Advertisement

Nanomaterial for the Management of Radioactive Waste

  • Debjani NathEmail author
Reference work entry

Abstract

Nanomaterials are being considered the most logical existence of metal particles having remarkable physical properties and attracted the public interest due to application in different spheres of human use like medicine, industries, pharmaceuticals, agriculture and waste management. There are many uses of radioactive materials, which improve quality of life of people. These are ranging from power generation to medical and industrial uses. All these applications generate radioactive waste that may represent risks to the environment or to human beings, but it is necessary to have special attention to the management of radioactive waste. The chapter focuses a key issue in development of technology for the removal of radioactive ions from the environment and safe disposal through the absorbent nanomaterials selectively and efficiently.

Keywords

Radionuclides Nanomaterials CNT Magnetic Radio waste 

Notes

Acknowledgment

The author acknowledges University of Kalyani for the support in this work.

References

  1. 1.
    Alliot I, Alliot C, Vitorge P, Fattahi M (2009) Speciation of technetium(IV) in bicarbonate media. Environ Sci Technol 43:9174–9182Google Scholar
  2. 2.
    Ansari SA, Pathak P, Mohapatra PK, Manchanda VK (2012) Chemistry of diglycolamides: promising extractants for actinide partitioning. Chem Rev 112:1751–1772Google Scholar
  3. 3.
    Arai Y, Sparks DL (2001) ATR-FTIR spectroscopic investigation on phosphate adsorption mechanisms at the ferrihydrite-water interface. J Colloid Interface Sci 241(2):317–326Google Scholar
  4. 4.
    Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1:180Google Scholar
  5. 5.
    Battista JR, Earl AM, Park MJ (1999) Why is Deinococcus radiodurans so resistant to ionizing radiation? Trends Microbiol 7(9):362–365Google Scholar
  6. 6.
    Bee A, Massart R, Neveu S (1995) Synthesis of very fine maghemite particles. J Magn Magn Mater 149:6–9Google Scholar
  7. 7.
    Bhattacharyya A, Mohapatra PK, Manchanda VK (2007) Solvent extraction and extraction chromatographic separation of Am3+ and Eu3+ from nitrate medium using Cyanex® 301. Solvent Extr Ion Exch 25:27–39Google Scholar
  8. 8.
    Bots P, Morris K, Hibberd R, Law GTW, Frederick J, Mosselmans W, Brown AP, Doutch J, Smith AJ, Shaw S (2014) Formation of stable uranium(VI) colloidal nanoparticles in conditions relevant to radioactive waste disposal. Langmuir 30:14396–14405Google Scholar
  9. 9.
    Brim H, Venkateswaran A, Kostandarithes HM, Fredrickson JK, Daly MJ (2003) Engineering Deinococcus geothermalis for bioremediation of high-temperature radioactive waste environments. Appl Environ Microbiol 69:4575–4582Google Scholar
  10. 10.
    Buesseler KO, Jayne SR, Fisher NS, Rypina II, Baumann H, Baumann Z, Breier CF, Douglass EM, George J, Macdonald AM et al (2012) Fukushima-derived radionuclides in the ocean and biota off Japan. Proc Natl Acad Sci USA 109:5984–5988Google Scholar
  11. 11.
    Buesseler KO, Livingston H, Honjo S, Hay B, Manganini S, Degens E, Ittekkot V, Izdar E, Konuk T (1987) Chernobyl radionuclides in a Black Sea sediment trap. Nature 329:825–828Google Scholar
  12. 12.
    Buser HJ, Schwarzenbach D, Petter W, Ludi A (1977) The crystal structure of Prussian blue: Fe4[Fe(CN)6]3·xH2O. Inorg Chem 16:2704–2710Google Scholar
  13. 13.
    Buschmann H-J, Cleve E, Wego JA, Schollmeyer E (2001) Complex formation between cucurbit[n]urils and alkali, alkaline earth and ammonium ions in aqueous solution. J Inclusion Phenom Macrocycl Chem 40:117–120Google Scholar
  14. 14.
