Advertisement

Nano-geomaterials for Water Treatment

  • Xike TianEmail author
  • Na Tian
  • Yulun Nie
  • Wenjun Luo
  • Yanxin Wang
Reference work entry

Abstract

The increasing worldwide contamination of water systems with thousands of industrial and natural chemical compounds is one of the key environmental problems facing humanity. To provide safe water using various strategies is then becoming a global challenge. Compared with the synthetic or commercial materials, nano-geomaterials are ubiquitous, cost-effective, and environmental friendly, which provide rivalrous alternative in water treatment. Therefore, this chapter presents the recent development in the application of nano-geomaterials for water treatment. Firstly, the composition, structure, and physical-chemical properties of typical nano-geomaterials such as halloysite, sepiolite, and hydrotalcite are briefly introduced. Secondly, to further increase their performance in the removal of contaminants in water, the different activation methods and surface modification strategies were summarized. Finally, the application of nano-geomaterials as absorbents for the efficient removal of aqueous contaminants such as heavy metals and organic pollutants was presented. The aim of this handbook is to present a comprehensive summary and give the basic information for the application of nano-geomaterials in water treatment.

References

  1. 1.
    Fernández-Saavedra R, Aranda P, Ruiz-Hitzky E (2004) Templated synthesis of carbon nanofibers from polyacrylonitrile using sepiolite. Adv Funct Mater 14:77–82CrossRefGoogle Scholar
  2. 2.
    Bailey SW (1980) Structures of layer silicates. In: Brindley GW, Brown G (eds) Crystal structures of clay minerals and their x-ray identification. Mineralogical Society, London, pp 1–123Google Scholar
  3. 3.
    Serratosa JM (1979) Surface properties of fibrous clay minerals (palygorskite and sepiolite). Dev Sedimentol 27:99–109CrossRefGoogle Scholar
  4. 4.
    Brigatti MF, Lugli C, Poppi L (2000) Kinetics of heavy-metal removal and recovery in sepiolite. Appl Clay Sci 16:45–57CrossRefGoogle Scholar
  5. 5.
    Doğan M, Özdemir Y, Alkan M (2007) Adsorption kinetics and mechanism of cationic methyl violet and methylene blue dyes onto sepiolite. Dyes Pigments 75:701–713CrossRefGoogle Scholar
  6. 6.
    Miura A, Nakazawa K, Takei T, Kumada N, Kinomura N, Ohki R, Koshiyama H (2012) Acid-, base-, and heat-induced degradation behavior of Chinese sepiolite. Ceram Int 38:4677–4684CrossRefGoogle Scholar
  7. 7.
    Esteban-Cubillo A, Pina-Zapardiel R, Moya JS, Barba MF, Pecharromán C (2008) The role of magnesium on the stability of crystalline sepiolite structure. J Eur Ceram Soc 28:1763–1768CrossRefGoogle Scholar
  8. 8.
    Uğurlu M (2009) Adsorption of a textile dye onto activated sepiolite. Micropor Mesopor Mat 119:276–283CrossRefGoogle Scholar
  9. 9.
    González-Pradas E, Socías-Viciana M, Ureña-Amate MD, Cantos-Molina A, Villafranca-Sánchez M (2005) Adsorption of chloridazon from aqueous solution on heat and acid treated sepiolites. Water Res 39:1849–1857CrossRefGoogle Scholar
  10. 10.
    Sabaha E, Turanb M, Celik MS (2002) Adsorption mechanism of cationic surfactants onto acid- and heat-activated sepiolites. Water Res 36:3957–3964CrossRefGoogle Scholar
  11. 11.
    García N, Guzmán J, Benito E, Esteban-Cubillo A, Aguilar E, Santarén J, Tiemblo P (2011) Surface modification of sepiolite in aqueous gels by using methoxysilanes and its impact on the nanofiber dispersion ability. Langmuir 27:3952–3959CrossRefGoogle Scholar
  12. 12.
    Marjanović V, Lazarević S, Janković-Častvan I, Potkonjak B, Janaćković Đ, Petrović R (2011) Chromium (VI) removal from aqueous solutions using mercaptosilane functionalized sepiolites. Chem Eng J 166:198–206CrossRefGoogle Scholar
  13. 13.
    Liang XF, Xu YM, Sun GH, Wang L, Sun YB, Sun Y, Qin X (2011) Preparation and characterization of mercapto functionalized sepiolite and their application for sorption of lead and cadmium. Chem Eng J 174:436–444CrossRefGoogle Scholar
  14. 14.
