Advertisement

RNA Nanotechnology

  • Jayachandra S. YaradoddiEmail author
  • Merja Hannele Kontro
  • Sharanabasava V. GanachariEmail author
  • M. B. Sulochana
  • Dayanand Agsar
  • Rakesh P. Tapaskar
  • Ashok S. Shettar
Reference work entry

Abstract

DNA, RNA, and proteins are seemed to be immensely substantial tools for nanobiotechnological applications; this is since their exceptional biochemical properties and role. Particularly RNA is categorized over comparatively high-temperature stability, varied organizational pliability, and their performance in natural circumstances. Above properties made, RNA, a valued constituent for bionanotechnology processes and usefulness, especially RNA nanotechnology, could synthesize complex molecules using simple molecules through de nova nanostructures having exceptional utility by the strategy, integration, and manipulations of most predominant processes which are usually based on different RNA structures and because of their vital biochemical properties. The current chapter emphasis on the basic principles inspires the normal design of RNA nanostructures, pronounces the important methods that are used in constructing nanoparticles’ self-assemblages, and further describes the associated challenges and excelled opportunities of RNA nanotechnology in near future.

Keywords

RNA nanotechnology Nanobioconjugation Nanomedicine Small interfering RNA 3D structure of RNA molecule Ribozymes RNA aptamer Scale-up Riboswitches Stability of RNA 