    Bystrzejewska-Piotrowska G, Urban PL (2004) Accumulation and translocation of cesium-137 in onion plants (Allium cepa). Environ Exp Bot 51:3–7Google Scholar
  15. 15.
    Chan GYS, Drew MGB, Hudson MJ, Isaacs NS, Byers P, Madic C (1996) Complexation of 2,4,6-tri-tert-butylpyridine-1,3,5-triazine ligand (L) with the cerium(IV) nitrate anion; encapsulation of protonated [LHn]n+ with the hexafluorophosphate, nitrate and hydroxide anions; formation and crystal structures of Ce(NO3)4L, 2[LH3]3+[Ce(NO3)5(OH2)][Ce(NO3)5(EtO)]22[NO3][OH], 2[LH2]2+[PF6]1.5[BF4]0.5[PO4]3 and [LH4]4+[3NO3][PF6]. Polyhedron 15:3385–3398Google Scholar
  16. 16.
    Chen Q, Rondinone AJ, Chakoumakos BC, Zhang JZ (1999) Synthesis of superparamagnetic MgFe2O4 nanoparticles by coprecipitation. J Magn Magn Mater 194:1–7Google Scholar
  17. 17.
    Chen YSR, Butler JN, Stumm W (1973) Kinetic study of phosphate reaction with aluminum oxide and kaolinite. Environ Sci Technol 7(4):327–332Google Scholar
  18. 18.
    Chen CL, Li XL, Zhao DL, Tan XL, Wang XK (2007) Adsorption kinetic, thermodynamic and desorption studies of Th(IV) on oxidized multi-wall carbon nanotubes. Colloids Surf A Physicochem Eng Asp 302:449Google Scholar
  19. 19.
    Chen CL, Li XL, Wang XK (2007) Application of oxidized multiwall carbon nanotubes for Th(IV) adsorption. Radiochim Acta 95:261Google Scholar
  20. 20.
    Clark DL, Keogh DW, Palmer PD, Scott BL, Tait CD (1998) Synthesis and structure of the first transuranium crown ether inclusion complex: [NpO2([18]crown-6)]ClO4. Angew Chem Intl Ed 37:164–166Google Scholar
  21. 21.
    Connor PA, McQuillan AJ (1999) Phosphate adsorption onto TiO2 fromaqueous solutions: an in situ internal reflection infrared spectroscopic study. Langmuir 15(8):2916–2921Google Scholar
  22. 22.
    Coupez B, Boehme C, Wipff G (2003) Importance of interfacial phenomena and synergistic effects in lanthanide cation extraction by dithiophosphinic ligands: a molecular dynamics study. J Phys Chem B 107:9484–9490Google Scholar
  23. 23.
    Dam HH, Reinhoudt DN, Verboom W (2007) Multicoordinate ligands for actinide/lanthanide separations. Chem Soc Rev 36:367–377Google Scholar
  24. 24.
    Davis JA, Meece DE, Kohler M, Curtis GP (2004) Approaches to surface complexation modeling of uranium(VI) adsorption on aquifer sediments. Geochim Cosmochim Acta 68(18):3621–3641Google Scholar
  25. 25.
    De M, Ghosh PS, Rotello VM (2008) Applications of nanoparticles in biology. Adv Mater 20:4225–4241Google Scholar
  26. 26.
    Defra, BERR (2008) Devolved administrations for Wales and northern Ireland Managing radioactive waste safely: a framework for implementing Geodisposal, a white paper. Norwich, The Stationary Office (TSO)Google Scholar
  27. 27.
    Dresow B, Nielsen P, Fischer R, Pfau AA, Heinrich HH (1993) In vivo binding of radiocesium by two forms of Prussian blue and by ammonium hexacyanoferrate(II). Clin Toxicol 31:563–569Google Scholar
  28. 28.