    Doğan M, Turhan Y, Alkan M, Namli H, Turan P, Demirbaş Ö (2008) Functionalized sepiolite for heavy metal ions adsorption. Desalination 230:248–268CrossRefGoogle Scholar
  15. 15.
    Özcan A, S Ö A (2005) Adsorption of acid red 57 from aqueous solutions onto surfactant-modified sepiolite. J Hazard Mater 125:252–259CrossRefGoogle Scholar
  16. 16.
    Zhou Q, Gao Q, Luo WJ, Yan CJ, Ji ZN, Duan P (2015) One-step synthesis of amino-functionalized attapulgite clay nanoparticles adsorbent by hydrothermal carbonization of chitosan for removal of methylene blue from wastewater. Colloid Surf A 470:248–257CrossRefGoogle Scholar
  17. 17.
    Li XJ, Yan CJ, Luo WJ, Gao Q, Zhou Q, Liu C, Zhou S (2016) Exceptional cerium(III) adsorption performance of poly(acrylic acid) brushes-decorated attapulgite with abundant and highly accessible binding sites. Chem Eng J 284:333–342CrossRefGoogle Scholar
  18. 18.
    Aranda P, Kun R, Martín-Luengo MA, Letaïef S, Dékány I, Ruiz-Hitzky E (2008) Titania-sepiolite nanocomposites prepared by a surfactant templating colloidal route. Chem Mater 20:84–91CrossRefGoogle Scholar
  19. 19.
    Lazarević S, Janković-Častvan I, Djokić V, Radovanović Z, Janaćković D, Petrović R (2010) Iron-modified sepiolite for Ni2+ sorption from aqueous solution an equilibrium, kinetic, and thermodynamic study. J Chem Eng Data 55:5681–5689CrossRefGoogle Scholar
  20. 20.
    Eren E, Gumus H (2011) Characterization of the structural properties and Pb(II) adsorption behavior of iron oxide coated sepiolite. Desalination 273:276–284CrossRefGoogle Scholar
  21. 21.
    Tian N, Tian XK, Ma LL, Yang C, Wang YX, Wang ZY, Zhang LD (2015) Well-dispersed magnetic iron oxide nanocrystals on sepiolite nanofibers for arsenic removal. RSC Adv 5:25236–25243CrossRefGoogle Scholar
  22. 22.
    Tian N, Tian XK, Liu XW, Zhou ZX, Yang C, Ma LL, Tian C, Li Y, Wang YX (2016) Facile synthesis of hierarchical dendrite-like structure iron layered double hydroxide nanohybrids for effective arsenic removal. Chem Commun 52:11955–11958CrossRefGoogle Scholar
  23. 23.
    Joussein E, Petit S, Churchman J, Theng B, Righi D, Delvaux B (2005) Halloysite clay minerals-a review. Clay Miner 40:383–426CrossRefGoogle Scholar
  24. 24.
    Yah WO, Takahara A, Lvov YM (2012) Selective modification of halloysite lumen with octadecylphosphonic acid: new inorganic tubular micelle. J Am Chem Soc 134:1853–1859CrossRefGoogle Scholar
  25. 25.
    Matusik J (2016) Halloysite for adsorption and pollution remediation. In: Peng Y, Thill A, Faïza B (ed) Developments in clay science. Amsterdam, Elsevier, pp 606–627Google Scholar
  26. 26.
    Knittle E (2000) Introduction to mineralogy. EOS Trans Am Geophys Union 81:389–389CrossRefGoogle Scholar
  27. 27.
    Zhao MF, Liu P (2008) Adsorption behavior of methylene blue on halloysite nanotubes. Micropor Mesopor Mat 112:419–424CrossRefGoogle Scholar
  28. 28.
    Liu RC, Zhang B, Mei DD, Zhang HQ, Liu JD (2011) Adsorption of methyl violet from aqueous solution by halloysite nanotubes. Desalination 268:111–116CrossRefGoogle Scholar
  29. 29.
    Luo P, Zhao YF, Zhang B, Liu JD, Yang Y, Liu JF (2010) Study on the adsorption of Neutral Red from aqueous solution onto halloysite nanotubes. Water Res 44:1489–1497CrossRefGoogle Scholar
  30. 30.
    Zhao YF, Abdullayev E, Lvov Y (2014) Nanotubular halloysite clay as efficient water filtration system for removal of cationic and anionic dyes. IOP Conf Ser Mater Sci Eng 64:012043–012048CrossRefGoogle Scholar
  31. 31.
