Advertisement

Ecofriendly Nanomaterials for Sustainable Photocatalytic Decontamination of Organics and Bacteria

  • Archana CharanpahariEmail author
  • Nidhi Gupta
  • Vidyasagar Devthade
  • Sachin Ghugal
  • Jatin Bhatt
Reference work entry

Abstract

Rampant pollution of water/air due to hazardous industrial effluents and harmful bacteria has overwhelmingly threatened the very existence and well-being of ecosystem and mankind. According to 2017 survey by the World Health Organization (WHO), 844 million people lack access to safe drinking water. Water contamination occurs mainly due to discharge of improper or untreated wastewater dislodged into natural water reservoirs expedited by urbanization and industrial development. Such circumstances have sparked a need to develop cost-effective, energy-efficient technologies for environment remediation. Photocatalysis serves as a panacea to utilize green, omnipresent, and inexhaustible solar irradiation to facilitate redox reactions for decontamination of various pollutants.

The chapter commences with background to the environmental problems faced by mankind, followed by working principle of photocatalysis and state-of-the-art progress in development of photocatalytic materials. The key challenge lies in designing materials with ability to harvest entire spectrum of solar irradiation (5% UV, 47% visible, and 47% infrared) to fullest efficiency. Hence, the attention of researchers has shifted from UV-responsive materials to alternative visible light-active materials. To complement these efforts, strategies such as band gap engineering, heterojunction fabrication, induction of electric field, tuning defects, and morphology modification are adopted.

Nevertheless, green synthesis of highly efficient photocatalysts and their recyclability still remains a challenge. Hence, dedicated efforts toward alternative ecofriendly materials were made. A concise introduction to a broad range of newer carbon-based materials like carbon quantum dots, graphene and graphene oxide, graphitic carbon nitride, and photocatalysts with induced magnetism is offered. It also gives account of degradation mechanisms, fate of pollutants, their toxicity and utilization for bacterial disinfection. The recent trends in exploring and designing of nanomaterials and their wider ramifications toward pollution abatement are elucidated.

References

  1. 1.
    (a) WHO report on Progress on Drinking Water, Sanitation and Hygiene Update and SDG Baselines 2017, http://www.who.int/water_sanitation_health/publications/JMP-2017-report-final-highlights.pdf?ua=1 (b) Richardson SD, Ternes TA (2014) Anal Chem 86:2913(c) Pedro Monzonis, M.; Solera Solera, A.; Ferrer Polo, FJ.; Estrela Monreal, T.; Paredes Arquiola, J. (2015). A review of water scarcity and drought indexes in water resources planning and management. Journal of Hydrology. (527):482-493. doi:10.1016/j.jhydrol.2015.05.003Google Scholar
  2. 2.
    (a) Mao SS, Chen X (2007) Chem Rev 107: 2891–2959 (b) Ohtani B (2010) J Photochem Photobiol C Photochem Rev 11: 157Google Scholar
  3. 3.
    Serpone N, Emeline AV, Horikoshi S, Kuznetsov VN, Ryabchuk VK (2012) Photochem Photobiol Sci 11:1121Google Scholar
  4. 4.
    Ohtani B (2014) Phys Chem Chem Phys 16:1788Google Scholar
  5. 5.
    Tong H, Ouyang S, Bi Y, Umezawa N, Oshikiri M, Ye J (2012) Adv Mater 24:229Google Scholar
  6. 6.
    Fujishima A, Honda K (1972) Nature 238:37Google Scholar
  7. 7.
    Li J, Wu N (2015) Cat Sci Technol 5:1360Google Scholar
  8. 8.
    Vinu R, Madras G (2010) J Indian Inst Sci 90:189Google Scholar
  9. 9.
    Jiang X, Manawan M, Feng T, Qian R, Zhao T, Zhou G, Kong F, Wang Q, Dai S, Pan JH (2018) Catal Today 300:12Google Scholar
  10. 10.
    Ryu J, Choi W (2008) Environ Sci Technol 42:294Google Scholar
  11. 11.
    Vinu R, Akki SU, Madras G (2010) J Hazard Mater 176:765Google Scholar
  12. 12.
    Liu G, Wang L, Yang HG, Cheng H-M, Lu GQ (2010) J Mater Chem 20:831Google Scholar
  13. 13.