    Duff MC, Coughlin JU, Hunter DB (2002) Uranium coprecipitation with iron oxide minerals. Geochim Cosmochim Acta 66(20):3533–3547Google Scholar
  29. 29.
    Faustino PJ, Yongsheng Y, Progar JJ, Brownell CR, Sadrieh N, May JC, Eldon L, Place DA, Duffy EP, Houn F et al (2008) Quantitative determination of cesium binding to ferric hexacyanoferrate: Prussian blue. J Pharm Biomed Anal 47:114–125Google Scholar
  30. 30.
    Florea M, Nau W (2011) Strong binding of hydrocarbons to cucurbituril probed by fluorescent dye displacement: a supramolecular gas-sensing ensemble. Angew Chem Int Ed 50:9338–9342Google Scholar
  31. 31.
    Francis AJ (1998) Biotransformation of uranium and other actinides in radioactive wastes. J Alloys Comp 271–273:78–84Google Scholar
  32. 32.
    Fredrickson JK, Kostandarithes HM, Li SW, Plymale AE, Daly MJ (2000) Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by Deinococcus radiodurans R1. Appl Environ Microbiol 66:2006–2011Google Scholar
  33. 33.
    Freeman W, Mock WL, Shih N-Y (1981) Cucurbituril J Am Chem Soc 103:7367–7368Google Scholar
  34. 34.
    Ganesh R, Robinson KG, Reed GD, Sayler GS (1997) Reduction of hexavalent uranium from organic complexes by sulfate- and iron-reducing bacteria. Appl Environ Microbiol 63:4385–4391Google Scholar
  35. 35.
    Geng J, Jefferson DA, Johnson BF (2004) Direct conversion of iron stearate into magnetic Fe and Fe3C nanocrystals encapsulated in polyhedral graphite cages. Chem Commun 21:2442–2443Google Scholar
  36. 36.
    Gokel GW, Leevy WM, Weber ME (2004) Crown ethers: sensors for ions and molecular scaffolds for materials and biological models. Chem Rev 104:2723–2750Google Scholar
  37. 37.
    Gorman-Lewis D, Fein JB, Burns PC, Szymanowski JES, Converse J (2008) Solubility measurements of the uranyl oxide hydrate phases metaschoepite, compreignacite, Na−compreignacite, becquerelite, and clarkeite. J Chem Thermodyn 40(6):980–990Google Scholar
  38. 38.
    Grenthe I, Puigdomènech I, Agency ONE (1997) Modelling in aquatic chemistry. OECD Publishing, ParisGoogle Scholar
  39. 39.
    Guilbaud P, Wipff G (1993) Hydration of uranyl (UO22+) cation and its nitrate ion and 18-crown-6 adducts studied by molecular dynamics simulations. J Phys Chem 97:5685–5692Google Scholar
  40. 40.
    Guilbaud P, Wipff G (1996) Force field representation of the UO22+ cation from free energy MD simulations in water. Tests on its 18-crown-6 and NO3- adducts, and on its calix[6]arene6- and CMPO complexes. J Mol Struct (THEOCHEM) 366:55–63Google Scholar
  41. 41.
    Haferburg G, Merten D, Buchel G, Kothe E (2007) Biosorption of metal and salt tolerant microbial isolates from a former uranium mining area. Their impact on changes in rare earth element patterns in acid mine drainage. J Basic Microbiol 47:474–484Google Scholar
  42. 42.
    Hagen A (2007) Waste management-nuclear power, man and the environment. IAEA Bulletin 24(2):3–5Google Scholar
  43. 43.
    Hegazy AK, Emam MH (2011) Accumulation and soil-to-plant transfer of radionuclides in the Nile Delta coastal black sand habitats. Int J Phytoremediation 13:140–155Google Scholar
  44. 44.
    Henrot J (1989) Bioaccumulation and chemical modification of Tc by soil bacteria. Health Phys 57:239–245Google Scholar
  45. 45.