    Zhao YF, Abdullayev E, Vasiliev A, Lvov Y (2013) Halloysite nanotubule clay for efficient water purification. J Colloid Interf Sci 406:121–129CrossRefGoogle Scholar
  32. 32.
    Kilislioglul A, Bilgin B (2002) Adsorption of uranium on halloysite. Radiochim Acta 90:155–160Google Scholar
  33. 33.
    Kiani G (2014) High removal capacity of silver ions from aqueous solution onto Halloysite nanotubes. Appl Clay Sci 90:159–164CrossRefGoogle Scholar
  34. 34.
    Abdullayev E, Joshi A, Wei WB, Zhao YF, Lvov Y (2012) Enlargement of halloysite clay nanotube lumen by selective etching of aluminum oxide. ACS Nano 6:7216–7226CrossRefGoogle Scholar
  35. 35.
    Szczepanik B, Słomkiewicz P, Garnuszek M, Czech K (2014) Adsorption of chloroanilines from aqueous solutions on the modified halloysite. Appl Clay Sci 101:260–264CrossRefGoogle Scholar
  36. 36.
    Luo P, Zhang B, Zhao YF, Wang JH, Zhang HQ, Liu JD (2011) Removal of methylene blue from aqueous solutions by adsorption onto chemically activated halloysite nanotubes. Korean J Chem Eng 28:800–807CrossRefGoogle Scholar
  37. 37.
    Wang Q, Zhang JP, Wang AQ (2013) Alkali activation of halloysite for adsorption and release of ofloxacin. Appl Surf Sci 287:54–61CrossRefGoogle Scholar
  38. 38.
    Kadi S, Lellou S, Marouf-Khelifa K, Schott J, Gener-Batonneau I, Khelifa A (2012) Preparation, characterisation and application of thermally treated Algerian halloysite. Micropor Mesopor Mat 158:47–54CrossRefGoogle Scholar
  39. 39.
    Lee SY, Kim SJ (2002) Adsorption of naphthalene by HDTMA modified kaolinite and halloysite. Appl Clay Sci 22:55–63CrossRefGoogle Scholar
  40. 40.
    Wang JH, Zhang X, Zhang B, Zhao YF, Zhai R, Liu JD, Chen RF (2010) Rapid adsorption of Cr (VI) on modified halloysite nanotubes. Desalination 259:22–28CrossRefGoogle Scholar
  41. 41.
    Xi YF, Mallavarapu M, Naidu R (2010) Preparation, characterization of surfactants modified clay minerals and nitrate adsorption. Appl Clay Sci 48:92–96CrossRefGoogle Scholar
  42. 42.
    Luo P, Zhang JS, Zhang B, Wang JH, Y-f Z, Liu JD (2011) Preparation and characterization of silane coupling agent modified halloysite for Cr(VI) removal. Ind Eng Chem Res 50:10246–10252CrossRefGoogle Scholar
  43. 43.
    Tian XK, Wang WW, Wang YX, Komarneni S, Yang C (2015) Polyethylenimine functionalized halloysite nanotubes for efficient removal and fixation of Cr (VI). Micropor Mesopor Mat 207:46–52CrossRefGoogle Scholar
  44. 44.
    Zhai R, Zhang B, Wan YZ, Li CC, Wang JT, Liu JD (2013) Chitosan-halloysite hybrid-nanotubes: horseradish peroxidase immobilization and applications in phenol removal. Chem Eng J 214:304–309CrossRefGoogle Scholar
  45. 45.
    Liu L, Wan YZ, Xie YD, Zhai R, Zhang B, Liu JD (2012) The removal of dye from aqueous solution using alginate-halloysite nanotube beads. Chem Eng J 187:210–216CrossRefGoogle Scholar
  46. 46.
    Mellouk S, Cherifi S, Sassi M, Marouf-Khelifa K, Bengueddach A, Schott J, Khelifa A (2009) Intercalation of halloysite from Djebel Debagh (Algeria) and adsorption of copper ions. Appl Clay Sci 44:230–236CrossRefGoogle Scholar
  47. 47.
    Zhao P, Zhou Q, Yan CJ, Luo WJ (2017) Polyacrylic acid grafted kaolinite via a facile ‘grafting to’ approach based on heterogeneous esterification and its adsorption for Cu2+. Mater Res Express 4:035502–035512CrossRefGoogle Scholar
  48. 48.