    (a) Charanpahari A, Umare SS, Gokhale SP, Sudarsan V, Sreedhar B, Sasikala R (2012) Appl Catal A G 443–444: 96 (b) Charanpahari A, Umare SS, Sasikala R (2013) Appl Surf Sci, 282, 408 (c) Umare SS, Charanpahari A, Sasikala R (2013) Mater Chem Phys 140: 529Google Scholar
  14. 14.
    Zhang Z, Yates JT (2012) Chem Rev 112:5520Google Scholar
  15. 15.
    Daghrir R, Drogui P, Robert D (2013) Ind Eng Chem Res 52:3581Google Scholar
  16. 16.
    Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi AA (2017) Adv Mater 29:1601694Google Scholar
  17. 17.
    Liu X, Zhu G, Wang X, Yuan X, Lin T, Huang F (2016) Adv Energy Mater 6:1600452Google Scholar
  18. 18.
    Wang Z, Yang C, Lin T, Yin H, Chen P, Wan D, Xu F, Huang F, Lin J, Xie X, Jiang M (2013) Adv Funct Mater 23:5444Google Scholar
  19. 19.
    Chen X, Liu L, Huang F (2015) Chem Soc Rev 44:1861Google Scholar
  20. 20.
    (a) Joshi RK, Schneider JJ (2012) Chem Soc Rev 41: 5285 (b) Gu D, Schüth F (2014) Chem Soc Rev 43: 313 (c) Hu J, Chen M, Fang X, Wu L (2011) Chem Soc Rev 40: 5472Google Scholar
  21. 21.
    Qi J, Lai X, Wang J, Tang H, Ren H, Yu Y, Quan J, Zhang L, Yu R, Ma G, Zhiguo S, Zhao H, Wang D (2015) Chem Soc Rev 44:6749 Google Scholar
  22. 22.
    Li X, Yu L, Jaroniec M (2016) Chem Soc Rev 45:2603Google Scholar
  23. 23.
    Bai S, Wang L, Li Z, Xiong Y (2017) Adv Sci 4:1600216Google Scholar
  24. 24.
    Liu G, Yang HG, Pan J, Yang YQ, Lu GQ, Cheng H-M (2014) Chem Rev 114:9559Google Scholar
  25. 25.
    Augugliaro V, Camera-Roda G, Loddo V, Palmisano G, Palmisano L, Soria J, Yurdakal S (2015) J Phys Chem Lett 6:1968Google Scholar
  26. 26.
    Charanpahari A, Umare SS, Sasikala R (2013) Catal Commun 40:9Google Scholar
  27. 27.
    Charanpahari A, Ghugal SG, Umare SS, Sasikala R (2015) New J ChemGoogle Scholar
  28. 28.
    Gupta N, Pal B (2014) Chem Eng J 246:260Google Scholar
  29. 29.
    Ghugal SG, Umare SS, Sasikala R (2015) RSC Adv 5:63393Google Scholar
  30. 30.
    Ghugal SG, Umare SS, Sasikala R (2015) Appl Catal A Gen 496:25Google Scholar
  31. 31.
    Ghugal SG, Umare SS, Sasikala R (2016) RSC Adv 6:64047Google Scholar
  32. 32.
    Bessekhouad Y, Chaoui N, Trzpit M, Ghazzal N, Robert D, Weber JV (2006) J Photochem Photobiol A Chem 183:218Google Scholar
  33. 33.
    Zhang H, Chen G, Bahnemann DW (2009) J Mater Chem 19:5089Google Scholar
  34. 34.
    Bessekhouad Y, Robert D, Weber JV (2004) J Photochem Photobiol A Chem 163:569Google Scholar
  35. 35.
    Soltani N, Saion E, Yunus WMM, Erfani M, Navasery M, Bahmanrokh G, Rezaee K (2014) Appl Surf Sci 290:440Google Scholar
  36. 36.
    Bai W, Cai L, Wu C, Xiao X, Fan X, Chen K, Lin J (2014) Mater Lett 124:177Google Scholar
  37. 37.
    Coehoorn R, Haas C, de Groot RA (1987) Phys Rev B 35:6203Google Scholar
  38. 38.
    Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z, Liu J, Wang X (2014) Chem Soc Rev 43:5234Google Scholar
  39. 39.
    (a) Zhang Z, Zheng T, Li X, Xu J, Zeng H (2016) Part Part Syst Charact 33:457 (b)  Lim S Y, Shen W, Gao Z, (2015) Carbon quantum dots and their applications. Chemical Society Reviews 44(1):362–381Google Scholar
  40. 40.
    Hu A, Wang Y (2014) J Mater Chem C 2:6921–6939Google Scholar
  41. 41.
    Hardman R (2006) Environ Health Perspect 114:165Google Scholar
  42. 42.
    (a) Wang J, Qiu J (2016) J Mater Sci 51: 4728 (b) Tang Q, Zhu W, He B, Yang P (2017) ACS Nano 11: 1540 (c) Alam A-M, Park B-Y, Ghouri ZK, Park M, Kim H-Y (2015) Green Chem 17: 3791Google Scholar
  43. 43.
    Ma Z, Ming H, Huang H, Liu Y, Kang Z (2012) New J Chem 36:861Google Scholar
  44. 44.
    Zhao S, Lan M, Zhu X, Xue H, Ng T-W, Meng X, Lee C-S, Wang P, Zhang W (2015) ACS Appl Mater Interfaces 7:17054Google Scholar
  45. 45.
    Zhong D, Miao H, Yang K, Yang X (2016) Mater Lett 166:89Google Scholar
  46. 46.
    Sun C, Zhang Y, Wang P, Yang Y, Wang Y, Xu J, Wang Y, Yu WW (2016) Nanoscale Res Lett 11:110Google Scholar
  47. 47.
    Wang L, Li W, Wu B, Li Z, Wang S, Liu Y, Pan D, Wu M (2016) Chem Eng J 300:75Google Scholar
  48. 48.
    (a) Zhang J, Chen X, Takanabe K, Maeda K, Domen K, Epping JD, Fu X, Antonietti M, Wang X (2010) Angew Chem Int Ed 49:441 (b) Xinchen Wang, Kazuhiko Maeda, Arne Thomas, Kazuhiro Takanabe, Gang Xin, Johan M. Carlsson, Kazunari Domen, Markus Antonietti, (2008) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials 8(1):76–80Google Scholar
  49. 49.
    (a) Zhu J, Xiao P, Li H, Carabineiro SAC (2014) ACS Appl Mater Interfaces 6: 16449−16465 (b) Cao S, Yu J (2014) J Phys Chem Lett 5: 2101Google Scholar
  50. 50.
    Zhou L, Zhang H, Sun H, Liu S, Tade MO, Wang S, Jin W (2016) Cat Sci Technol 6:7002Google Scholar
  51. 51.
    (a) Ong W-J, Tan L-L, Ng YH, Yong S-T, Chai S-P (2016) Chem Rev 116: 7159 (b) Jie Fu YT, Chang B, Xi F, Dong X (2012) J Mater Chem 22: 21159 (c) Shouwei Zhang JL, Zeng M, Zhao G, Xu J, Hu W, Wang aX (2013) ACS Appl Mater Interfaces 5: 12735−12743 (d) Haiping Li JL, Hou W, Du N, Zhang R, Tao X (2014) Appl Catal B Environ 160–161: 89Google Scholar
  52. 52.
    Mohamed HH, Bahnemann DW (2012) Appl Catal B Environ 128:91Google Scholar
  53. 53.
    Liu X, Chen N, Li Y, Deng D, Xing X, Wang Y (2016) Sci Rep 6:39531Google Scholar
  54. 54.
    Tahir M, Cao C, Butt FK, Idrees F, Mahmood N, Ali Z, Aslam I, Tanveer M, Rizwan M, Mahmood T (2013) J Mater Chem A 1:13949Google Scholar
  55. 55.
    Hollmann D, Karnahl M, Tschierlei S, Kailasam K, Schneider M, Radnik J, Grabow K, Bentrup U, Junge H, Beller M, Lochbrunner S, Thomas A, Brückner A (2014) Chem Mater 26:1727Google Scholar
  56. 56.
    Gong X, Liu G, Li Y, Yu DYW, Teoh WY (2016) Chem Mater 28:8082Google Scholar
  57. 57.