    Holker U, Schmiers H, Grosse S, Winkelhofer M, Polsakiewicz M, Ludwig S et al (2002) Solubilization of low-rank coal by Trichoderma atroviride: evidence for the involvement of hydrolytic and oxidative enzymes by using 14C-labelled lignite. J Ind Microbiol Biotechnol 28:207–212Google Scholar
  46. 46.
    Ionova G, Ionov S, Rabbe C, Hill C, Madic C, Guillaumont R, Krupa JC (2001) Mechanism of trivalent actinide/lanthanide separation using bis (2, 4, 4-trimethylpentyl) dithiophosphinic acid (Cyanex 301) and neutral O-bearing co-extractant synergistic mixtures. Solvent Extr Ion Exch 19:391–414Google Scholar
  47. 47.
    Ionova G, Ionov S, Rabbe C, Hill C, Madic C, Guillaumont R, Modolo G, Krupa JC (2001) Mechanism of trivalent actinide/lanthanide separation using synergistic mixtures of di n(chlorophenyl) dithiophosphinic acid and neutral O-bearing coextractants. New J Chem 25:491–501Google Scholar
  48. 48.
    Jang S-C, Hong S-B, Yang H-M, Lee K-W, Moon J-K, Seo B-K, Huh YS, Roh C (2014) Removal of radioactive cesium using Prussian blue magnetic nanoparticles nano composites for the removal of radioactive waste compaction. Nanomaterials 4:894–901Google Scholar
  49. 49.
    John SG, Ruggiero CE, Hersman LE, Tung CS, Neu MP (2001) Siderophore mediated plutonium accumulation by microbacterium flavescens (JG-9). Environ Sci Technol 35:2942–2948Google Scholar
  50. 50.
    Kahn MGC, Banerjee S, Wong SS (2002) Solubilization of oxidized single-walled carbon nanotubes in organic and aqueous solvents through organic derivatization. Nano Lett 2:1215–1218Google Scholar
  51. 51.
    Khani M, Keshtkar A, Meysami B, Zarea M, Jalali R (2005) Biosorption of uranium from aqueous solutions by nonliving biomass of marine algae Cystoseiraical heterogeneity in an in situ uranium bioremediation field site. Appl Environ Microbiol 71:6308–6318Google Scholar
  52. 52.
    Kim SJ, Koh DC, Park SJ, Cha IT, Park JW, Na JH et al (2012) Molecular analysis of spatial variation of iron-reducing bacteria in riverine alluvial aquifers of the Mankyeong River. J Microbiol 50:207–217Google Scholar
  53. 53.
    Kim SK, Jung IS, Lee E, Kim J, Sakamoto S, Yamaguchi K, Kim.K. (2001) Macrocycles within macrocycles: Cyclen, cyclam, and their transition metal complexes encapsulated in cucurbit[8]uril. Angew Chem Int Ed 40:2119–2121Google Scholar
  54. 54.
    Krakowiak KE, Bradshaw JS, Zamecka-Krakowiak DJ (1989) Synthesis of aza-crown ethers. Chem Rev 89:929–972Google Scholar
  55. 55.
    Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L (2005) The cucurbit[n]uril family. Angew Chem Int Ed 44:4844–4870Google Scholar
  56. 56.
    Laiti E, Persson P, Ohman L-O (1998) Balance between surface complexation and surface phase transformation at the alumina/water interface. Langmuir 14(4):825–831Google Scholar
  57. 57.
    Laiti E, Persson P, Ohman L-O (1996) Surface complexation and precipitation at the H+−orthophosphate-aged γ-Al2O3/water interface. Langmuir 12(12):2969–2975Google Scholar
  58. 58.
    Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110Google Scholar
  59. 59.
    Law GT, Geissler A, Lloyd JR, Livens FR, Boothman C, Begg JD et al (2010) Geomicrobiological redox cycling of the transuranic element neptunium. Environ Sci Technol 44:8924–8929Google Scholar
  60. 60.