    Ye ZF, Li JZ, Zhou MJ, Wang HQ, Ma Y, Huo PW, Yu LB, Yan YS (2016) Well-dispersed nebula-like ZnO/CeO2@HNTs heterostructure for efficient photocatalytic degradation of tetracycline. Chem Eng J 304:917–933CrossRefGoogle Scholar
  49. 49.
    Wang RJ, Jiang GH, Ding YW, Wang Y, Sun XK, Wang XH, Chen WX (2011) Photocatalytic activity of heterostructures based on TiO2 and halloysite nanotubes. ACS Appl Mater Interfaces 3:4154–4158CrossRefGoogle Scholar
  50. 50.
    Liu P, Zhao MF (2009) Silver nanoparticle supported on halloysite nanotubes catalyzed reduction of 4-nitrophenol (4-NP). Appl Surf Sci 255:3989–3993CrossRefGoogle Scholar
  51. 51.
    Zou ML, Du ML, Zhu H, Xu CS, Fu YQ (2012) Green synthesis of halloysite nanotubes supported Ag nanoparticles for photocatalytic decomposition of methylene blue. J Phys D Appl Phys 45:325302–325308CrossRefGoogle Scholar
  52. 52.
    Zhang Y, Ouyang J, Yang HM (2014) Metal oxide nanoparticles deposited onto carbon-coated halloysite nanotubes. Appl Clay Sci 95:252–259CrossRefGoogle Scholar
  53. 53.
    Tian XK, Wang WW, Tian N, Zhou CX, Yang C, Komarneni S (2016) Cr(VI) reduction and immobilization by novel carbonaceous modified magnetic Fe3O4/halloysite nanohybrid. J Hazard Mater 309:151–156CrossRefGoogle Scholar
  54. 54.
    Zhao YF, Zhang B, Zhang X, Wang JH, Liu JD, Chen RF (2010) Preparation of highly ordered cubic NaA zeolite from halloysite mineral for adsorption of ammonium ions. J Hazard Mater 178:658–664CrossRefGoogle Scholar
  55. 55.
    Zhu JY, Wang YM, Liu JD, Zhang YT (2014) Facile one-pot synthesis of novel spherical zeolite-reduced graphene oxide composites for cationic dye adsorption. Ind Eng Chem Res 53:13711–13717CrossRefGoogle Scholar
  56. 56.
    Wang Q, O’Hare D (2012) Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem Rev 112:4124–4155CrossRefGoogle Scholar
  57. 57.
    Sideris PJ, Nielsen UG, Gan Z, Grey CP (2008) Mg/Al ordering in layered double hydroxides revealed by multinuclear NMR spectroscopy. Science 321:113–117CrossRefGoogle Scholar
  58. 58.
    Ashekuzzaman SM, Jiang JQ (2014) Study on the sorption-desorption-regeneration performance of Ca-, Mg- and CaMg-based layered double hydroxides for removing phosphate from water. Chem Eng J 246:97–105CrossRefGoogle Scholar
  59. 59.
    Goh KH, Lim TT, Banas A, Dong Z (2010) Sorption characteristics and mechanisms of oxyanions and oxyhalides having different molecular properties on Mg/Al layered double hydroxide nanoparticles. J Hazard Mater 179:818–827CrossRefGoogle Scholar
  60. 60.
    Asouhidou DD, Triantafyllidis KS, Lazaridis NK, Matis KA (2012) Adsorption of reactive dyes from aqueous solutions by layered double hydroxides. J Chem Technol Biotechnol 87:575–582CrossRefGoogle Scholar
  61. 61.
    Fan GL, Li F, Evans DG, Duan X (2014) Catalytic applications of layered double hydroxides: recent advances and perspectives. Chem Soc Rev 43:7040–7066CrossRefGoogle Scholar
  62. 62.
    Zhao MQ, Zhang Q, Huang JQ, Wei F (2012) Hierarchical nanocomposites derived from nanocarbons and layered double hydroxides-properties, synthesis, and applications. Adv Funct Mater 22:675–694CrossRefGoogle Scholar
  63. 63.
    Tian N, Zhou ZX, Tian XK, Yang C, Li Y (2017) Superior capability of MgAl2O4 for selenite removal from contaminated groundwater during its reconstruction of layered double hydroxides. Sep Purif Technol 176:66–72CrossRefGoogle Scholar
  64. 64.
    Sun MM, Xiao YX, Zhang L, Gao X, Yan WB, Wang DM, Su JX (2015) High uptake of Cu2+, Zn2+ or Ni2+ on calcined MgAl hydroxides from aqueous solutions: changing adsorbent structures. Chem Eng J 272:17–27CrossRefGoogle Scholar
  65. 65.
