Advertisement

Eco-polymer and Carbon Nanotube Composite: Safe Technology

  • Ayesha Kausar
Reference work entry

Abstract

Ecology-friendly or eco-friendly polymers are also known as green polymeric materials. Interest in green polymers is continually growing due to the increasing environmental concerns. Eco-friendly polymers are either biodegradable or obtained from renewable resources. Polyesters (polyhydroxyalkanoates), polycarprolactone, polylactic acid, polyglycols, polyvinyl alcohol, etc. form important classes of green polymers. Inherent advantages of these advanced materials have been enhanced by developing composite and nanocomposite to attain the properties as needed to target specific applications. Carbon nanotube (CNT) is important nanofiller frequently used in eco-friendly polymeric composite (green bio-composite) and nanocomposite (green bio-nanocomposite). By varying the type, functionalization, and CNT content, composite properties have been tailored to match the desired property requirement. Solution-casting, melt compounding, and in situ polymerization of eco-polymer in presence of CNT have been employed as processing techniques. Improved interfacial interaction between biodegradable polymer and nanofiller may provide enhanced physical properties for commercial and industrial relevance. Eco-polymers and polymer/CNT nanocomposites have found range of application in sensors, membranes, EMI shielding materials, and biomedical appliances. Undoubtedly, biodegradable eco-polymer/CNT green nanocomposite provides an attractive approach towards safe technology for environmental and health management.