    Lijklema L (1980) Interaction of orthophosphate with iron (III) and aluminum hydroxides. Environ Sci Technol 14(5):537–541Google Scholar
  61. 61.
    Lіtvіnenko Y, Zabulonov Y, Kadoshnikov V, Yurzhenko M (2012) Nanocomposite SiO2-Fe3O4 – a new material for radioactive waste. International Conference on Nuclear Science and its Application, Samarkand, Uzbekistan, September 25–28Google Scholar
  62. 62.
    Lloyd JR, Ridley J, Khizniak T, Lyalikova NN, Macaskie LE (1999) Reduction of technetium by Desulfovibrio desulfuricans: biocatalyst characterization and use in a flowthrough bioreactor. Appl Environ Microbiol 65:2691–2696Google Scholar
  63. 63.
    Lloyd JR, Cole JA, Macaskie LE (1997) Reduction and removal of heptavalent technetium from solution by Escherichia coli. J Bacteriol 179:2014–2021Google Scholar
  64. 64.
    Lu A-H, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244Google Scholar
  65. 65.
    Luengo C, Brigante M, Antelo J, Avena M (2006) Kinetics of phosphate adsorption on goethite: comparing batch adsorption and ATR-IR measurements. J Colloid Interf Sci 300(2):511–518Google Scholar
  66. 66.
    Macé N, Wieland E, Dähn R, Tits J, Scheinost AC (2013) EXAFS investigation on U(VI) immobilization in hardened cement paste: influence of experimental conditions on speciation. Radiochim Acta 101(6):379–389Google Scholar
  67. 67.
    Mansfeld F (1987) Corrosion mechanisms, vol 28. CRC Press, Boca Raton, FLGoogle Scholar
  68. 68.
    Morris K, Law GTW, Bryan ND (2011) Geodisposal of higher activity wastes. Nuclear power and the environment. The Royal Society of Chemistry, Cambridge, pp 129–151Google Scholar
  69. 69.
    Mosquera B, Carvalho C, Veiga R, Mangia L, Anjos RM (2006) 137Cs distribution in tropical trees after soil contamination. Environ Exp Bot 55:273–281Google Scholar
  70. 70.
    Nagy LT, Ming H, Masataka I, Masanobu N, Yusuke Y (2012) Large Cs adsorption capability of nanostructured Prussian blue particles with high accessible surface areas. J Mater Chem 22:18261–18267Google Scholar
  71. 71.
    Namiki Y, Namiki T, Ishii Y, Koido S, Nagase Y, Tsubota A, Tada N, Kitamoto Y (2012) Inorganic-organic magnetic nanocomposites for use in preventive medicine: a rapid and reliable elimination system for cesium. Pharm Res 29:1404–1418Google Scholar
  72. 72.
    N’Guessan AL, Vrionis HA, Resch CT, Long PE, Lovley DR (2008) Sustained removal of uranium from contaminated groundwater following stimulation of dissimilatory metal reduction. Environ Sci Technol 42:2999–3004Google Scholar
  73. 73.
    Nowack B, Stone AT (2006) Competitive adsorption of phosphate and phosphonates onto goethite. Water Res 40(11):2201–2209Google Scholar
  74. 74.
    Novikov AP, Kalmykov SN, Utsunomiya S, Ewing RC, Horreard F, Merkulov A, Clark SB, Tkachev VV, Myasoedov BF (2006) Colloid transport of plutonium in the far-field of the Mayak production association, Russia. Science 314(5799):638–641Google Scholar
  75. 75.
    Nuñez L, Bradley C, Buchholz BA, Landsberger S, Aase SB, Tuazon HE, Vandergrift GF, Kaminski M (1995) Magnetically assisted chemical separation (MACS) process: preparation and optimization of particles for removal of transuranic elements. Argonne, IL, Argonne National LaboratoryGoogle Scholar
  76. 76.