References

  1. 1.
    Afonin KA, Lindsay B, Shapiro BA (2013) Engineered RNA Nanodesigns for Applications in RNA Nanotechnology.  https://doi.org/10.2478/rnan-2013-0001, RNAN, 1–15
  2. 2.
    Garibotti AV, Liao S, Seeman NC (2007) A simple DNA-based translation system. Nano Lett 7:480–483CrossRefGoogle Scholar
  3. 3.
    Lin C, Liu Y, Yan H (2009) Designer DNA nanoarchitectures. Biochemistry 48:1663–1674CrossRefGoogle Scholar
  4. 4.
    Seeman NC (2010) Nanomaterials based on DNA. Annu Rev Biochem 79:65–87CrossRefGoogle Scholar
  5. 5.
    Andersen FF et al (2008) Assembly and structural analysis of a covalently closed nano-scale DNA cage. Nucleic Acids Res 36:1113–1119CrossRefGoogle Scholar
  6. 6.
    Erben CM, Goodman RP, Turberfield AJ (2007) A self-assembled DNA bipyramid. J Am Chem Soc 129:6992–6993CrossRefGoogle Scholar
  7. 7.
    Goodman RP et al (2008) Reconfigurable, braced, three-dimensional DNA nanostructures. Nat Nanotechnol 3:93–96CrossRefGoogle Scholar
  8. 8.
    He Y et al (2008) Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452:198–201CrossRefGoogle Scholar
  9. 9.
    Shih WM, Quispe JD, Joyce GF (2004) A 1.7-kilobase single stranded DNA that folds into a nanoscale octahedron. Nature 427:618–621CrossRefGoogle Scholar
  10. 10.
    Aldaye FA, Palmer AL, Sleiman HF (2008) Assembling materials with DNA as the guide. Science 321:1795–1799CrossRefGoogle Scholar
  11. 11.
    Bhatia D et al (2009) Icosahedral DNA nanocapsules by modular assembly. Angew Chem (International edition) 48, 4134–4137CrossRefGoogle Scholar
  12. 12.
    Yang H et al (2009) Metal-nucleic acid cages. Nat Chem 1:390–396CrossRefGoogle Scholar
  13. 13.
    Lee H et al (2012) Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat Nanotechnol 7:389–393CrossRefGoogle Scholar
  14. 14.
    Rothemund PW (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302CrossRefGoogle Scholar
  15. 15.
    Andersen ES et al (2008) DNA origami design of dolphin-shaped structures with flexible tails. ACS Nano 2:1213–1218CrossRefGoogle Scholar
  16. 16.
    Geiduschek EP, Haselkorn R (1969) Messenger RNA. Annu Rev Biochem 38:647–676CrossRefGoogle Scholar
  17. 17.
    Lacey JC Jr, Pruitt KM (1969) Origin of the genetic code. Nature 223:799–804CrossRefGoogle Scholar
  18. 18.
    Bramsen JB, Kjems J (2012) Development of therapeutic-grade small interfering rnas by chemical engineering. Front Genet 3:154CrossRefGoogle Scholar
  19. 19.
    Krieg AM (2011) Is RNAi dead? Mol Ther 19:1001–1002CrossRefGoogle Scholar
  20. 20.
    Dibrov SM, McLean J, Parsons J, Hermann T (2011) Self-assembling RNA square. Proc Natl Acad Sci U S A 108:6405–6408CrossRefGoogle Scholar
  21. 21.
    Haque F et al (2012) Ultrastable synergistic tetravalent RNA nanoparticles for targeting to cancers. Nano Today 7:245–257CrossRefGoogle Scholar
  22. 22.
    Gugliotti LA, Feldheim DL, Eaton BE (2004) RNA-mediated metal-metal bond formation in the synthesis of hexagonal palladium nanoparticles. Science 304:850–852CrossRefGoogle Scholar
  23. 23.
    Koyfman AY et al (2005) Controlled spacing of cationic gold nanoparticles by nanocrown RNA. J Am Chem Soc 127:11886–11887CrossRefGoogle Scholar
  24. 24.
    Shu D et al (2004) Bottom-up assembly of RNA arrays and superstructures as potential parts in nanotechnology. Nano Lett 4:1717–1723CrossRefGoogle Scholar
  25. 25.
    Cayrol B et al (2009) A nanostructure made of a bacterial noncoding RNA. J Am Chem Soc 131:17270–17276CrossRefGoogle Scholar
  26. 26.
    Fire A et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811CrossRefGoogle Scholar
  27. 27.
    Ellington AD (2009) Back to the future of nucleic acid self-amplification. Nat Chem Biol 5:200–201MathSciNetCrossRefGoogle Scholar
  28. 28.
    Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822CrossRefGoogle Scholar
  29. 29.
    Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510CrossRefGoogle Scholar
  30. 30.
    Mi J et al (2010) In vivo selection of tumor-targeting RNA motifs. Nat Chem Biol 6:22–24CrossRefGoogle Scholar
  31. 31.
    Sudarsan N et al (2008) Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321:411–413CrossRefGoogle Scholar
  32. 32.
    Shahbabian K, Jamalli A, Zig L, Putzer H (2009) RNase Y, a novel endoribonuclease, initiates riboswitch turnover in Bacillus subtilis. EMBO J 28:3523–3533CrossRefGoogle Scholar
  33. 33.
    Guo S, Tschammer N, Mohammed S, Guo P (2005) Specific delivery of therapeutic RNAs to cancer cells via the dimerization mechanism of phi29 motor pRNA. Hum Gene Ther 16:1097–1109CrossRefGoogle Scholar
  34. 34.
    Markham NR, Zuker M (2008) UNAFold. Methods Mol Biol 453:3–31CrossRefGoogle Scholar
  35. 35.
    Yingling YG, Shapiro BA (2017) Computational design of an RNA hexagonal nanoring and an RNA nanotube. Nano Lett 7:2328–2334.  https://doi.org/10.1021/nl070984rCrossRefGoogle Scholar
  36. 36.
    Patra A, Richert C (2009) High fidelity base pairing at the 3′-terminus. J Am Chem Soc 131:12671–12681.  https://doi.org/10.1021/ja9033654CrossRefGoogle Scholar
  37. 37.
    Liu J, Guo S, Cinier M, Shlyakhtenko LS, Shu Y, Chen C et al (2011) Fabrication of stable and RNase-resistant RNA nanoparticles active in gearing the nanomotors for viral DNA packaging. ACS Nano 5:237–246.  https://doi.org/10.1021/nn1024658CrossRefGoogle Scholar
  38. 38.
    Prabha S, Zhou W-Z, Panyam J, Labhasetwar V (2002) Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles. Int J Pharm 244:105–115CrossRefGoogle Scholar
  39. 39.
    Abdelmawla S, Guo S, Zhang L, Pulukuri SM, Patankar P, Conley P et al (2011) Pharmacological characterization of chemically synthesized monomeric phi29 pRNA nanoparticles for systemic delivery. Mol Ther 19:1312–1322CrossRefGoogle Scholar
  40. 40.
    Sharma A, Haque F, Pi F, Shlyakhtenko LS, Evers BM, Guo P (2016) Controllable self-assembly of RNA dendrimers. Nanomedicine 12:835–844CrossRefGoogle Scholar
  41. 41.
    Wang D, Zhang Z, O’Loughlin E, Lee T, Houel S, O’Carroll D et al (2012) Quantitative functions of Argonaute proteins in mammalian development. Genes Dev 26:693–704CrossRefGoogle Scholar
  42. 42.
    Moore CB, Guthrie EH, Huang MT, Taxman DJ (2010) RNA therapeutics. Methods 629:141–158Google Scholar
  43. 43.
    Jasinski DL, Schwartz CT, Haque F, Guo P (2015) Large scale purification of RNA nanoparticles by preparative ultracentrifugation. Methods Mol Biol 1297:67–82CrossRefGoogle Scholar
  44. 44.
    Chaudhary V, Jangra S, Yadav NR (2018) Nanotechnology based approaches for detection and delivery of microRNA in healthcare and crop protection. J Nanobiotechnol 16:40CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jayachandra S. Yaradoddi
    • 1
    • 6
    Email author
  • Merja Hannele Kontro
    • 2
  • Sharanabasava V. Ganachari
    • 1
    Email author
  • M. B. Sulochana
    • 3
  • Dayanand Agsar
    • 4
  • Rakesh P. Tapaskar
    • 5
  • Ashok S. Shettar
    • 7
    • 8
  1. 1.Centre for Material Science, Advanced Research in Nanoscience and Nanotechnology, School of Mechanical EngineeringKLE Technological University (formerly known as B.V. Bhoomaraddi College of Engineering and Technology)HubballiIndia
  2. 2.Department of Environmental SciencesUniversity of HelsinkiLahtiFinland
  3. 3.Department of PG Studies and Research in BiotechnologyGulbarga UniversityKalaburagiIndia
  4. 4.Department of PG Studies and Research in MicrobiologyGulbarga UniversityKalaburagiIndia
  5. 5.Energy Cluster, Centre for Research in Renewable and Energy Systems, School of Mechanical EngineeringKLE Technological University (formerly known as B.V. Bhoomaraddi College of Engineering and Technology)HubballiIndia
  6. 6.Extremz Biosciences Private Limited (Govt. of Karnataka Funded Startup)KLE Technological University (formerly known as B.V. Bhoomaraddi College of Engineering and Technology)HubballiIndia
  7. 7.Centre for Material Science, Advanced Research in Nanoscience and Nanotechnology, School of Mechanical EngineeringKLE Technological University, B.V. Bhoomaraddi College of Engineering and TechnologyHubballiIndia
  8. 8.Department of Civil Engineering, KLE Technological UniversityB.V. Bhoomaraddi College of Engineering and TechnologyHubballiIndia

Personalised recommendations