Advertisement

Polymers for Energy Applications

  • Sharanabasava V. GanachariEmail author
Reference work entry

Abstract

Polymer science has been designated as “the gateway to the future,” as it deals with our capability to develop ever-more sophisticated materials to suit the desires of society and the planet. Polymers are already playing a critical role in saving energy and resources across a variety of applications, such as transport, packaging, healthcare, and buildings. Appreciations to their versatility, polymers have and will continue to enable a sustainable lifestyle. Polymer scientists are conducting a great deal of research into the potential for polymers to provide cutting-edge renewable energy technologies. Such avenues are photovoltaic, fuel cell, polymer semiconductors, LED (light-emitting diode), etc. This chapter elucidates some important polymers thoughtful effort of elaborating various such energy application schemes in line with the energy assembly, energy storage, dye sensitized electric cell, light emitting and sensing, perovskite electric cell, thermoelectrical generator, polymer composite for thermoelectrical generator, piezoelectric, triboelectric generator, and supercapacitor have been discussed for better understanding of the readers.

Keywords

Polymers Polyaniline Conducting polymer Energy assembly Energy storage Dye sensitized electric cell Light emitting and sensing Perovskite electric cell Thermoelectrical generator Polymer composite for thermoelectrical generator Piezoelectric Triboelectric generator Supercapacitor 

