DNA Nanotechnology

  • Jayachandra S. YaradoddiEmail author
  • Merja Hannele Kontro
  • Sharanabasava V. Ganachari
  • M. B. Sulochana
  • Dayanand Agsar
  • Rakesh P. Tapaskar
  • Ashok S. Shettar
Reference work entry


Since from the past few decades DNA appeared as an excellent molecular building block for the synthesis of nanostructures because of its probable encoded and confirmation intra- and intermolecular base pairing, various case strategies and consistent assembly techniques have been established to manipulate DNA nanostructures to at higher complexity. The capability to develop DNA construction with precise special control has permitted scientists to discover novel applications in many ways, such as scaffold development, sensing applications, nanodevices, computational applications, nanorobotics, nanoelectronics, biomolecular catalysis, disease diagnosis, and drug delivery. The present chapter emphasizes to brief the opportunities, challenges, and future prospective on DNA nanotechnology and its advancements.


DNA nanotechnology Enzyme cascade scaffolds Nanodevices Computational applications Nanorobotics Nanoelectronics Biomolecular catalysis 


  1. 1.
    Chen Y-J, Groves B, Muscat RA, Seelig G (2015) DNA nanotechnology from the test tube to the cell. Scholar
  2. 2.
    Bloomfield VA, Crothers DM, Ignacio Tinoco J (2000) Nucleic acids: structures, properties and functions. University Science Books, SausalitoGoogle Scholar
  3. 3.
    Carlson R (2009) The changing economics of DNA synthesis. Nat Biotechnol 27:1091–1094CrossRefGoogle Scholar
  4. 4.
    Dittmer WU, Reuter A, Simmel FCA (2004) DNA-based machine that can cyclically bind and release thrombin. Angew Chem Int Ed 43:3550–3553CrossRefGoogle Scholar
  5. 5.
    Yurke B, Mills AP Jr, Cheng SL (1999) DNA implementation of addition in which the input strands are separate from the operator strands. Biosystems 52:165–174CrossRefGoogle Scholar
  6. 6.
    Benenson Y, Gil B, Ben-Dor U, Adar R, Shapiro E (2004) An autonomous molecular computer for logical control of gene expression. Nature 429:423–429CrossRefGoogle Scholar
  7. 7.
    Ko S, Liu H, Chen Y, Mao C (2008) DNA nanotubes as combinatorial vehicles for cellular delivery. Biomacromolecules 9:3039–3043CrossRefGoogle Scholar
  8. 8.
    Zhang F, Nangreave J, Liu Y, Yan H (2014) Structural DNA nanotechnology: state of the art and future perspective. J Am Chem Soc 136:11198–11211CrossRefGoogle Scholar
  9. 9.
    Grabow WW, Jaeger L (2014) RNA self-assembly and RNA nanotechnology. Acc Chem Res 47:1871–1880CrossRefGoogle Scholar
  10. 10.
    Delebecque CJ, Lindner AB, Silver PA, Aldaye FA (2011) Organization of intracellular reactions with rationally designed RNA assemblies. Science 333:470–474CrossRefGoogle Scholar
  11. 11.
    Dirks RM, Pierce NA (2004) Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci U S A 101:15275–15278CrossRefGoogle Scholar
  12. 12.
    Choi HMT et al (2010) Programmable in situ amplification for multiplexed imaging of mRNA expression. Nat Biotechnol 28:1208–1212CrossRefGoogle Scholar
  13. 13.
    Choi HMT, Beck VA, Pierce NA (2014) Next-generation in situ hybridization chain reaction: higher gain, lower cost, greater durability. ACS Nano 8:4284–4294CrossRefGoogle Scholar
