Advertisement

Metal Oxide Nanomaterials for Environmental Applications

  • Sharanabasava V. GanachariEmail author
  • Leena Hublikar
  • Jayachandra S. Yaradoddi
  • Shivalingayya S. Math
Reference work entry

Abstract

This chapter discusses selected environmental applications of nano metal oxides. We present a few persistent environmental challenges that may be solved by the application of nano metal oxide sorbents. The following areas of applications will be discussed: toxic chemical removal from industrial contaminated water and wastewater, catalysts for organic reactions to produce important organic materials, heterogeneous photocatalysis for environmental remediation, volatile organic compounds, and biological/chemical sensors.

Keywords

Nano metal oxides Environmental challenges Sorbents Applications Toxic Polluted water and wastewater Catalyst Organic materials Heterogeneous photocatalysis for environmental remediation Volatile organic compounds (VOCs) Biological and chemical sensors 

References

  1. 1.
    Noguera C (1996) Metal–oxide interfaces. In: Physics and chemistry at oxide surfaces. Cambridge University Press, Cambridge, p 128.  https://doi.org/10.1017/CBO9780511524301.006CrossRefGoogle Scholar
  2. 2.
    Kung HH (1989) Bulk and surface structure of transition metal oxide. In: Transition metal oxides: surface chemistry and catalysis. Elsevier, Amsterdam. 6 eBook ISBN: 9780080887425. 978-0-444-87394-1.  https://doi.org/10.1016/S0167-2991(08)60925-8
  3. 3.
    Henrich VE, Cox PA (1994) The surface chemistry of metal oxides. Cambridge University Press, Cambridge. ISBN: 9780521566872Google Scholar
  4. 4.
    Wells AF (1987) Structural inorganic chemistry, 6th edn. Oxford University Press, New YorkGoogle Scholar
  5. 5.
    Rodriguez, JA, Fernández-García M (eds) (2007) Nanostructured oxides in photo-catalysis. In: Synthesis, properties and applications of oxide nanoparticles. Wiley, Hoboken. ISBN: 978-0-471-72405-6Google Scholar
  6. 6.
    Fernández-García M, Martínez-Arias A, Hanson JC, Rodriguez JA (2004) Nanostructured oxides in chemistry: characterization and properties. Chem Rev 104:4063CrossRefGoogle Scholar
  7. 7.
    Wyckoff RWG (1964) Crystal structures, 2nd edn. Wiley, New York. ISBN: 0470968605, 9780470968604zbMATHGoogle Scholar
  8. 8.
    Gleiter H (1995) Nanostructured materials: state of the art and perspectives. Nanostruct Mater 6:3CrossRefGoogle Scholar
  9. 9.
    Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281:1647CrossRefGoogle Scholar
  10. 10.
    Rodriguez JA, Maiti A (2000) Adsorption and decomposition of H2S on MgO(100), NiMgO(100), and ZnO(0001) surfaces: a first-principles density functional study. J Phys Chem B 104:3630CrossRefGoogle Scholar
  11. 11.
    Rodriguez JA, Jirsak T, Chaturvedi S (1999) Reaction of H2S with MgO(100) and Cu/MgO(100) surfaces: band-gap size and chemical reactivity. J Chem Phys 111:8077.  https://doi.org/10.1063/1.480141CrossRefGoogle Scholar
  12. 12.
    Bredow T, Apra E, Catti M, Pacchioni G (1998) Cluster and periodic ab-initio calculations on K/TiO2(110). Surf Sci 418:150.  https://doi.org/10.1016/S0039-6028(98)00712-2CrossRefGoogle Scholar
  13. 13.
    Casarin M, Maccato C, Vittadini A (1997) An LCAO-LDF study of the chemisorption of H2O and H2S on ZnO(0001) and ZnO(101̄0). Surf Sci 377–379:587.  https://doi.org/10.1016/S0039-6028(96)01452-5CrossRefGoogle Scholar
  14. 14.
    Scamehorn CA, Harrison NM, McCarthy MI (1994) Water chemistry on surface defect sites: chemidissociation versus physisorption on MgO(001). J Chem Phys 101:1547.  https://doi.org/10.1063/1.467777CrossRefGoogle Scholar
  15. 15.
    Rodriguez JA (2002) Orbital-band interactions and the reactivity of molecules on oxide surfaces: from explanations to predictions. Theor Chem Accounts 107:117.  https://doi.org/10.1007/s00214-001-0315-9CrossRefGoogle Scholar
