Advertisement

Highly Efficient Hybrid Protective Materials for Technically Complicated Systems in Natural Aggressive Conditions

  • V. PanyushkinEmail author
  • N. Petrov
  • M. Sokolov
  • N. Bukov
Reference work entry

Abstract

Reviewed herein are recent achievements in the chemistry of protective processes and materials, development of technologies for protecting technical systems against destructive aggressive factors, and search for solutions to increase longevity and preserve integrity of the original material matrices impacted by natural and extreme factors. The focus is made on R&D in the field of functional protective coatings that have an “intelligent” response to degradation changes in the protective or surface protected. The experience in searching for protection solutions for such environments as atmospheric air, natural waters, and soils has been summarized. The document addresses the most effective systems and their respective protection principles providing protection of various technical systems against corrosion, biofouling, and thermal and ionizing radiation.

Keywords

Hybrid protective materials Corrosion Biofouling Thermal and ionizing radiation 

References

  1. 1.
    Scantlebury D (1993) Corros Sci 35(5–8):1363–1366Google Scholar
  2. 2.
    Schneider O, Kelly RG (2007) Corros Sci 49(2):594–619Google Scholar
  3. 3.
    Jenkins ATA, Armstrong RD (1996) Corros Sci 38(7):1147–1157Google Scholar
  4. 4.
    Cherezova EA, Mukmeneva NA, Arhireev VP (2012) Ageing and stabilization of polymers. Kazan National Research Technical University, Kazan, 140 p (Russia)Google Scholar
  5. 5.
    Mustafin FM et al (2007) Pipeline corrosion protection, vol 2. Nedra, St-Petersburg, 220 c. (Russia)Google Scholar
  6. 6.
    Abdullin IA et al (2006) Compounds with a polymer matrix. Kasane State Technological University, Kazan, 130 p (Russia)Google Scholar
  7. 7.
    Bukov N, Gorokhov R, Levashov A, Mnatsukanova J (2010) The resin compound for a protective anti-corrosion coating, barrier-type. Russian Patent RU 2394058 C2, 5 Aug 2010Google Scholar
  8. 8.
    Bukov RG, Levashov AV, Xie Y, Revenko HSV, Panyushkin V (2009) Ecol Ind Russ 1:32–33Google Scholar
  9. 9.
    Montemor MF (2014) Surf Coat Technol 258(15):17–37Google Scholar
  10. 10.
    Voinovich LB, Emelianenko AM (2008) Russ Chem Rev 77(7):S.619–S.638Google Scholar
  11. 11.
    Latthel SS, Gurav AB, Maruti CS, Vhatkar RS (2012) J Surf Eng Mater Adv Technol 2:76–94Google Scholar
  12. 12.
    Gnedenkov SV, Egorkin VS, Sinebryukhov SL, Boynovich LB et al (2014) Vestnik FEB RAS 2:C.52–C.61Google Scholar
  13. 13.
    Boynovich LB, Emelianenko AM, Komarov VB (2010) Electric 6:12–18Google Scholar
  14. 14.
    Talo A, Forséna O, Yläsaaria S (1999) Synth Met 102(1–3):1394–1395Google Scholar
  15. 15.
    Sathiyanarayanan S, Muthukrishnan S, Venkatachari G, Trived DC (2005) Prog Org Coat 53(4):297–301Google Scholar
  16. 16.
    Sathiyanarayanana S, Muthkrishnana S, Venkatachari G (2006) Electrochim Acta 51(28):6313–6319Google Scholar
  17. 17.
    Pereira da Silvaa JE, Córdoba de Torresia SI, Torresi RM (2007) Prog Org Coat 58(1):33–39Google Scholar
  18. 18.
    Syed Azim S, Satheesh A, Ramu KK, Ramu S, Venkatachari G (2006) Prog Org Coat 55(1):1–4Google Scholar
  19. 19.
    Syed Azim S, Sathiyanarayanana S, Venkatacharia G (2006) Prog Org Coat 56(2–3):154–158Google Scholar
  20. 20.