  14. 14.
    Keefe A, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9:537–550CrossRefGoogle Scholar
  15. 15.
    Bairoch A (2000) The enzyme database in 2000. Nucleic Acids Res 28:304–305CrossRefGoogle Scholar
  16. 16.
    Hammes GG, Wu CW (1971) Regulation of enzyme activity. Science 172:1205–1211CrossRefGoogle Scholar
  17. 17.
    Drews J (2000) Drug discovery: a historical perspective. Science 287:1960–1964CrossRefGoogle Scholar
  18. 18.
    Khosla C, Harbury PB (2001) Modular enzymes. Nature 409:247–252CrossRefGoogle Scholar
  19. 19.
    Ostermeier M (2009) Designing switchable enzymes. Curr Opin Struct Biol 19:442–448CrossRefGoogle Scholar
  20. 20.
    Fu Y, Zeng D, Chao J, Jin Y, Zhang Z, Liu H, Li D, Ma H, Huang Q, Gothelf KV, Fan C (2012) Single-step rapid assembly of DNA origami nanostructures for addressable nanoscale bioreactors. J Am Chem Soc 135:696–702CrossRefGoogle Scholar
  21. 21.
    Wilner OI, Weizmann Y, Gill R, Lioubashevski O, Freeman R, Willner I (2009) Enzyme cascades activated on topologically programmed DNA scaffolds. Nat Nanotechnol 4:249–254CrossRefGoogle Scholar
  22. 22.
    Fu JL, Liu MH, Liu Y, Woodbury NW, Yan H (2012) Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures. J Am Chem Soc 134:5516–5519CrossRefGoogle Scholar
  23. 23.
    Fu J, Yang Y, Buck AJ, Liu M, Liu Y, Walter NG, Woodbury NW, Yan H (2014) Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm. Nat Nanotechnol 9:531–536CrossRefGoogle Scholar
  24. 24.
    Saghatelian A, Guckian KM, Thayer DA, Ghadiri MRJ (2003) DNA detection and signal amplification via an engineered allosteric enzyme. Am Chem Soc 125:344–345CrossRefGoogle Scholar
  25. 25.
    Simon P, Dueymes C, Fontecave M, Decout JL (2005) DNA detection through signal amplification by using NADH: flavin oxidoreductase and oligonucleotide-flavin conjugates as cofactors. Angew Chem Int Ed 44:2764–2767CrossRefGoogle Scholar
  26. 26.
    Guo PX (2010) The emerging field of RNA nanotechnology. Nat Nanotechnol 5:833–842CrossRefGoogle Scholar
  27. 27.
    Shukla GC, Haque F, Tor Y, Wilhelmsson LM, Toulmé J-J, Isambert H, Guo P, Rossi JJ, Tenenbaum SA, Shapiro BA (2011) A boost for the emerging field of RNA nanotechnology. ACS Nano 5:3405–3418CrossRefGoogle Scholar
  28. 28.
    Lai YT, Cascio D, Yeates TO (2012) Structure of a 16-nm cage designed by using protein oligomers. Science 336:1129CrossRefGoogle Scholar
  29. 29.
    King NP, Sheffler W, Sawaya MR, Vollmar BS, Sumida JP, Andre I, Gonen T, Yeates TO, Baker D (2012) Computational design of self-assembling protein nanomaterials with atomic level accuracy. Science 336:1171–1174CrossRefGoogle Scholar
  30. 30.
    Li XM, Mooney P, Zheng S, Booth CR, Braunfeld MB, Gubbens S, Agard DA, Cheng YF (2013) Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat Methods 10:584–590CrossRefGoogle Scholar
  31. 31.
    Liao M, Cao E, Julius D, Cheng Y (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504:107–112CrossRefGoogle Scholar
  32. 32.
    Scheres S (2014) Foundations of nanoscience: self-assembled architectures and devices. Foresight Institute, Palo Alto, p 55Google Scholar
  33. 33.
    Ke YG, Bellot G, Voigt NV, Fradkov E, Shih WM (2012) Two design strategies for enhancement of multilayer-DNA-origami folding: underwinding for specific intercalator rescue and staple-break positioning. Chem Sci 3:2587–2597CrossRefGoogle Scholar
