Scholar
  103. 103.
    Lin CF, Zhang M, Liu SW, Chiu TL, Lee JH (2011) High photoelectric conversion efficiency of metal Phthalocyanine/fullerene heterojunction photovoltaic device. Int J Mol Sci 12(1):476–505CrossRefGoogle Scholar
  104. 104.
    Stratakis E, Kymakis E (2013) Nanoparticle-based plasmonic organic photovoltaic devices. Mater Today 16(4):133–146CrossRefGoogle Scholar
  105. 105.
    Kymakis E, Spyropoulos GD, Fernandes R, Kakavelakis G, Kanaras AG, Stratakis E (2015) Plasmonic bulk heterojunction solar cells: the role of nanoparticle ligand coating ACS Photonics 2:714−723Google Scholar
  106. 106.
    Chang S, Tien L, Lee L, Chen T (2013) Plasmon-enhanced Excitonic solar cells. In: Xiaodong Wang, Zhiming M. Wang (eds) High-efficiency solar cells springer series in materials science 90:515–544. Scholar
  107. 107.
    Čampa A, Krč J, Topič M (2009) Analysis and optimisation of microcrystalline silicon solar cells with periodic sinusoidal textured interfaces by two-dimensional optical simulations. J Appl Phys 105(8):083107. Scholar
  108. 108.
    Weiland T (1977) A discretization method for the solution of Maxwell’s equations for six-component fields. Electron Commun AEU 31(3):116–120Google Scholar
  109. 109.
    Zhao L, Zuo YH, Zhou CL, Li HL, Diao HW, Wang WJ (2010) A highly efficient light-trapping structure for thin-film silicon solar cells. Sol Energy 84(1):110–115. Scholar
  110. 110.
    Li N, Chen D, Zhang C, Chang J, Lin Z, Han G, Zhang J, Guo L, Hao Y (2016) High-performance low-bandgap polymer solar cells with optical microcavity employing ultrathin Ag film electrode. IEEE Photonics J 8(6):1Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sanjay Tiwari
    • 1
    Email author
  • J. V. Yakhmi
    • 2
  • Sue A. Carter
    • 3
  • J. Campbell Scott
    • 4
  1. 1.Photonics Research Laboratory, S.O.S. in Electronics and PhotonicsPt. Ravishankar Shukla UniversityRaipurIndia
  2. 2.Homi Bhabha National Institute (HBNI)Anushaktinagar, MumbaiIndia
  3. 3.Department of PhysicsUniversity of CaliforniaSanta CruzUSA
  4. 4.IBM Almaden Research CenterSan JoseUSA

Personalised recommendations