    Huang X, Qi X, Boey F, Zhang H (2012) Chem Soc Rev 41:666Google Scholar
  58. 58.
    Radich JG, Krenselewski AL, Zhu J, Kamat PV (2014) Chem Mater 26:4662Google Scholar
  59. 59.
    Liu J, Zhang G (2014) Phys Chem Chem Phys 16:8178Google Scholar
  60. 60.
    (a) Unuabonah EI, Ugwuja CG, Omorogie MO, Adewuyi A, Oladoja NA (2018) Appl Clay Sci 151: 211 (b) Ménesi J, Körösi L, Bazsó É, Zöllmer V, Richardt A, Dékány I (2008) Chemosphere 70: 538Google Scholar
  61. 61.
    Liu J, Dong M, Zuo S, Yu Y (2009) Appl Clay Sci 43:156Google Scholar
  62. 62.
    Gu N, Gao J, Li H, Wu Y, Ma Y, Wang K (2016) Appl Clay Sci 132–133:79Google Scholar
  63. 63.
    Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Lai C, Wei Z, Huang C, Xie GX, Liu ZF (2012) Sci Total Environ 424:1Google Scholar
  64. 64.
    Kharisov BI, Rasika Dias HV, Kharissova OV, Manuel Jiménez-Pérez V, Olvera Pérez B, Muñoz Flores B (2012) RSC Adv 2:9325Google Scholar
  65. 65.
    Mou F, Xu LM, Guan H, Chen J, Wang D-r, Shuanhu (2012) Nanoscale 4:4650Google Scholar
  66. 66.
    Yao H, Fan M, Wang Y, Luo G, Fei W (2015) J Mater Chem A 3:17511–17524Google Scholar
  67. 67.
    Hankare PP, Patil RP, Jadhav AV, Garadkar KM, Sasikala R (2011) Appl Catal B Environ 107:333Google Scholar
  68. 68.
    Kumar S, Surendar T, Kumar B, Baruah A, Shanker V (2013) J Phys Chem C 117:26135Google Scholar
  69. 69.
    Fu Y, Chen H, Sun X, Wang X (2012) Appl Catal B Environ 111–112:280Google Scholar
  70. 70.
    Bhattacharyya K, Majeed JP, Dey KK, Ayyub P, Tyagi AK, Bharadwaj SR (2014) J Phys Chem C 118:15946–15962Google Scholar
  71. 71.
    Martínez C, Canle LM, Fernández MI, Santaballa JA, Faria J (2011) Appl Catal B Environ 102:563Google Scholar
  72. 72.
    Ahmed S, Rasul MG, Martens WN, Brown R, Hashib MA (2010) Desalination 261:3Google Scholar
  73. 73.
    Ba-Abbad MM, Takriff MS, Kadhum AAH, Mohamad AB, Benamor A, Mohammad AW (2016) Environ Sci Pollut Res 24:2804Google Scholar
  74. 74.
    Sinha RP, Hader D-P (2002) Photochem Photobiol Sci 1:225Google Scholar
  75. 75.
    Lindahl T (1993) Nature 362:709Google Scholar
  76. 76.
    Castillo-Ledezma JH, Sánchez Salas JL, López-Malo A, Bandala ER (2011) Eur Food Res Technol 233:825Google Scholar
  77. 77.
    Bandala ER, Raichle BW (2013) Solar energy sciences and engineering applications. CRC Press, Leiden, p 978. Print ISBNGoogle Scholar
  78. 78.
    Gourmelon M, Cillard J, Pommepuy M (1994) J Appl Bacteriol 77:105Google Scholar
  79. 79.
    Reed RH, Mani SK, Meyer V (2000) Lett Appl Microbiol 30:432Google Scholar
  80. 80.
    Hurum D, Agrios A, Crist S, Gray K, Rajh T, Thurnauer M (2006) J Electron Spectrosc Relat Phenom 150:155Google Scholar
  81. 81.
    Benabbou A, Derriche Z, Felix C, Lejeune P, Guillard C (2007) Appl Catal B Environ 76:257Google Scholar
  82. 82.
    Blake DM, Maness P-C, Huang Z, Wolfrum EJ, Huang J, Jacoby WA (1999) Sep Purif Methods 28:1Google Scholar
  83. 83.