  34. 34.
    Lin CX, Perrault SD, Kwak M, Graf F, Shih WM (2013) Purification of DNA-origami nanostructures by rate-zonal centrifugation. Nucleic Acids Res 41:e40CrossRefGoogle Scholar
  35. 35.
    Martin TG, Dietz H (2012) Magnesium-free self-assembly of multi-layer DNA objects. Nat Commun 3:1103CrossRefGoogle Scholar
  36. 36.
    Myhrvold C, Dai MJ, Silver PA, Yin P (2013) Isothermal self-assembly of complex DNA structures under diverse and biocompatible conditions. Nano Lett 13:4242–4248CrossRefGoogle Scholar
  37. 37.
    Mei QA, Wei XX, Su FY, Liu Y, Youngbull C, Johnson R, Lindsay S, Yan H, Meldrum D (2011) Stability of DNA origami nanoarrays in cell lysate. Nano Lett 11:1477–1482CrossRefGoogle Scholar
  38. 38.
    Castro CE, Kilchherr F, Kim DN, Shiao EL, Wauer T, Wortmann P, Bathe M, Dietz H (2011) A primer to scaffolded DNA origami. Nat Methods 8:221–229CrossRefGoogle Scholar
  39. 39.
    Modi S, Nizak C, Surana S, Halder S, Krishnan Y (2013) Two DNA nanomachines map pH changes along intersecting endocytic pathways inside the same cell. Nat Nanotechnol 8:459–467CrossRefGoogle Scholar
  40. 40.
    Fu YM, Zeng DD, Chao J, Jin YQ, Zhang Z, Liu HJ, Li D, Ma HW, Huang Q, Gothelf KV, Fan CH (2013) Single-step rapid assembly of DNA origami nanostructures for addressable nanoscale bioreactors. J Am Chem Soc 135:696–702CrossRefGoogle Scholar
  41. 41.
    Ariga K, Hill JP, Lee MV, Vinu A, Charvet R, Acharya S (2008) Challenges and breakthroughs in recent research on self-assembly. Sci Technol Adv Mater 9(1):014109CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jayachandra S. Yaradoddi
    • 1
    • 6
    Email author
  • Merja Hannele Kontro
    • 2
  • Sharanabasava V. Ganachari
    • 1
  • M. B. Sulochana
    • 3
  • Dayanand Agsar
    • 4
  • Rakesh P. Tapaskar
    • 5
  • Ashok S. Shettar
    • 7
    • 8
  1. 1.Centre for Material Science, Advanced Research in Nanoscience and NanotechnologySchool of Mechanical Engineering, KLE Technological University (formerly known as B.V. Bhoomaraddi College of Engineering and Technology)HubballiIndia
  2. 2.Department of Environmental SciencesUniversity of HelsinkiLahtiFinland
  3. 3.Department of PG Studies and Research in BiotechnologyGulbarga UniversityKalaburagiIndia
  4. 4.Department of PG Studies and Research in MicrobiologyGulbarga UniversityKalaburagiIndia
  5. 5.Energy Cluster, Centre for Research in Renewable and Energy Systems, School of Mechanical EngineeringKLE Technological University (formerly known as B.V. Bhoomaraddi College of Engineering and Technology)HubballiIndia
  6. 6.Extremz Biosciences Private Limited (Govt. of Karnataka Funded Startup)KLE Technological University (formerly known as B.V. Bhoomaraddi College of Engineering and Technology)HubballiIndia
  7. 7.Centre for Material Science, Advanced Research in Nanoscience and NanotechnologySchool of Mechanical Engineering, KLE Technological University, B.V. Bhoomaraddi College of Engineering and TechnologyHubballiIndia
  8. 8.Department of Civil EngineeringKLE Technological University, B.V. Bhoomaraddi College of Engineering and TechnologyHubballiIndia

Personalised recommendations