    Nuñez L, Buchholz BA, Vandegrift GF (1995) Waste remediation using in situ magnetically assisted chemical separation. Sep Sci Technol 30:1455–1471Google Scholar
  77. 77.
    Nuñez L, Kaminski MD (1999) Transuranic separation using organophosphorus extractants adsorbed onto superparamagnetic carriers. J Magn Magn Mater 194:102−107Google Scholar
  78. 78.
    Nuñez L, Buchholz BA, Kaminski M, Aase SB, Brown NR, Vandegrift GF (1996) Actinide separation of high-level waste using solvent extractants on magnetic microparticles. Sep Sci Technol 31:1393–1407Google Scholar
  79. 79.
    Parajuli D, Tanaka H, Hakuta Y, Minami K, Fukuda S, Umeoka K, Kamimura R, Hayashi Y, Ouchi M, Kawamoto T et al (2013) Dealing with the aftermath of Fukushima Daiichi nuclear accident: decontamination of radioactive cesium enriched ash. Environ Sci Technol 47:3800–3806Google Scholar
  80. 80.
    Park S-J, Kim S, Lee S, Khim ZG, Char K, Hyeon T (2000) Synthesis and magnetic studies of uniform iron nanorods and nanospheres. J Am Chem Soc 122:8581–8582Google Scholar
  81. 81.
    Park J, An K, Hwang Y, Park J-G, Noh H-J, Kim J-Y, Park J-H, Hwang N-M, Hyeon T (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895Google Scholar
  82. 82.
    Parry SA, O’Brien L, Fellerman AS, Eaves CJ, Milestone NB, Bryan ND, Livens FR (2011) Plutonium behaviour in nuclear fuel storage pond effluents. Energy Environ Sci 4(4):1457–1464Google Scholar
  83. 83.
    Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:R167–R181Google Scholar
  84. 84.
    Pignolet L, Auvray F, Fonsny K, Capot F, Moureau Z (1989) Role of various microorganisms on Tc behavior in sediments. Health Phys 57:791–800Google Scholar
  85. 85.
    Premuzic ET, Francis AJ, Lin M, Schubert J (1985) Induced formation of chelating agents by Pseudomonas aeruginosa grown in presence of thorium and uranium. Arch Environ Contam Toxicol 14:759–768Google Scholar
  86. 86.
    Puntes VF, Krishnan KM, Alivisatos AP (2001) Colloidal nanocrystal shape and size control: the case of cobalt. Science 291:2115–2117Google Scholar
  87. 87.
    Rao L, Tian G, Teat SJ (2010) Complexation of Np (V) with N,N-dimethyl-3-oxa-glutaramic acid and related ligands: thermodynamics, optical properties and structural aspects. Dalton Trans 39:3326–3330Google Scholar
  88. 88.
    Rosoff B, Cohn SH, Spencer H (1963) Cesium-137 metabolism in man. Radiat Res 19:643–654Google Scholar
  89. 89.
    Sangvanich T, Sukwarotwat V, Wiacek RJ, Grudzien RM, Fryxell GE, Addleman RS, Timchalk C, Yantasee W (2010) Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica. J Hazard Mater 182:225–231Google Scholar
  90. 90.
    Schierz A, Zanker H (2009) Aqueous suspensions of carbon nanotubes: surface oxidation, colloidal stability and uranium sorption. Environ Pollut 157:1088–1094Google Scholar
  91. 91.
    Sessler JL, Melfi PJ, Pantos GD (2006) Uranium complexes of multi-dentate N-donor ligands. Coord Chem Rev 250:816–843Google Scholar
  92. 92.
    Sessler JL, Mody TD, Lynch V (1992) Synthesis and x-ray characterization of a uranyl(VI) Schiff base complex derived from a 2:2 condensation product of 3,4-diethylpyrrole-2,5-dicarbaldehyde and 1,2-diamino-4,5-dimethoxybenzene. Inorg Chem 31:529–531Google Scholar
  93. 93.