Keywords

Eco-friendly polymer Biodegradable Carbon nanotube Nanocomposite Sensor 

Reference

  1. 1.
    Laycock B, Nikolić M, Colwell JM, Gauthier E, Halley P, Bottle S, George G (2017) Lifetime prediction of biodegradable polymers. Prog Poly Sci 71:144–189CrossRefGoogle Scholar
  2. 2.
    Hu C, Li Z, Wang Y, Gao J, Dai K, Zheng G, Liu C, Shen C, Song H, Guo Z (2017) Comparative assessment of the strain-sensing behaviors of polylactic acid nanocomposites: reduced graphene oxide or carbon nanotubes. J Mater Chem C 5:2318–2328CrossRefGoogle Scholar
  3. 3.
    Kaseem M, Hamad K, Deri F, Ko YG (2017) A review on recent researches on polylactic acid/carbon nanotube composites. Polym Bull 74:2921–2937CrossRefGoogle Scholar
  4. 4.
    Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. Bioresources 3:929–980Google Scholar
  5. 5.
    Kausar A, Ilyas H, Siddiq M (2017) Current research status and application of polymer/carbon nanofiller buckypaper: a review Polym-Plast Technol Eng 56:1–21CrossRefGoogle Scholar
  6. 6.
    Kausar A, Ahmad S, Salman SM (2017) Effectiveness of polystyrene/carbon nanotube composite in electromagnetic interference shielding materials: a review. Polym-Plast Technol Engineer 56:1027–1042CrossRefGoogle Scholar
  7. 7.
    Liu I-C, Huang HM, Chang CY, Tsai HC, Hsu CH, Tsiang RCC (2004) Preparing a styrenic polymer composite containing well-dispersed carbon nanotubes: anionic polymerization of a nanotube-bound p-methylstyrene. Macromolecules 37:283–287CrossRefGoogle Scholar
  8. 8.
    Zeng H, Gao C, Yan D (2006) Poly (ϵ-caprolactone)-functionalized carbon nanotubes and their biodegradation properties. Adv Funct Mater 16:812–818CrossRefGoogle Scholar
  9. 9.
    Kaur T, Kulanthaivel S, Thirugnanam A, Banerjee I, Pramanik K (2017) Biological and mechanical evaluation of poly (lactic-co-glycolic acid)-based composites reinforced with 1D, 2D and 3D carbon biomaterials for bone tissue regeneration. Biomed Mater 12:025012CrossRefGoogle Scholar
  10. 10.
    Gonçalves C, Gonçalves IC, Magalhães FD, Pinto AM (2017) Poly(lactic acid) composites containing carbon-based nanomaterials: a review. Polymers 9:269CrossRefGoogle Scholar
  11. 11.
    Solaro R, Corti A, Chiellini E (1998) A new respirometric test simulating soil burial conditions for the evaluation of polymer biodegradation. J Polym Environ 6:203–208CrossRefGoogle Scholar
  12. 12.
    Mohanty AK, Misra M, Drzal LT (2001) Surface modifications of natural fibers and performance of the resulting biocomposites: an overview. Compos Interfac 8:313–343CrossRefGoogle Scholar
  13. 13.
    Tharanathan RN (2003) Biodegradable films and composite coatings: past, present and future. Trends in Food Sci Technol 14:71–78CrossRefGoogle Scholar
  14. 14.
    Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo JE (2008) Polymer biodegradation: mechanisms and estimation techniques–a review. Chemosphere 73:429–442CrossRefGoogle Scholar
  15. 15.
    Leja K, Lewandowicz G (2010) Polymer biodegradation and biodegradable polymers-a review. Polish J Environ Studies 19:255–266Google Scholar
  16. 16.
    Huda MS, Mohanty AK, Drzal LT, Schut E, Misra M (2005) “Green” composites from recycled cellulose and poly(lactic acid): Physico-mechanical and morphological properties evaluation. J Mater Sci 40:4221–4229CrossRefGoogle Scholar
  17. 17.
    Wu XS, Wang N (2001) Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers. Part II: biodegrad. J Biomater Sci Polym Ed 12:21–34CrossRefGoogle Scholar
  18. 18.
    Galgali P, Varma AJ, Puntambekar US, Gokhale DV (2002) Towards biodegradable polyolefins: strategy of anchoring minute quantities of monosaccharides and disaccharides onto functionalized polystyrene, and their effect on facilitating polymer biodegradation. Chem Communicat 23:2884–2885CrossRefGoogle Scholar
  19. 19.
    Tsui A, Wright ZC, Frank CW (2013) Biodegradable polyesters from renewable resources. Ann rev Chem Biomolecul. Engineer 4:143–170Google Scholar
  20. 20.
    Adeosun SO, Lawal GI, Balogun SA, Akpan EI (2012) Review of green polymer nanocomposites. J Miner Mater Characterizat Engineer 11:385CrossRefGoogle Scholar