  16. 16.
    Rodriguez JA, Chaturvedi S, Kuhn M, Hrbek J (1998) Reaction of H2S and S2 with metal/oxide surfaces: band-gap size and chemical reactivity. J Phys Chem B 102:5511.  https://doi.org/10.1021/jp9815208CrossRefGoogle Scholar
  17. 17.
    Hoffmann R (1988) Solids and surfaces: a chemist’s view of bonding in extended structures. VCH Publishers, New YorkCrossRefGoogle Scholar
  18. 18.
    Albright TA, Burdett JK, Whangbo MH (1985) Orbital interactions in chemistry. Wiley-Interscience, New YorkGoogle Scholar
  19. 19.
    Bardeen J (1947) Surface states and rectification at a metal semi-conductor contact. Phys Rev 71:717.  https://doi.org/10.1103/PhysRev.71.717CrossRefGoogle Scholar
  20. 20.
    Jeevanadam J, Klabunde KJ (2007) Chapter 14. Adsorbents. In: Rodríguez JA, Fernández-García M (eds) Synthesis, properties and applications of oxide nanoparticles. Wiley.  https://doi.org/10.1002/9780470108970.ch14CrossRefGoogle Scholar
  21. 21.
    Ohring J (1992) The material science of thin films. Academic, San DiegozbMATHGoogle Scholar
  22. 22.
    Hubler GK (1992) Pulsed laser deposition. Mater Res Soc Bull 17(2):26.  https://doi.org/10.1557/S0883769400040586MathSciNetCrossRefGoogle Scholar
  23. 23.
    Fernandez-Garcia M, Wang X, Belver C, Hanson JC, Rodriguez JA (2007) Anatase-TiO2 nanomaterials: morphological/size dependence of the crystallization and phase behavior phenomena. J Phys Chem C 111:674.  https://doi.org/10.1021/jp065661iCrossRefGoogle Scholar
  24. 24.
    Zhang H, Bandfield JF (2007) Polymorphic transformations and particle coarsening in nanocrystalline titania ceramic powders and membranes. J Phys Chem C 111:6621.  https://doi.org/10.1021/jp067665tCrossRefGoogle Scholar
  25. 25.
    Fernández-García M, Belver C, Wang X, Hanson JC, Rodriguez JA (2007) Anatase-TiO2 nanomaterials: analysis of key parameters controlling crystallization. J Am Chem Soc 129:13604CrossRefGoogle Scholar
  26. 26.
    Scott BJ, Wirnsberger G, Stocky GD (2001) Mesoporous and mesostructured materials for optical applications. Chem Mater 13:3140.  https://doi.org/10.1021/cm0110730CrossRefGoogle Scholar
  27. 27.
    Yoffe I (2001) Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems. Adv Phys 50(1).  https://doi.org/10.1080/00018730010006608CrossRefGoogle Scholar
  28. 28.
    Glinka YD, Lin SH, Hwang LP, Chen YT, Tolk NH (2001) Size effect in self-trapped exciton photoluminescence from SiO2-based nanoscale materials. Phys Rev B 64:085421.  https://doi.org/10.1103/PhysRevB.64.085421CrossRefGoogle Scholar
  29. 29.
    Pan LK, Sun CQ (2004) Distinguishing the effect of surface passivation from the effect of size on the photonic and electronic behavior of porous silicon. J Appl Phys 95:3819.  https://doi.org/10.1063/1.1766086CrossRefGoogle Scholar
  30. 30.
    Iwamoto M, Abe T, Tachibana Y (2000) Control of bandgap of iron oxide through its encapsulation into SiO2-based mesoporous materials. J Mol Catal A 55:143.  https://doi.org/10.1016/S1381-1169(99)00330-1CrossRefGoogle Scholar
  31. 31.
    Vigil O, Cruz F, Morales-Acabedo A, Contreras-Puente G, Vaillant L, Santana G (2001) Structural and optical properties of annealed CdO thin films prepared by spray pyrolysis. Mater Chem Phys 68:249.  https://doi.org/10.1016/S0254-0584(00)00358-8CrossRefGoogle Scholar
  32. 32.
    Borgohain K, Morase N, Mahumani S (2002) Synthesis and properties of Cu2O quantum particles. J Appl Phys 92:1292.  https://doi.org/10.1063/1.1491020CrossRefGoogle Scholar
  33. 33.
    Suzuki T, Kosacki I, Petrovsky V, Anderson HU (2002) Optical properties of undoped and Gd-doped CeO2 nanocrystalline thin films. J Appl Phys 91:2308.  https://doi.org/10.1063/1.1430890CrossRefGoogle Scholar