    Shamov GA, Schreckenbach G (2008) Crown ether inclusion complexes of the early actinide elements, [AnO2(18-crown-6)]nþ, An¼U, Np, Pu and n¼1, 2: a relativistic density functional study. Inorg Chem 47:1465–1475Google Scholar
  94. 94.
    Shevchenko EV, Talapin DV, Rogach AL, Kornowski A, Haase M, Weller H (2002) Colloidal synthesis and self-assembly of CoPt3 nanocrystals. J Am Chem Soc 124:11480–11485Google Scholar
  95. 95.
    Shokouhimehr M, Soehnlen E, Khitrin A, Basu S, Huang S (2010) Biocompatible Prussian blue nanoparticles: preparation, stability, cytotoxicity, and potential use as an MRI contrast agent. Inorg Chem Commun 13:58–61Google Scholar
  96. 96.
    Silva RJ, Nitsche H (1995) Actinide environmental chemistry. Radiochim Acta 70–71:377–396Google Scholar
  97. 97.
    Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989−1992Google Scholar
  98. 98.
    Sundararajan M (2013) Designing novel nanomaterials through functionalization of carbon nanotubes with Supramolecules for application in nuclear waste management. Sep Sci Technol 48:2391–2396Google Scholar
  99. 99.
    Sutter E, Sutter P, Calarco R, Stoica T, Meijers R (2007) Assembly of ordered carbon shells on GaN nanowires. Appl Phys Lett 90:093118–093118−3Google Scholar
  100. 100.
    Sutter E, Sutter P (2006) Au-induced encapsulation of Ge nanowires in protective C shells. Adv Mater 18:2583−2588Google Scholar
  101. 101.
    Sylwester ER, Hudson EA, Allen PG (2000) The structure of uranium (VI) sorption complexes on silica, alumina, and montmorillonite. Geochim Cosmochim Acta 64(14):2431−2438Google Scholar
  102. 102.
    Tamponnet C, Declerck S (2008) Radionuclide (RN) pollution is a worldwide problem that arises from human activities. J Environ Radioact 99:773–774Google Scholar
  103. 103.
    Tan XL, Xu D, Chen CL, Wang XK, Hu WP (2008) Adsorption and kinetic desorption study of 152+154Eu(III) on multiwall carbon nanotubes from aqueous solution by using chelating resin and XPS methods. Radiochim Acta 96:23Google Scholar
  104. 104.
    Thammawong C, Opaprakasit P, Tangboriboonrat P, Sreearunothai P (2013) Prussian blue-coated magnetic nanoparticles for removal of cesium from contaminated environment. J Nanopart Res 15:1689–1698Google Scholar
  105. 105.
    Theury P, Nierlich M (1997) Crystal structure of a uranyl/p-tert-butylcalix[5]arene complex. J Incl Phenom Macrocycl Chem 27:13–20Google Scholar
  106. 106.
    Tian G, Rao L, Teat SJ, Liu G (2009) Quest for environmentally benign ligands for actinide separations: thermodynamic, spectroscopic, and structural characterization of UVI complexes with oxa-diamide and related ligands. Chem–Eur J 15:4172–4181Google Scholar
  107. 107.
    Tits J, Geipel G, Mace N, Eilzer M, Wieland E (2011) Determination of uranium(VI) sorbed species in calcium silicate hydrate phases: a laser-induced luminescence spectroscopy and batch sorption study. J Colloid Interface Sci 359(1):248–256Google Scholar
  108. 108.
    Utsunomiya S, Kersting AB, Ewing RC (2009) Groundwater nanoparticles in the far-field at the Nevada test site: mechanism for radionuclide transport. Environ Sci Technol 43(5):1293–1298Google Scholar
  109. 109.