    Rincón A-G, Pulgarin C (2004) Appl Catal B Environ 49:99Google Scholar
  84. 84.
    Rincon A-G, Pulgarin C (2004) Appl Catal B Environ 51:283Google Scholar
  85. 85.
    Kulczycki E, Ferris F, Fortin D (2002) Geomicrobiol J 19:553Google Scholar
  86. 86.
    Rincón AG, Pulgarin C, Adler N, Peringer P (2001) J Photochem Photobiol A Chem 139:233Google Scholar
  87. 87.
    Maness P-C, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA (1999) Appl Environ Microbiol 65:4094Google Scholar
  88. 88.
    Saito T, Iwase T, Horie J, Morioka T (1992) J Photochem Photobiol B Biol 14:369Google Scholar
  89. 89.
    Huang Z, Maness P-C, Blake DM, Wolfrum EJ, Smolinski SL, Jacoby WA (2000) J Photochem Photobiol A Chem 130:163Google Scholar
  90. 90.
    Markowska-Szczupak A, Ulfig K, Morawski A (2011) Catal Today 169:249Google Scholar
  91. 91.
    Kapuscinski RB, Mitchell R (1981) Appl Environ Microbiol 41:670Google Scholar
  92. 92.
    Imlay JA (2003) Ann Rev Microbiol 57:395Google Scholar
  93. 93.
    Kruszewski M (2003) Mutat Res/Fundam Mol Mech Mutagen 531:81Google Scholar
  94. 94.
    Vohra A, Goswami D, Deshpande D, Block S (2005) J Ind Microbiol Biotechnol 32:364Google Scholar
  95. 95.
    Hoop M, Shen Y, Chen XZ, Mushtaq F, Iuliano LM, Sakar MS, Petruska A, Loessner MJ, Nelson BJ, Pané S (2016) Adv Funct Mater 26:1063Google Scholar
  96. 96.
    Cheng Z, Li Y (2007) Chem Rev 107:748Google Scholar
  97. 97.
    Valduga G, Bertoloni G, Reddi E, Jori G (1993) J Photochem Photobiol B Biol 21:81Google Scholar
  98. 98.
    Hayden SC, Allam NK, El-Sayed MA (2010) J Am Chem Soc 132:14406Google Scholar
  99. 99.
    Hu C, Guo J, Qu J, Hu X (2007) Langmuir 23:4982Google Scholar
  100. 100.
    Hu C, Lan Y, Qu J, Hu X, Wang A (2006) J Phys Chem B 110:4066Google Scholar
  101. 101.
    Seven O, Dindar B, Aydemir S, Metin D, Ozinel M, Icli S (2004) J Photochem Photobiol A Chem 165:103Google Scholar
  102. 102.
    Zhang J, Zhu H, Zheng S, Pan F, Wang T (2009) ACS Appl Mater Inter 1:2111Google Scholar
  103. 103.
    Tan OK, Hu Y (2014) Google patentsGoogle Scholar
  104. 104.
    Qiao S, Sun D, Tay J, Easton C (2003) Water Sci Technol 47:211Google Scholar
  105. 105.
    Pathania D, Katwal R, Sharma G (2016) Mater Sci Forum 842:88Google Scholar
  106. 106.
    Pham T-D, Lee B-K (2014) Appl Surf Sci 296:15Google Scholar
  107. 107.
    Yousef A, Barakat NA, Amna T, Al-Deyab SS, Hassan MS, Abdel-hay A, Kim HY (2012) Ceram Int 38:4525Google Scholar
  108. 108.
    Vinu R, Madras G (2012) J Indian Inst Sci 90:189Google Scholar
  109. 109.
    Shi H, Li G, Sun H, An T, Zhao H, Wong P-K (2014) Appl Catal B Environ 158:301Google Scholar
  110. 110.
    Kang S, Mauter MS, Elimelech M (2009) Environ Sci Technol 43:2648Google Scholar
  111. 111.
    Akhavan O, Ghaderi E (2010) ACS Nano 4:5731Google Scholar
  112. 112.
    Wang W, Yu JC, Xia D, Wong PK, Li Y (2013) Environ Sci Technol 47:8724Google Scholar
  113. 113.
