Novel Nanoscaled Materials from Lignocellulosic Sources: Potential Applications in the Agricultural Sector

  • Elena FortunatiEmail author
  • Deepak Verma
  • F. Luzi
  • A. Mazzaglia
  • L. Torre
  • G. M. Balestra
Reference work entry


The agricultural sector is facing pivotal global challenges such as climate change, urbanization, sustainable use of resources, and environmental issues. These situations are further exacerbated by the growing food demand that will be needed to sustain an estimated population growth from the current level of about 6 billion to 9 billion by 2050. Plant-based agricultural production is the base of the broad agriculture systems providing food, feed, fiber, and fuels. While the demand for crop yield will rapidly increase in the future, the agriculture and natural resources are limited. In this scenario, traditional strategies for plant protection often result insufficient, and the application of chemical-based pesticides has negative effects on the environment, animals, and humans. Nanotechnology has the potential to conceive products based on environmentally friendly natural polymers which, in addition of being biodegradable, can also be obtained from natural sources and/or biowastes. Specifically, lignocellulosic materials are the most promising feedstock as natural and renewable resources essential to the functioning of modern industrial societies, and the huge amounts of lignocellulosic biomass can potentially be converted into high-value products for different final applications.

Current research trends and recent advances about the extraction methodologies and properties of nanostructured materials and systems from lignocellulosic biomass and their potential applications in sustainable plant protection for agriculture management will be presented in this chapter, while potential future applications will be analyzed and discussed.


Nanotechnology Nanomaterials Nanocomposites Nanoparticles Lignocellulosic materials Biomass Agriculture Market Plant disease Plant pathogens Organic phytotoxicity Pests Bacteria Fungi Insects Organic control strategies 