    Verzijl JM, Joore JCA, van Dijk A, Glerum JH, Sangster B, van het Schip AD (1992) In vitro binding characteristics for cesium of two qualities of Prussian blue, activated charcoal, and resonium-A. Clin Toxicol 30:215–222Google Scholar
  110. 110.
    Vinod VTP, Sashidhar RB, Sarma VUM, Raju SS (2010) Comparative amino acid and fatty acid compositions of edible gums kondagogu (Cochlospermum gossypium) and karaya (Sterculia urens). Food Chem 123(1):57–62Google Scholar
  111. 111.
    Vinod VTP, Rouha M, Herník M (2014) Hydrocolloid-Stabilized Magnetite for Efficient Removal of Radioactive Phosphates. BioMed Res Int 2014:504760. 10 pages.  https://doi.org/10.1155/2014/504760Google Scholar
  112. 112.
    Vitorge P (1984) Lanthanides and trivalent actinides complexation by tripyridyl triazine, applications to liquid-liquid extraction, France Atomic Energy Comm. Rep. CEAGoogle Scholar
  113. 113.
    Wade K, Schroeder N, Jarvinen G, Smith B, Barrans R. Gibson R. (1994) Soft donor ligands for separation of trivalent actinides and lanthanides. In Eighteenth Annual Actinide Separations ConferenceGoogle Scholar
  114. 114.
    Waite TD, Davis JA, Payne TE, Waychunas GA, Xu N (1994) Uranium(VI) adsorption to ferrihydrite: application of a surface complexation model. Geochim Cosmochim Acta 58(24):5465–5478Google Scholar
  115. 115.
    Walther C, Denecke MA (2013) Actinide colloids and particles of environmental concern. Chem Rev 113(2):995–1015Google Scholar
  116. 116.
    Wildung RE, Gorby YA, Krupka KM, Hess NJ, Li SW, Plymale AE et al (2000) Effect of electron donor and solution chemistry on products of dissimilatory reduction of technetium by Shewanella putrefaciens. Appl Environ Microbiol 66:2451–2460Google Scholar
  117. 117.
    Xie S, Yang J, Chen C, Zhang X, Wang Q, Zhang C (2008) Study on biosorption kinetics and thermodynamics of uranium by Citrobacter freudii. J Environ Radioact 99:126–133Google Scholar
  118. 118.
    Xu Q, Wu J, Chang Y, Zhang L, Yang Y (2008) Extraction of am (III) and lanthanides (III) with organo dithiophosphinic acids. Radiochim Acta 96:771–779Google Scholar
  119. 119.
    Wang XK, Chen CL, Hu WP, Ding AP, Xu D, Zhou X (2005) Sorption of 243Am(III) to multiwall carbon nanotubes. Environ Sci Technol 39:2856Google Scholar
  120. 120.
    Yamamura T, Kitamura A, Fukui A, Nishikawa S, Yamamoto T, Moriyama H (1998) Solubility of U(VI) in highly basic solutions. Radiochim Acta 83(3):139–146Google Scholar
  121. 121.
    Yantasee W, Warner CL, Sangvanich T, Addleman RS, Carter TG, Wiacek RJ, Fryxell GE, Timchalk C, Warner MG (2007) Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles. Environ Sci Technol 41:5114–5119Google Scholar
  122. 122.
    Yee C, Kataby G, Ulman A et al (1999) Self-assembled monolayers of alkanesulfonic and -phosphonic acids on amorphous iron oxide nanoparticles. Langmuir 15(21):7111–7115Google Scholar
  123. 123.
    Yeoman S, Stephenson T, Lester JN, Perry R (1988) The removal of phosphorus during wastewater treatment: a review. Environ Pollut 49(3):183–233Google Scholar
  124. 124.
    Zhang YQ, Zhu QL, Xue SF, Tao Z (2007) Chlorine anionencapsulation by molecular capsules based on cucurbit[5]uril and decamethylcucurbit[5]uril. Molecules 12:1325–1333Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ZoologyUniversity of KalyaniKalyaniIndia

Personalised recommendations