References

  1. 1.
    Zhou G, Khan I, Smid J (1993) Solvent-free cation-conducting polysiloxane electrolytes with pendant oligo(oxyethylene) and sulfonate groups. J Macromol 26:2202–2208.  https://doi.org/10.1021/ma00061a010CrossRefGoogle Scholar
  2. 2.
    Ohno H, Kobayashi N, Takeoka S, Ishizaka H, Tsuchida E (1990) Larger cations can move faster in solid polymer electrolytes. Solid State Ionics 40–41:655–658.  https://doi.org/10.1016/0167-2738(90)90091-5CrossRefGoogle Scholar
  3. 3.
    Huisheng Peng, Xuemei Sun, Wei Weng, Xin Fang (2017) 5 – Energy harvesting based on polymer. In: Huisheng Peng, Xuemei Sun, Wei Weng, Xin Fang (eds) Polymer materials for energy and electronic applications. Academic Press, pp 151–196Google Scholar
  4. 4.
    Huisheng Peng, Xuemei Sun, Wei Weng, Xin Fang (2017) 6 – Energy storage devices based on polymers. In: Huisheng Peng, Xuemei Sun, Wei Weng, Xin Fang (eds) Polymer materials for energy and electronic applications. Academic Press, pp 197–242Google Scholar
  5. 5.
    Huisheng Peng, Xuemei Sun, Wei Weng, Xin Fang (2017) 1 – Introduction. In: Huisheng Peng, Xuemei Sun, Wei Weng, Xin Fang (eds) Polymer materials for energy and electronic applications. Academic Press, pp 1–8Google Scholar
  6. 6.
    Tsuchida E, Ohno H, Kobayashi N, Ishizaka H (1989) Poly[(ι-carboxy)oligo(oxyethylene) methacrylate] as a new type of polymeric solid electrolyte for alkali-metal ion transport. Macromolecules 22:1771–1775.  https://doi.org/10.1021/ma00194a046CrossRefGoogle Scholar
  7. 7.
    Klein RJ, Runt J (2007) Plasticized single-ion polymer conductors: conductivity, local and segmental dynamics, and interaction parameters. J Phys Chem B 111:13188–13193.  https://doi.org/10.1021/jp075517cCrossRefGoogle Scholar
  8. 8.
    Doeff MM, Reed JS (1998) Li ion conductors based on laponite/poly(ethylene oxide) composites. Solid State Ionics 113:109–115.  https://doi.org/10.1016/S0167-2738(98)00367-1CrossRefGoogle Scholar
  9. 9.
    Kobayashi N, Uchiyama M, Tsuchida E (1985) Poly[lithium methacrylate-co-oligo(oxyethylene)methacrylate] as a solid electrolyte with high ionic conductivity. Solid State Ionics 17:307–311.  https://doi.org/10.1016/0167-2738(85)90075-XCrossRefGoogle Scholar
  10. 10.
    Seitz ME, Chan CD, Opper KL, Baughman TW, Wagener KB, Winey KI (2010) Nanoscale morphology in precisely sequenced poly(ethylene-co-acrylic acid) zinc ionomers. J Am Chem Soc 132:8165–8174.  https://doi.org/10.1021/ja101991dCrossRefGoogle Scholar
  11. 11.
    Peiffer DG, Weiss RA, Lundberg RD (1982) Microphase separation in sulfonated polystyrene ionomers. J Polym Sci B: Polym Phys Ed 20:1503–1509.  https://doi.org/10.1002/pol.1982.180200815CrossRefGoogle Scholar
  12. 12.
    Lantman CW, MacKnight WJ, Lundberg RD (1989) Structural properties of ionomers. Annu Rev Mater Sci 19:295–317.  https://doi.org/10.1146/annurev.ms.19.080189.001455CrossRefGoogle Scholar
  13. 13.
    Eisenberg A, Kim J-S (1998) Introduction to ionomers. Wiley, New YorkGoogle Scholar
  14. 14.
    Wang W, Tudryn GJ, Colby RJ, Winey KI (2011) Thermally driven ionic aggregation in poly(ethylene oxide)-based sulfonate ionomers. J Am Chem Soc 133:10826–10831.  https://doi.org/10.1021/ja201405vCrossRefGoogle Scholar
  15. 15.
    Fragiadakis D, Dou S, Colby RH, Runt J (2008) Molecular mobility, ion mobility, and mobile ion concentration in poly(ethylene oxide)-based polyurethane ionomers. J Macromol 41:5723–5728.  https://doi.org/10.1021/ma800263bCrossRefGoogle Scholar
  16. 16.
    Lu M, Runt J, Painter P (2009) An infrared spectrocopic study of a polyester copolymer ionomer based on poly(ethylene oxide). Macromolecules 42:6581–6587.  https://doi.org/10.1021/ma900978dCrossRefGoogle Scholar
  17. 17.
    Sinha K, Maranas JK (2011) Segmental dynamics and ion association in PEO-based single ion conductors. Macromolecules 44:5381–5391.  https://doi.org/10.1021/ma2005074CrossRefGoogle Scholar
  18. 18.