    Wang J (2002) Synth Met 132(1):53–56Google Scholar
  21. 21.
    Gupta RK, Singh RA (2004) Mater Chem Phys 86(2–3)Google Scholar
  22. 22.
    Liu Z, Guo W, Daguang F, Chen W (2006) Synth Met 156(5–6):414–416Google Scholar
  23. 23.
    Soaresa BG, Celestinoa ML, Magiolia M, Moreiraa VX, Khastgira D (2010) Synth Met 160(17–18):1981–1986Google Scholar
  24. 24.
    Liu P (2008) Curr Opinion Solid State Mater Sci 12(1):9–13Google Scholar
  25. 25.
    Patila RC, Radhakrishnan S (2006) Prog Org Coat 57(4):332–336Google Scholar
  26. 26.
    Kalendováa A, Sapurinab I, Stejskalc J, Veselýa D (2008) Corros Sci 50(12):3549–3560Google Scholar
  27. 27.
    Radhakrishnana S, Sijua CR, Mahantab D, Patilb S, Madrasc G (2009) Electrochim Acta 54(4):1249–1254Google Scholar
  28. 28.
    de Souza D (2007) Surf Coat Technol 201(16–17):7574–7581Google Scholar
  29. 29.
    Lamaka SV, Zheludkevich ML, Yasakau KA, Serra R, Poznyak SK, Ferreira MGS (2007) Prog Org Coat 58:127Google Scholar
  30. 30.
    Tkachenko VN (2004) Electrochemical protection of pipeline networks. Stroyizdat, Moscow, 320 C. (Russia)Google Scholar
  31. 31.
    Norsworthy R (2009) In: Corrosion 2009, AtlantaGoogle Scholar
  32. 32.
    Fedrizzi L, Fürbeth W, Montemor F (2011) Self-healing properties of new surface treatments. Published by Maney Publishing on behalf of the European Federation of Corrosion and The Institute of Materials, Minerals & Mining, 305 pGoogle Scholar
  33. 33.
    Petrov NN, Koval TV, Shel’deshov NV, Bukov NN (2017) Prot Met Phys Chem Surf 53(1):133–138Google Scholar
  34. 34.
    Sørensena PA, Dam-Johansena K, Weinellb CE (2010) Prog Org Coat 68(1–2):70–78Google Scholar
  35. 35.
    Bi H, Sykes J (2016) Prog Org Coat 90:114–125Google Scholar
  36. 36.
    Kolotovsky AN, Kuzbozhev AS, RV Agin et al (2009) Environmental protection in oil and gas sector. No. 3Google Scholar
  37. 37.
    Agin RV, Alexandrov Y (2010) Territory Neftegaz 2:C23–C26Google Scholar
  38. 38.
    Petrov NN, Koval TV, Falina IV, Gorokhov RV, Sheldeshov NV, Bukov NN (2015) Solid State Phenom 227:123–126.  https://doi.org/10.4028/www.scientific.net/SSP.227.123Google Scholar
  39. 39.
    Kokotov YuA (1980) Ion exchangers and ion exchange. Leningrad “Chemistry” Leningrad Branch, 152 pGoogle Scholar
  40. 40.
    Petrov NN, Koval TV, Koval IV, Gorokhov RV, Sakharov DI, Bukov NN, Sheldeshov NV (2014) Territory Neftegaz 9:S.30–S.34Google Scholar
  41. 41.
    Panyushkin VT, Mastakov AA (1983) J Inorg Salts Chem 28(5):1325–1327Google Scholar
  42. 42.
    Panyushkin VT, Mastakov AA (1983) J Inorg Salts Chem 28(11):2779–2782Google Scholar
  43. 43.
    Panyushkin VT, Mastakov AA, Pavlov PA (1996) Surface protection against ionizing radiation. B. Modern problems of ecology. Krasnodar, pp 47–50Google Scholar
  44. 44.
    Sokolov ME, Panyushkin VT (2004) Proceedings of the universities. North-Caucasian region. Nat Sci 4:S.64–S.66Google Scholar
  45. 45.
    Tooth VY, Berezhnitskaya AS et al (2002) Ukrainian Chem J 68(10):S.69–S.73Google Scholar
  46. 46.
    Panyushkin VT (1984) Spectroscopy coordination compounds of rare earth elements. Rostov University Press, Rostov-on-DonGoogle Scholar
  47. 47.
    Horrocks WD, Supkowski RM et al (1997) J Am Chem Soc 119:5972Google Scholar
  48. 48.
    Panyushkin VT, Mastakov AA, Bukov NN, Nikolaenko AA, Sokolov ME (2004) J Struct Chem (1):173–174Google Scholar
  49. 49.