    (a) Eswar NK, Ramamurthy PC, Madras G (2016) New J Chem 40:3464 (b) Lingmei Liu, Weiyi Yang, Qi Li, Shian Gao, Jian Ku Shang, (2014) Synthesis of Cu O Nanospheres Decorated with TiO Nanoislands, Their Enhanced Photoactivity and Stability under Visible Light Illumination, and Their Post-illumination Catalytic Memory . ACS Applied Materials & Interfaces 6 (8):5629-5639Google Scholar
  114. 114.
    Ng AMC, Guo MY, Leung YH, Chan CMN, Wong SWY, Yung MMN, Ma APY, Djurišić AB, Leung FCC, Leung KMY, Chan WK, Lee HK (2015) J Photochem Photobiol B Biol 151:17Google Scholar
  115. 115.
    Vale G, Mehennaoui K, Cambier S, Libralato G, Jomini S, Domingos RF (2016) Aquat Toxicol 170:162Google Scholar
  116. 116.
    Santo N, Fascio U, Torres F, Guazzoni N, Tremolada P, Bettinetti R, Mantecca P, Bacchetta R (2014) Water Res 53:339Google Scholar
  117. 117.
    Wang D, Lin Z, Wang T, Yao Z, Qin M, Zheng S, Lu W (2016) J Hazard Mater 308:328Google Scholar
  118. 118.
    Sajjad S, Leghari SAK, Iqbal A (2017) ACS Appl Mater Interfaces 9(50):43393–43414Google Scholar
  119. 119.
    Liao K-H, Lin Y-S, Macosko CW, Haynes CL (2011) ACS Appl Mater Interfaces 3:2607Google Scholar
  120. 120.
    Havrdova M, Hola K, Skopalik J, Tomankova K, Petr M, Cepe K, Polakova K, Tucek J, Bourlinos AB, Zboril R (2016) Carbon 99:238Google Scholar
  121. 121.
    Guo Y, Yao P, Zhu D, Gu G (2015) J Mater Chem A 13189Google Scholar
  122. 122.
    Alam R, Lightcap IV, Karwacki CJ, Kamat PV (2014) ACS Nano 8:7272Google Scholar
  123. 123.
    Wang J, Tang L, Zeng G, Deng Y, Dong H, Liu Y, Wang L, Peng B, Zhang C, Chen F (2018) Appl Catal B Environ 222:115Google Scholar
  124. 124.
    Lingmei Liu, Weiyi Yang, Qi Li, Shian Gao, Jian Ku Shang, (2014) Synthesis of Cu O Nanospheres Decorated with TiO Nanoislands, Their Enhanced Photoactivity and Stability under Visible Light Illumination, and Their Post-illumination Catalytic Memory. ACS Applied Materials & Interfaces 6(8):5629–5639Google Scholar
  125. 125.
    María Pedro-Monzonís, Abel Solera, Javier Ferrer, Teodoro Estrela, Javier Paredes-Arquiola, (2015) A review of water scarcity and drought indexes in water resources planning and management. Journal of Hydrology 527:482–493Google Scholar
  126. 126.
    Shi Ying Lim, Wei Shen, Zhiqiang Gao, (2015) Carbon quantum dots and their applications. Chemical Society Reviews 44(1):362–381Google Scholar
  127. 127.
    Xinchen Wang, Kazuhiko Maeda, Arne Thomas, Kazuhiro Takanabe, Gang Xin, Johan M. Carlsson, Kazunari Domen, Markus Antonietti, (2008) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials 8(1):76–80Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Archana Charanpahari
    • 1
    • 2
    Email author
  • Nidhi Gupta
    • 2
  • Vidyasagar Devthade
    • 3
  • Sachin Ghugal
    • 4
  • Jatin Bhatt
    • 5
  1. 1.Department of Chemical EngineeringIndian Institute of ScienceBengaluruIndia
  2. 2.Department of Chemistry, School of Basic and Applied SciencesGalgotias UniversityGreater NoidaIndia
  3. 3.Department of ChemistryVisvesvarya National Institute of TechnologyNagpurIndia
  4. 4.School of ChemistryHyderabad Central UniversityHyderabadIndia
  5. 5.Department of Metallurgical and Materials EngineeringVisvesvaraya National Institute of TechnologyNagpurIndia

Personalised recommendations