    Blazejczyk A, Szczupak M, Wieczorek W, Cmoch P, Appetecchi GB, Scrosati B, Kovarsky R, Golodnitsky D, Peled E (2005) Anion-binding calixarene receptors: synthesis, microstructure, and effect on properties of polyether electrolytes. Chem Mater 17:1535–1547.  https://doi.org/10.1021/cm048679jCrossRefGoogle Scholar
  19. 19.
    Blazejczyk A, Wieczorek W, Kovarsky R, Goloditsky D, Peled E, Scanlon LG, Appetecchi GB, Scrosati B (2004) Novel solid polymer electrolytes with single Lithium-ion transport. J Electrochem Soc 10:A1762–A1766.  https://doi.org/10.1149/1.1793714CrossRefGoogle Scholar
  20. 20.
    Golodnitsky D, Kovarsky RK, Mazor H, Rosenberg Yu, Lapides I, Peled E, Wieczorek W, Plewa A, Siekierski M, Kalita M, Settimi L, Scrosati B, Scanlon LG‘ (2007) Host-guest interactions in single-ion Lithium polymer electrolyte. J Electrochem Soc 154:A547–A553.  https://doi.org/10.1149/1.2722538CrossRefGoogle Scholar
  21. 21.
    Krawiec W, Scanlon LG,J, Fellner JP, Vaia RA, Vasudevan S, Giannelis EP (1995) Polymer nanocomposites: a new strategy for synthesizing solid electrolytes for rechargeable lithium batteries. J Power Sources 54:310–315.  https://doi.org/10.1016/0378-7753(94)02090-PCrossRefGoogle Scholar
  22. 22.
    Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456–458.  https://doi.org/10.1038/28818CrossRefGoogle Scholar
  23. 23.
    Chung SH, Wang Y, Persi L, Croce F, Greenbaum SG, Scrosati B, Plichta E (2001) Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides. J Power Sources 97-98:644–648.  https://doi.org/10.1016/S0378-7753(01)00748-0CrossRefGoogle Scholar
  24. 24.
    Tambelli CC, Bloise AC, Rosário AV, Pereira EC, Magon C (2002) Characterisation of PEO–Al2O3 composite polymer electrolytes. J Electrochim Acta 47:1677–1682.  https://doi.org/10.1016/S0013-4686(01)00900-8CrossRefGoogle Scholar
  25. 25.
    Dissanayake MAKL, Jayathilaka PARD, Bokalawala RSP, Albinsson I, Mellander B-E (2003) Effect of concentration and grain size of alumina filler on the ionic conductivity enhancement of the (PEO)9LiCF3SO3:Al2O3 composite polymer electrolyte. J Power Sources 119:409–414CrossRefGoogle Scholar
  26. 26.
    Capiglia C, Mustarelli P, Quartarone E, Tomasi C, Magistris A (1999) Effects of nanoscale SiO2 on the thermal and transport properties of solvent-free, poly(ethylene oxide) (PEO)-based polymer electrolytes. Solid State Ionics 118:73–79.  https://doi.org/10.1016/S0167-2738(98)00457-3CrossRefGoogle Scholar
  27. 27.
    Scrosati B, Croce F, Persi L (2000) Impedance spectroscopy study of PEO-based nanocomposite polymer electrolytes. J Electrochem Soc 147:1718–1721.  https://doi.org/10.1149/1.1393423CrossRefGoogle Scholar
  28. 28.
    Tominaga Y, Asai S, Sumita M, Panero S, Scrosati B (2005) A novel composite polymer electrolyte: effect of mesoporous SiO2 on ionic conduction in poly(ethylene oxide)–LiCF3SO3 complex. J Power Sources 146:402–406.  https://doi.org/10.1016/j.jpowsour.2005.03.035CrossRefGoogle Scholar
  29. 29.
    Derrien G, Hassoun J, Simone Sacchetti S, Stefania Panero S (2009) Nanocomposite PEO-based polymer electrolyte using a highly porous, super acid zirconia filler. Solid State Ionics 180:1267–1271.  https://doi.org/10.1016/j.ssi.2009.07.006CrossRefGoogle Scholar
  30. 30.
    Croce F, Sacchetti S, Scrosati B (2006) Advanced, high-performance composite polymer electrolytes for lithium batteries. J Power Sources 161:560–564.  https://doi.org/10.1016/j.jpowsour.2006.03.069CrossRefGoogle Scholar
  31. 31.
    Croce F, Settimi L, Scrosati B (2006) Superacid ZrO2-added, composite polymer electrolytes with improved transport properties. Electrochem Commun 8:364–368.  https://doi.org/10.1016/j.elecom.2005.12.002CrossRefGoogle Scholar
  32. 32.
    Wen Z, Itoh T, Ikeda M, Hirata N, Kubo M, Yamamoto O (2000) Characterization of composite electrolytes based on a hyperbranched polymer. J Power Sources 90:20–26.  https://doi.org/10.1016/S0378-7753(00)00442-0CrossRefGoogle Scholar
  33. 33.