  34. 34.
    Viswanaha R, Sapra S, Satyani B, Der BN, Sarma DD (2004) Understanding the quantum size effects in ZnO nanocrystals. J Mater Sci 14:661.  https://doi.org/10.1039/B310404DCrossRefGoogle Scholar
  35. 35.
    Li L, Qui X, Li G (2005) Correlation between size-induced lattice variations and yellow emission shift in ZnO nanostructures. J Appl Phys 87:124101.  https://doi.org/10.1063/1.2051800CrossRefGoogle Scholar
  36. 36.
    Serpone N, Lawless D, Khairutdinov R (1995) Size effects on the photophysical properties of colloidal anatase TiO2 particles: size quantization versus direct transitions in this indirect semiconductor? J Phys Chem 98:16646.  https://doi.org/10.1021/j100045a026CrossRefGoogle Scholar
  37. 37.
    Monticone S, Tufeu R, Kanaev AV, Scolan E, Sánchez C (2000) Quantum size effect in TiO2 nanoparticles: does it exist? Appl Surf Sci 162–163:565.  https://doi.org/10.1016/S0169-4332(00)00251-8CrossRefGoogle Scholar
  38. 38.
    Deng H, Hossenlopp JM (2005) Combined X-ray diffraction and diffuse reflectance analysis of nanocrystalline mixed Sn(II) and Sn(IV) oxide powders. J Phys Chem B 109:66.  https://doi.org/10.1021/jp047812sCrossRefGoogle Scholar
  39. 39.
    Franke ME, Koplin TJ, Simon U (2006) Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2:36.  https://doi.org/10.1002/smll.200500261CrossRefGoogle Scholar
  40. 40.
    Kosacki I, Anderson HU (1997) The structure and electrical properties of SrCe0.95Yb0.05O3 thin film protonic conductors. Solid State Ionics 97:429.  https://doi.org/10.1016/S0167-2738(97)00078-7CrossRefGoogle Scholar
  41. 41.
    Maekawa H, Tanaka R, Sato T, Fujimaki Y, Yamamura T (2004) Size-dependent ionic conductivity observed for ordered mesoporous alumina-LiI composite. Solid State Ionics 175:281.  https://doi.org/10.1016/j.ssi.2003.12.032CrossRefGoogle Scholar
  42. 42.
    Weertman JR, Averback RS (1996) Mechanical properties. In: Edelstein AS, Cammarata RC (eds) Nanomaterials: synthesis, properties and applications. Institute of Physics Publishing, LondonGoogle Scholar
  43. 43.
    Tjong SC, Chen H (2004) Nanocrystalline materials and coatings. Mater Sci Eng 45:1.  https://doi.org/10.1016/j.mser.2004.07.001CrossRefGoogle Scholar
  44. 44.
    Zhang Z, Seal S, Patil S, Zha C, Xue Q (2007) Anomalous Quasihydrostaticity and enhanced structural stability of 3 nm Nanoceria. J Phys Chem C 111:11756.  https://doi.org/10.1021/jp074909gCrossRefGoogle Scholar
  45. 45.
    Lu L, Li SX, Lu K (2001) An abnormal strain rate effect on tensile behavior in nanocrystalline copper. Scr Mater 45:1163.  https://doi.org/10.1016/S1359-6462(01)01138-1CrossRefGoogle Scholar
  46. 46.
    Reddy BM (2006) Redox properties of oxides. In: Fierro JLG (ed) Metal oxides. CRC Press, Boca RatonGoogle Scholar
  47. 47.
    Cimino A, Stone FS (2002) Oxide solid solutions as catalysts. Adv Catal 47:141.  https://doi.org/10.1016/S0360-0564(02)47007-1CrossRefGoogle Scholar
  48. 48.
    McHale JM, Novrotsky A, Perrota AJ (1997) Effects of increased surface area and chemisorbed H2O on the relative stability of Nanocrystalline γ-Al2O3 and α-Al2O3. J Phys Chem B 101:603.  https://doi.org/10.1021/jp9627584CrossRefGoogle Scholar
  49. 49.
    Knozinger H, Ratnasamy P (1978) Catalytic aluminas: surface models and characterization of surface sites. Catal Rev Sci Eng 17:31.  https://doi.org/10.1080/03602457808080878CrossRefGoogle Scholar
  50. 50.
    Wang Y, Bryan C, Xu H, Pohl P, Yang Y, Brinker CJ (2002) Interface chemistry of nanostructured materials: ion adsorption on mesoporous alumina. J Colloid Interface Sci 254:23.  https://doi.org/10.1006/jcis.2002.8571CrossRefGoogle Scholar
  51. 51.