    Barthelemy BM, Kryuppa J (1985) Fire behavior of building structures. Translated from the French. Stroyizdat, Moscow, p 216Google Scholar
  50. 50.
    Vakhitova LN, Kalafte KK, Lapushkin MP, Femenko PA (2007) Paints and coatings and their application, No. 7–8, with 81–85Google Scholar
  51. 51.
    Alexandrov AC (2007) Golden nanovek. Construction No. 6, with 6–7Google Scholar
  52. 52.
    O’Neill (1986) Feire ratardant heints. Rev Curr Lit 9(291)Google Scholar
  53. 53.
    Aseeva RM (1981) Stammering GE burning plastics. M ScienceGoogle Scholar
  54. 54.
    Nenakhov SA, Pimenov VP (2010) Fire and explosion safety. Sci Tech J 8:11–25Google Scholar
  55. 55.
    Krashennikov MV (2008) Fire and explosion safety. T-17:36–38Google Scholar
  56. 56.
    Oleynikov KB, Trotsenko PA, Matsitskaya AB, Zybina OA, Mnatsakanov CC (2008) Chem Ind 85(1):S.49–S.52Google Scholar
  57. 57.
    Shuklin SG, Didik AA, Bystrov SG (2004) Chem Fiber 3:28Google Scholar
  58. 58.
    Nenakhov SA, Pimenov VP (2010) Fire and explosion safety. 19(3):14–16Google Scholar
  59. 59.
    Antonov AB, Reshetnikov IS, Khalturinsky HA (1999) Russ Chem 68(7):S.663–S.667Google Scholar
  60. 60.
    Paterson Jones JK (1975) J Appl Polym Sci 19(6):1539–1547Google Scholar
  61. 61.
    Yang C-P, Lee T-M (1987) J Appl Polym Sci 34(8):2733–2745Google Scholar
  62. 62.
    Jeelin L, Reagse E (1984) Polym Sci: Polym Chem Ed 22(7):1707–1715Google Scholar
  63. 63.
    Andreas F (1966) Skora St Plaste Kautschuk 13(8):S.451–S.453Google Scholar
  64. 64.
    Green J (1984) Plastics compounding, November/December, pp 30–40Google Scholar
  65. 65.
    Kishore K, Mohandas K (1983) J Fire Sci 1(2):155–157Google Scholar
  66. 66.
    Levashov A, Kasatkina T, Bukov N, Revenko V (2014) Ecol Ind Russ 1:S.24–S.27Google Scholar
  67. 67.
    Rivett P (1965) J Appl Chem 15(10):469–476Google Scholar
  68. 68.
    Londen AM, Johnson S, Govers GJ (1975) J Paint Technol 47(6):62–68Google Scholar
  69. 69.
    Karpov VA, Kovalchuk JL, Poltarukha OP et al (2003) The climatic and biological resistance of materials. GEOS, Hanoi, pp 88–90Google Scholar
  70. 70.
    Railkin AI (1998) Colonization processes and protection against biofouling. State University, St.-Petersburg, p 272Google Scholar
  71. 71.
    Karpov V, Kovalchuk Y, Poltarukha O, Ilyin I (2007) M.: Association of Scientific Knowledge KMK, 156 pGoogle Scholar
  72. 72.
    Chambers LD, Stokes KR, Wals FC (2006) Surf Coat Technol 201:3642–3652Google Scholar
  73. 73.
    Yebra DM, Kiil S, Dam-Johansen K (2004) Prog Org Coat 50(2):75–104Google Scholar
  74. 74.
    Omae I (2003) Chem Rev 103:3431–3448Google Scholar
  75. 75.
    Chumakovsky NN (2006) Ecology of the Kuban region. Krasnodar, 187 pGoogle Scholar
  76. 76.
    Robert L (1981) Anal Chem 53:921–923Google Scholar
  77. 77.
    Thouvenina M, Perona J-J, Charreteurb C et al (2002) Prog Org Coat 44(2):75–83Google Scholar
  78. 78.
  79. 79.
    Petrov NN, Kasatkina TB, Shkabara NA et al (2011) Adv Mater 5:1–5Google Scholar
  80. 80.
    Petrov NN, Gorohov RV, Musorina TN et al (2012) Mater Sci Appl 3(2):116–119Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • V. Panyushkin
    • 1
    Email author
  • N. Petrov
    • 2
  • M. Sokolov
    • 2
  • N. Bukov
    • 2
  1. 1.Department of General and Inorganic ChemistryKuban State UniversityKrasnodarRussia
  2. 2.Department Common and Inorganical ChemistryKuban State UniversityKrasnodarRussia

Personalised recommendations