    Ai-Qin Z, Yong Z, Li-Zhen W, Li Xiao-Feng W (2011) Electrosynthesis and capacitive performance of polyaniline–polypyrrole composite. Polym Compos 32:1–5.  https://doi.org/10.1002/pc.20983CrossRefGoogle Scholar
  34. 34.
    Kumar R;A, Subramania A, Sundaram NTK, Kumar GV, Baskaran I (2007) Effect of MgO nanoparticles on ionic conductivity and electrochemical properties of nanocomposite polymer electrolyte. J Membr Sci 300:104–110.  https://doi.org/10.1016/j.memsci.2007.05.014CrossRefGoogle Scholar
  35. 35.
    Xiong H-M, Zhao X, Chen J-S (2001) New polymer−inorganic nanocomposites: PEO−ZnO and PEO−ZnO−LiClO4 films. J Phys Chem B 105:10169–10174.  https://doi.org/10.1021/jp0103169CrossRefGoogle Scholar
  36. 36.
    Sun HY, Sohn H-J, Yamamoto O, Takeda Y, Imanishi N (1999) Enhanced Lithium-ion transport in PEO-based composite polymer electrolytes with ferroelectric BaTiO3. J Electrochem Soc 146:1672–1676.  https://doi.org/10.1149/1.1391824CrossRefGoogle Scholar
  37. 37.
    Sun HY, Takeda Y, Imanishi N, Yamamoto O, Sohn H-J (2000) Ferroelectric materials as a ceramic filler in solid composite polyethylene oxide-based electrolytes. J Electrochem Soc 147:2462–2467.  https://doi.org/10.1149/1.1393554CrossRefGoogle Scholar
  38. 38.
    Reddy JP, Chu PP, Kumar JS, Rao UVS (2006) Inhibited crystallization and its effect on conductivity in a nano-sized Fe oxide composite PEO solid electrolyte. J Power Sources 161:535–540.  https://doi.org/10.1016/j.jpowsour.2006.02.104CrossRefGoogle Scholar
  39. 39.
    Ellison CJ, Torkelson JM (2003) The distribution of glass-transition temperatures in nanoscopically confined glass formers. Nat Mater 2:695–700.  https://doi.org/10.1038/nmat980CrossRefGoogle Scholar
  40. 40.
    Karlsson C, Best AS, Swenson J, Howells WS, Börjesson LM (2003) Polymer dynamics in 3PEG–LiClO4–TiO2 nanocomposite polymer electrolytes. J Chem Phys 118:4206–4212.  https://doi.org/10.1063/1.1540980CrossRefGoogle Scholar
  41. 41.
    MacGlashan GS, Andreev YG, Bruce PG (1999) Structure of the polymer electrolyte poly(ethylene oxide)6:LiAsF6. Nature 398:792–794.  https://doi.org/10.1038/19730CrossRefGoogle Scholar
  42. 42.
    Dissanayake MAKL (2004) Nano-composite solid polymer electrolytes for solid state ionic devices. Ionics 10:221–225.  https://doi.org/10.1007/BF02382820CrossRefGoogle Scholar
  43. 43.
    Karlsson C, Best AS, Swenson J, Kohlbrecher J, Börjesson L (2005) A SANS study of 3PEG−LiClO4−TiO2 nanocomposite polymer electrolytes. Macromolecules 38:6666–6671.  https://doi.org/10.1021/ma050417vCrossRefGoogle Scholar
  44. 44.
    Alloin F, D’Aprea A, Kissi NE, Dufresne A, Bossard F‘ (2010) Nanocomposite polymer electrolyte based on whisker or microfibrils polyoxyethylene nanocomposites. Electrochim Acta 55:5186–5194.  https://doi.org/10.1016/j.electacta.2010.04.034CrossRefGoogle Scholar
  45. 45.
    Wen Z, Wu M, Itoh T, Kubo M, Lin Z, Yamamoto O (2002) Effects of alumina whisker in (PEO)8–LiClO4-based composite polymer electrolytes. Solid State Ionics 148:185–191.  https://doi.org/10.1016/S0167-2738(02)00106-6CrossRefGoogle Scholar
  46. 46.
    Gray FM, MacCallum JR, Vincent CA, Giles JRM (1988) Novel polymer electrolytes based on ABA block copolymers. Macromolecules 21:393–397.  https://doi.org/10.1021/ma00180a018CrossRefGoogle Scholar
  47. 47.
    Giles JRM, Gray FL, MacCallum JR, Vincent CA (1987) Synthesis and characterization of ABA block copolymer-based polymer electrolytes. Polymer 28:1977–1981.  https://doi.org/10.1016/0032-3861(87)90309-0CrossRefGoogle Scholar
  48. 48.
    Soo PP, Huang B, Jang Y-I, Chiang Y-M, Sadoway DR, Mayes AM (1999) Rubbery block copolymer electrolytes for solid-state rechargeable Lithium batteries. J Electrochem Soc 146:32–37.  https://doi.org/10.1149/1.1391560CrossRefGoogle Scholar
  49. 49.
    Jannasch P (2002) Ionic conductivity in physical networks of polyethylene−polyether−polyethylene triblock copolymers. Chem Mater 14:2718–2724.  https://doi.org/10.1021/cm021103eCrossRefGoogle Scholar
  50. 50.