    Cai SH, Rashkeev SN, Pantelides ST, Sohlberg K (2003) Phase transformation mechanism between γ- and θ-alumina. Phys Rev B 67:224104.  https://doi.org/10.1103/PhysRevB.67.224104CrossRefGoogle Scholar
  52. 52.
    Sharma PK, Varadan VV, Varadan VK (2003) A critical role of pH in the colloidal synthesis and phase transformation of nano size α-Al2O3 with high surface area. J Eur Ceram Soc 23:659.  https://doi.org/10.1016/S0955-2219(02)00191-7CrossRefGoogle Scholar
  53. 53.
    Noda H, Muramoto HK (2003) Preparation of nano-structured ceramics using nanosized Al2O3 particles. J Mater Sci 38:2043.  https://doi.org/10.1023/A:1023553925110CrossRefGoogle Scholar
  54. 54.
    Bagwell RB, Messing GL, Howell PR (2001) The formation of α-Al2O3 from θ-Al2O3: the relevance of a “critical size” and: diffusional nucleation or “synchro-shear”? J Mater Sci 36:1833.  https://doi.org/10.1023/A:1017545213590CrossRefGoogle Scholar
  55. 55.
    Yen FS, Wen HL, How YT (2001) Crystallite size growth and the derived dilatometric effect during θ- to α-phase transformation of nano-sized alumina powders. J Cryst Growth 233:761.  https://doi.org/10.1016/S0022-0248(01)01636-0CrossRefGoogle Scholar
  56. 56.
    McHale JM, Yureki K, Dabbs DM, Novrotsky A, Sunderesan S, Aksay IA (1997) Metastability of spinel-type solid solutions in the SiO2−Al2O3 system. Chem Mater 9:3096.  https://doi.org/10.1021/cm970447fCrossRefGoogle Scholar
  57. 57.
    Bowen P, Carry C (2002) From powders to sintered pieces: forming, transformations and sintering of nanostructured ceramic oxides. Powder Technol 128:248.  https://doi.org/10.1016/S0032-5910(02)00183-3CrossRefGoogle Scholar
  58. 58.
    Ragan DD, Mates T, David R (2003) Effect of yttrium and erbium ions on epitaxial phase transformations in alumina. J Am Ceram Soc 86:541.  https://doi.org/10.1111/j.1151-2916.2003.tb03338.xCrossRefGoogle Scholar
  59. 59.
    Rossignol S, Kappenstein C (2001) Effect of doping elements on the thermal stability of transition alumina. Int J Inorg Mater 3:51.  https://doi.org/10.1016/S1466-6049(00)00088-XCrossRefGoogle Scholar
  60. 60.
    Appel S, Clausen R, Chouvankov A, Natter H, Hempelman R, Sabine X, Vollath D (2002) Comparative investigation of A12O3– and ZrO2 nanopowders synthesized by different methods. Ceram Eng Sci Proc 23:585.  https://doi.org/10.1002/9780470294758.ch64CrossRefGoogle Scholar
  61. 61.
    Zou H, Ge X, Shen J (2003) Surface acidity and basicity of γ-Al2O3 doped with K+ and La3+ and calcined at elevated temperatures. Thermochim Acta 397:81.  https://doi.org/10.1016/S0040-6031(02)00329-5CrossRefGoogle Scholar
  62. 62.
    Tasker PW (1984) Surfaces of magnesia and alumina. Adv Ceram 10:176Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sharanabasava V. Ganachari
    • 1
    Email author
  • Leena Hublikar
    • 2
    • 3
    • 4
  • Jayachandra S. Yaradoddi
    • 1
    • 5
  • Shivalingayya S. Math
    • 6
    • 7
  1. 1.Centre for Material Science, Advanced Research in Nanoscience and NanotechnologySchool of Mechanical Engineering, KLE Technological University (formerly known as B.V. Bhoomaraddi College of Engineering and Technology)HubballiIndia
  2. 2.Centre for Material Science, Advanced Research in Nanoscience and NanotechnologyKLE Technological UniversityHubballiIndia
  3. 3.Department of ChemistryKLE Technological UniversityHubballiIndia
  4. 4.Department of ChemistryKLE’s P. C. Jabin Science College, VidyanagarHubballiIndia
  5. 5.Extremz Biosciences Private Limited (Govt. of Karnataka Funded Startup)KLE Technological University (formerly known as B.V. Bhoomaraddi College of Engineering and Technology)HubballiIndia
  6. 6.Department of Materials ScienceGulbarga UniversityKalaburagiIndia
  7. 7.Centre for Nano and Soft Matter SciencesBengaluruIndia

Personalised recommendations