    Chen Y, Song YF (2013) Highly selective and efficient removal of Cr(VI) and Cu(II) by the chromotropic acid-intercalated Zn-Al layered double hydroxides. Ind Eng Chem Res 52:4436–4442CrossRefGoogle Scholar
  66. 66.
    Pérez MR, Pavlovic I, Barriga C, Cornejo J, Hermosín MC, Ulibarri MA (2006) Uptake of Cu2+, Cd2+ and Pb2+ on Zn-Al layered double hydroxide intercalated with edta. Appl Clay Sci 32:245–251CrossRefGoogle Scholar
  67. 67.
    Kameda T, Hoshi K, Yoshioka T (2011) Uptake of Sc3+ and La3+ from aqueous solution using ethylenediaminetetraacetate-intercalated Cu-Al layered double hydroxide reconstructed from Cu-Al oxide. Solid State Sci 13:366–371CrossRefGoogle Scholar
  68. 68.
    Kameda T, Takeuchi H, Yoshioka T (2008) Uptake of heavy metal ions from aqueous solution using Mg-Al layered double hydroxides intercalated with citrate, malate, and tartrate. Sep Purif Technol 62:330–336CrossRefGoogle Scholar
  69. 69.
    Kameda T, Takeuchi H, Yoshioka T (2010) Kinetics of uptake of Cu2+ and Cd2+ by Mg-Al layered double hydroxides intercalated with citrate, malate, and tartrate. Colloid Surf A 355:172–177CrossRefGoogle Scholar
  70. 70.
    Ma RZ, Liu ZP, Li L, Iyi N, Sasaki T (2006) Exfoliating layered double hydroxides in formamide: a method to obtain positively charged nanosheets. J Mater Chem 16:3809–3813CrossRefGoogle Scholar
  71. 71.
    Fang LP, Huang LZ, Holm PE, Yang XF, Hansen HCB, Wang DS (2015) Facile upscaled synthesis of layered iron oxide nanosheets and their application in phosphate removal. J Mater Chem A 3:7505–7512CrossRefGoogle Scholar
  72. 72.
    Lv WY, Du M, Ye WJ, Zheng Q (2015) The formation mechanism of layered double hydroxide nanoscrolls by facile trinal-phase hydrothermal treatment and their adsorption properties. J Mater Chem A 3:23395–23402CrossRefGoogle Scholar
  73. 73.
    Gong JM, Liu T, Wang XQ, Hu XL, Zhang LZ (2011) Efficient removal of heavy metal ions from aqueous systems with the assembly of anisotropic layered double hydroxide nanocrystals@carbon nanosphere. Environ Sci Technol 45:6181–6187CrossRefGoogle Scholar
  74. 74.
    Chen ML, An MI (2012) Selenium adsorption and speciation with Mg-FeCO3 layered double hydroxides loaded cellulose fibre. Talanta 95:31–35CrossRefGoogle Scholar
  75. 75.
    Daud M, Kamal MS, Shehzad F, Al-Harthi MA (2016) Graphene/layered double hydroxides nanocomposites: a review of recent progress in synthesis and applications. Carbon 104:241–252CrossRefGoogle Scholar
  76. 76.
    Wen T, Wu XL, Tan XL, Wang XK, Xu AW (2013) One-pot synthesis of water-swellable Mg-Al layered double hydroxides and graphene oxide nanocomposites for efficient removal of As(V) from aqueous solutions. ACS Appl Mater Interfaces 5:3304–3311CrossRefGoogle Scholar
  77. 77.
    Tan LC, Wang YL, Liu Q, Wang J, Jing XY, Liu LH, Liu JY, Song DL (2015) Enhanced adsorption of uranium (VI) using a three-dimensional layered double hydroxide/graphene hybrid material. Chem Eng J 259:752–760CrossRefGoogle Scholar
  78. 78.
    Fang QL, Chen BL (2014) Self-assembly of graphene oxide aerogels by layered double hydroxides cross-linking and their application in water purification. J Mater Chem A 2:8941–8951CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Xike Tian
    • 1
    Email author
  • Na Tian
    • 1
  • Yulun Nie
    • 1
  • Wenjun Luo
    • 1
  • Yanxin Wang
    • 2
  1. 1.Faculty of Materials Science and ChemistryChina University of GeosciencesWuhanPeople’s Republic of China
  2. 2.School of Environmental StudiesChina University of GeosciencesWuhanPeople’s Republic of China

Personalised recommendations