  21. 21.
    Shah A, Hasan F, Hameed A, Ahmed S (2008) Niological degradation of plastics: a comprehensive review. Biotechnol Adv 2008(26):246–265CrossRefGoogle Scholar
  22. 22.
    Hema R, Ng PN, Amirul AA (2013) Green Nanobiocomposite: reinforcement effect of montmorillonite clays on physical and biological advancement of various Polyhydroxyalkanoates. Polym Bull 70:755–771CrossRefGoogle Scholar
  23. 23.
    Mohanty A, Misra M, Drzal L (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10:19–26CrossRefGoogle Scholar
  24. 24.
    Javadi A, Srithep Y, Lee J, Pilla S, Clemons C, Gong S (2010) Processing and characterization of solid and microcellular PHBV/PBAT blend and its RWF/nanoclay composites. Compos Part A: Appl S 41:982–990CrossRefGoogle Scholar
  25. 25.
    Ten E, Turtle J, Bahr D, Jiang L, Wolcott M (2010) Thermal and mechanical properties of poly (3- hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites. Polymer 51:2652–2620CrossRefGoogle Scholar
  26. 26.
    Srithep Y, Turng LS, Sabo R, Clemons C (2012) Nanofibrillated cellulose (NFC) reinforced polyvinyl alcohol (PVOH) nanocomposites: properties, solubility of carbon dioxide, and foaming. Cellulose 19:1–15CrossRefGoogle Scholar
  27. 27.
    Srithep Y, Ellingham T, Peng J, Sabo R, Clemons C, Turng LS, Pilla S (2013) Melt compounding of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/nanofibrillated cellulose nanocomposites. Polym Degrad Stab 98:1439–1449CrossRefGoogle Scholar
  28. 28.
    Karthikeyan M, Kumar KS, Elango KP (2011) Batch sorption studies on the removal of fluoride ions from water using eco-friendly conducting polymer/bio-polymer composites. Desalination 267:49–56CrossRefGoogle Scholar
  29. 29.
    Janaki V, BT O, Shanthi K, Lee KJ, Ramasamy AK, Kamala-Kannan S (2012) Polyaniline/chitosan composite: an eco-friendly polymer for enhanced removal of dyes from aqueous solution. Synth Met 162:974–980CrossRefGoogle Scholar
  30. 30.
    Guigo N, Mija A, Vincent L, Sbirrazzuoli N (2010) Eco-friendly composite resins based on renewable biomass resources: Polyfurfuryl alcohol/lignin thermosets. European. Polym J 46:1016–1023Google Scholar
  31. 31.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  32. 32.
    Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1:180–192CrossRefGoogle Scholar
  33. 33.
    Eklund P, Holden JM, Jishi RA (1995) Vibrational modes of carbon nanotubes spectroscopy and theory. Carbon 33:959–972CrossRefGoogle Scholar
  34. 34.
    Baughman R, Zakhidov A, Heer W (2002) Carbon nanotubes-the route toward applications. Science 297:787–792CrossRefGoogle Scholar
  35. 35.
    Kausar A (2017) Design of poly (1-hexadecene-sulfone)/poly (1, 4-phenylene sulfide) membrane containing nano-zeolite and carbon nanotube for gas separation. Int J Plast Technol 21:96–107CrossRefGoogle Scholar
  36. 36.
    Kausar A, Rafique I, Muhammad B (2017) Significance of carbon nanotube in flame-retardant polymer/CNT composite: a review. Polym-Plast Technol Engineer 56:470–487CrossRefGoogle Scholar
  37. 37.
    Kausar A (2014) Polyamide-grafted-multi-walled carbon nanotube electrospun nanofibers/epoxy composites. Fiber Polym 15:2564CrossRefGoogle Scholar
  38. 38.
    Kausar A, Hussain ST (2014) Azo-polymer based hybrids reinforced with carbon nanotubes and silver nanoparticles: solution and melt processing. Int J Polym Mater Polym Biomater 63:207–212CrossRefGoogle Scholar
  39. 39.
    Dong S, Tu J, Zhang X (2001) An investigation of the sliding wear behavior of cu-matrix composite reinforced by carbon nanotubes. Mater Sci Eng A 313:83–87CrossRefGoogle Scholar
  40. 40.
    Ando Y, Zhao X, Shimoyama H, Sakai G, Kaneto K (1999) Physical properties of multiwalled carbon nanotubes. Int J Inorg Mater 1:77–82CrossRefGoogle Scholar
  41. 41.
    Xiaohong W, Zhou J, Li L (2007) Multiple melting behavior of poly (butylene succinate). Eur Polym J 43:3163–3170CrossRefGoogle Scholar
  42. 42.
    Li Y, Shimizu H (2007) High-shear processing induced homogenous dispersion of pristine multiwalled carbon nanotubes in a thermoplastic elastomer. Polymer 48:2203–2207CrossRefGoogle Scholar