    Kishimoto K, Hoshio M, Mukai T, Yoshizawa M, Ohno H, Kato T (2003) Nanostructured anisotropic ion-conductive films. J Am Chem Soc 125:3196–3197.  https://doi.org/10.1021/ja029750uCrossRefGoogle Scholar
  51. 51.
    Nitani T, Shimada M, Kawamura K, Dokko K, Rho Y-H, Kamamura K (2005) Synthesis of Li + ion conductive PEO-PSt block copolymer electrolyte with microphase separation structure. Electrochem Solid State Lett 8:A385–A388.  https://doi.org/10.1149/1.1940491CrossRefGoogle Scholar
  52. 52.
    Singh M, Odusanya O, Wilmes GM, Eitouni HB, Gomez ED, Patel AJ, Chen VL, Park MJ, Fragouli P, Iatrou H, Hadjichristidis N, Cookson D, Balsara N (2007) Effect of molecular weight on the mechanical and electrical properties of block copolymer electrolytes. Macromolecules 40:4578–4585.  https://doi.org/10.1021/ma0629541CrossRefGoogle Scholar
  53. 53.
    Ioannou EF, Mountrichas G, Pispas S, Kamitsos EI, Floudas G (2008) Lithium ion induced nanophase ordering and ion mobility in ionic block copolymers. Macromolecules 41:6183–6190.  https://doi.org/10.1021/ma8008542CrossRefGoogle Scholar
  54. 54.
    Xiao Q, Wang X, Li W, Li Z, Zhang T, Zhang H (2009) Macroporous polymer electrolytes based on PVDF/PEO-b-PMMA block copolymer blends for rechargeable lithium ion battery. J Membr Sci 334:117–122.  https://doi.org/10.1016/j.memsci.2009.02.018CrossRefGoogle Scholar
  55. 55.
    Panday A, Mullin S, Gomez ED, Wnankule N, Chen VL, Hexemar A, Pople J, Balsara NP (2009) Effect of molecular weight and salt concentration on conductivity of block copolymer electrolytes. Macromolecules 42:4632–4637.  https://doi.org/10.1021/ma900451eCrossRefGoogle Scholar
  56. 56.
    Ghosh A, Wang C, Kofinas P (2010) Block copolymer solid battery electrolyte with high Li-ion transference number. J Electrochem Soc 157:A846–A849.  https://doi.org/10.1149/1.3428710CrossRefGoogle Scholar
  57. 57.
    Mullin SA, Stone GM, Panday A, Balsara NP (2011) Salt diffusion coefficients in block copolymer electrolytes. J Electrochem Soc 158:A619–A627.  https://doi.org/10.1149/1.3563802CrossRefGoogle Scholar
  58. 58.
    Cho B-K, Jain A, Gruner SM, Weisner U (2004) Mesophase structure-mechanical and ionic transport correlations in extended amphiphilic dendrons. Science 305:1598–1601.  https://doi.org/10.1126/science.1100872CrossRefGoogle Scholar
  59. 59.
    Epps TH III, Bailey TS, Waletzko R, Bates FS (2003) Phase behavior and block sequence effects in Lithium perchlorate-doped poly(isoprene-b-styrene-b-ethylene oxide) and poly(styrene-b-isoprene-b-ethylene oxide) triblock copolymers. Macromolecules 36:2873–2881.  https://doi.org/10.1021/ma021231oCrossRefGoogle Scholar
  60. 60.
    Wanakule NS, Panday A, Mullin SA, Gann E, Hexemer A, Balsara NP (2009) Ionic conductivity of block copolymer electrolytes in the vicinity of order−disorder and order−order transitions. Macromolecules 42:5642–5651.  https://doi.org/10.1021/ma900401aCrossRefGoogle Scholar
  61. 61.
    Ruzette A-VG, Soo PP, Sadoway DR, Mayes AM (2001) Melt-formable block copolymer electrolytes for Lithium rechargeable batteries. J Electrochem Soc 148:A537–A543.  https://doi.org/10.1149/1.1368097CrossRefGoogle Scholar
  62. 62.
    Ohtake T, Ogasawara M, Ito-Akita K, Nishina N, Ujie E, Ohno H, Kato T (2000) Liquid-crystalline complexes of mesogenic dimers containing oxyethylene moieties with LiCF3SO3: self-organized ion conductive materials. Chem Mater 12:782–789.  https://doi.org/10.1021/cm990706wCrossRefGoogle Scholar
  63. 63.
    Ghosh S, Maiyalagan T, Basu RN (2016) Nanostructured conducting polymers for energy applications: towards a sustainable platform. Nanoscale 8:6921–6947.  https://doi.org/10.1039/C5NR08803HCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Centre for Material Science, Advanced Research in Nanoscience and Nanotechnology, School of Mechanical EngineeringKLE Technological University (formerly known as B.V. Bhoomaraddi College of Engineering and Technology)HubballiIndia

Personalised recommendations