  43. 43.
    Wu C, Liao H (2007) Study on the preparation and characterization of biodegradable polylactide/multi-walled carbon nanotubes nanocomposites. Polymer 48:4449–4458CrossRefGoogle Scholar
  44. 44.
    Sinha Ray S, Vaudreuil S, Maazouz A, Bousmina M (2006) Dispersion of multi-walled carbon nanotubes in biodegradable poly(butylene succinate) matrix. J Nanosci Nanotechnol 6:2191–2195CrossRefGoogle Scholar
  45. 45.
    Song L, Qiu Z (2009) Crystallization behavior and thermal property of biodegradable poly (butylene succinate)/functional multi-walled carbon nanotubes nanocomposite. Polym Degrad Stab 94:632–637CrossRefGoogle Scholar
  46. 46.
    Mitchell CA, Krishnamoorti R (2005) Non-isothermal crystallization of in situ polymerized poly (ε-caprolactone) functionalized-SWNT nanocomposites. Polymer 46:8796–8804CrossRefGoogle Scholar
  47. 47.
    Villmow T, Pötschke P, Pegel S, Häussler L, Kretzschmar B (2008) Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly(lactic acid) matrix. Polymer 49:3500–3509CrossRefGoogle Scholar
  48. 48.
    Wu CS (2009) Antibacterial and static dissipating composites of poly (butylene adipate-co-terephthalate) and multi-walled carbon nanotubes. Carbon 47:3091–3098CrossRefGoogle Scholar
  49. 49.
    Oksman K, Skrifvars M, Selin JF (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol 63:1317–1324CrossRefGoogle Scholar
  50. 50.
    Rasal RM, Janorkar AV, Hirt DE (2010) Poly (lactic acid) modifications. Prog Polym Sci 35:338–356CrossRefGoogle Scholar
  51. 51.
    Zribi K, Feller JF, Elleuch K, Bourmaud A, Elleuch B (2006) Conductive polymer composites obtained from recycled poly (carbonate) and rubber blends for heating and sensing applications. Polym Adv Technol 17:727–731CrossRefGoogle Scholar
  52. 52.
    Su PG, Huang SC (2006) Electrical and humidity sensing properties of carbon nanotubes-SiO 2-poly (2-acrylamido-2-methylpropane sulfonate) composite material. Sens Actuat B: Chem 113:142–149CrossRefGoogle Scholar
  53. 53.
    Pumera M, Sanchez S, Ichinose I, Tang J (2007) Electrochemical nanobiosensors. Sens Actuat B: Chem 123:1195–1205CrossRefGoogle Scholar
  54. 54.
    Castro M, Lu J, Bruzaud S, Kumar B, Feller JF (2009) Carbon nanotubes/poly(ε-caprolactone) composite vapour sensors. Carbon 47:1930–1942CrossRefGoogle Scholar
  55. 55.
    Yang Y, Gupta MC, Dudley KL, Lawrence RW (2005) A comparative study of EMI shielding properties of carbon nanofiber and multi-walled carbon nanotube filled polymer composites. J Nanosci Nanotechnol 5:927–931CrossRefGoogle Scholar
  56. 56.
    Thomassin JM, Lou X, Pagnoulle C, Saib A, Bednarz L, Huynen I, Jerome R, Detrembleur C (2007) Multiwalled carbon nanotube/poly (ε-caprolactone) nanocomposites with exceptional electromagnetic interference shielding properties. J Phys Chem C 111:11186–11192CrossRefGoogle Scholar
  57. 57.
    Ong YT, Ahmad AL, Zein SHS, Sudesh K, Tan SH (2011) Poly (3-hydroxybutyrate)-functionalised multi-walled carbon nanotubes/chitosan green nanocomposite membranes and their application in pervaporation. Separat Purificat Technol 76:419–427CrossRefGoogle Scholar
  58. 58.
    Misra SK, Ansari TI, Valappil SP, Mohn D, Philip SE, Stark WJ, Roy I, Knowles JC, Salih V, Boccaccini AR (2010) Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications. Biomaterials 31:2806–2815CrossRefGoogle Scholar
  59. 59.
    Misra SK, Ohashi F, Valappil SP, Knowles JC, Roy I, Silva SRP, Salih V, Boccaccini AR (2010) Characterization of carbon nanotube (MWCNT) containing P (3HB)/bioactive glass composites for tissue engineering applications. Acta Biomater 6:735–742CrossRefGoogle Scholar
  60. 60.
    Rodrigues BV, Razzino CA, de Carvalho Oliveira F, Marciano FR, Lobo AO (2017) On the design and properties of scaffolds based on vertically aligned carbon nanotubes transferred onto electrospun poly (lactic acid) fibers. Mater Des 127:183–192CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ayesha Kausar
    • 1
  1. 1.School of Natural SciencesNational University of Sciences and Technology (NUST)IslamabadPakistan

Personalised recommendations