  1. 1.
    Dasgupta N, Ranjan S, Mundekkad D, Ramalingam C, Shanker R, Kumar A (2015) Nanotechnology in agro-food: from field to plate. Food Res Int 69:381–400CrossRefGoogle Scholar
  2. 2.
    Armentano I, Arciola CR, Fortunati E, Ferrari D, Mattioli S, Amoroso CF et al (2014) The interaction of bacteria with engineered nanostructured polymeric materials: a review. Sci World J 2014:410423CrossRefGoogle Scholar
  3. 3.
    Curtis A, Wilkinson C (2001) Nanotechniques and approaches in biotechnology. Mater Today 4:22–28CrossRefGoogle Scholar
  4. 4.
    Anselme K, Davidson P, Popa AM, Giazzon M, Liley M, Ploux L (2010) The interaction of cells and bacteria with surfaces structured at the nanometre scale. Acta Biomater 6:3824–3846CrossRefGoogle Scholar
  5. 5.
    Mazzaglia A, Fortunati E, Kenny JM, Torre L, Mariano G (2017) Nanomaterials in Plant Protection; in Nanotechnology in Agriculture and Food Science. In: Axelos MAV and Van De Voorde M (eds), Wiley-VCH GmbH & Co. KGaA, Weinheim, Germany. Chapter 7, p 408. ISBN 978352733989Google Scholar
  6. 6.
    Pérez J, Munoz-Dorado J, de la Rubia T, Martinez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5:53–63CrossRefGoogle Scholar
  7. 7.
    Fortunati E, Luzi F, Puglia D, Torre L (2016) Extraction of lignocellulosic materials from waste products. In: Debora Puglia, Elena Fortunati, José Maria Kenny (eds), Multifunctional polymeric nanocomposites based on cellulosic reinforcements. Elsevier, p 1. ISBN 978-0-323-44248-0Google Scholar
  8. 8.
    Kah M, Beulke S, Tiede K, Hofmann T (2013) Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit Rev Environ Sci Technol 43:1823–1867CrossRefGoogle Scholar
  9. 9.
    Chinnamuthu CR, Boopathi PM (2009) Nanotechnology and agroecosystem. Madras Agric J 96:17–31Google Scholar
  10. 10.
    González-Fernández R, Prats E, Jorrín-Novo JV (2010) Proteomics of plant pathogenic fungi. BioMed Res Int 2010:1–36CrossRefGoogle Scholar
  11. 11.
    Chen H, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22:585–594CrossRefGoogle Scholar
  12. 12.
    Epa US (2007) Nanotechnology white paper. SP Council 2007Google Scholar
  13. 13.
    Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94:287–293CrossRefGoogle Scholar
  14. 14.
    Dhaliwal GS, Jindal V, Dhawan AK (2010) Insect pest problems and crop losses: changing trends. Indian J Ecol 37:1–7Google Scholar
  15. 15.
    Fortunati E, Rescignano N, Botticella E, La Fiandra D, Renzi M, Mazzaglia A et al (2016) Effect of poly (dl-lactide-co-glycolide) nanoparticles or cellulose nanocrystals-based formulations on Pseudomonas syringae pv. tomato (Pst) and tomato plant development. J Plant Dis Prot 123:301–310CrossRefGoogle Scholar
  16. 16.
    Johnston CT (2010) Probing the nanoscale architecture of clay minerals. Clay Miner 45:245–279CrossRefGoogle Scholar
  17. 17.
    Bayer IS, Guzman-Puyol S, Heredia-Guerrero JA, Ceseracciu L, Pignatelli F, Ruffilli R et al (2014) Direct transformation of edible vegetable waste into bioplastics. Macromolecules 47:5135–5143CrossRefGoogle Scholar
  18. 18.
    Singh A, Kuila A, Adak S, Bishai M, Banerjee R (2012) Utilization of vegetable wastes for bioenergy generation. Agric Res 1:213–222CrossRefGoogle Scholar
  19. 19.
    Hsieh Y-L (2013) Cellulose nanocrystals and self-assembled nanostructures from cotton, rice straw and grape skin: a source perspective. J Mater Sci 48:7837–7846CrossRefGoogle Scholar
  20. 20.
    Battegazzore D, Bocchini S, Alongi J, Frache A, Marino F (2014) Cellulose extracted from rice husk as filler for poly (lactic acid): preparation and characterization. Cellulose 21:1813–1821CrossRefGoogle Scholar
  21. 21.
    Fortunati E, Luzi F, Puglia D, Dominici F, Santulli C, Kenny JM et al (2014) Investigation of thermo-mechanical, chemical and degradative properties of PLA-limonene films reinforced with cellulose nanocrystals extracted from Phormium tenax leaves. Eur Polym J 56:77–91CrossRefGoogle Scholar
  22. 22.
    Fortunati E, Luzi F, Puglia D, Petrucci R, Kenny JM, Torre L (2015) Processing of PLA nanocomposites with cellulose nanocrystals extracted from Posidonia oceanica waste: innovative reuse of coastal plant. Ind Crop Prod 67:439–447CrossRefGoogle Scholar
  23. 23.
    Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729CrossRefGoogle Scholar
  24. 24.
    Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169CrossRefGoogle Scholar
  25. 25.
    García A, Gandini A, Labidi J, Belgacem N, Bras J (2016) Industrial and crop wastes: a new source for nanocellulose biorefinery. Ind Crop Prod 93:26–38CrossRefGoogle Scholar
  26. 26.
    Lee HV, Hamid SBA, Zain SK (2014) Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. Sci World J 2014:1–20Google Scholar
  27. 27.
    Taherzadeh MJ, Karimi K (2007) Acid-based hydrolysis processes for ethanol from lignocellulosic materials: a review. Bioresources 2:472–499Google Scholar
  28. 28.
    Khalil HPSA, Davoudpour Y, Islam MN, Mustapha A, Sudesh K, Dungani R et al (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665CrossRefGoogle Scholar
  29. 29.
    Anwar Z, Gulfraz M, Irshad M (2014) Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. J Radiat Res Appl Sci 7:163–173CrossRefGoogle Scholar
  30. 30.
    Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542CrossRefGoogle Scholar
  31. 31.
    Fortunati E, Yang W, Luzi F, Kenny J, Torre L, Puglia D (2016) Lignocellulosic nanostructures as reinforcement in extruded and solvent casted polymeric nanocomposites: an overview. Eur Polym J 80:295–316CrossRefGoogle Scholar
  32. 32.
    Ghaffar SH, Fan M (2013) Structural analysis for lignin characteristics in biomass straw. Biomass Bioenergy 57:264–279CrossRefGoogle Scholar
  33. 33.
    Lavoine N, Desloges I, Bras J (2014) Microfibrillated cellulose coatings as new release systems for active packaging. Carbohydr Polym 103:528–537CrossRefGoogle Scholar
  34. 34.
    Qiu X, Hu S (2013) “Smart” materials based on cellulose: a review of the preparations, properties, and applications. Materials 6:738–781CrossRefGoogle Scholar
  35. 35.
    Luzi F, Fortunati E, Puglia D, Petrucci R, Kenny JM, Torre L (2016) Modulation of acid hydrolysis reaction time for the extraction of cellulose nanocrystals from Posidonia oceanica leaves. J Renew Mater 4:190–198CrossRefGoogle Scholar
  36. 36.
    Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crop Prod 93:2–25CrossRefGoogle Scholar
  37. 37.
    Fortunati E, Luzi F, Jiménez A, Gopakumar DA, Puglia D, Thomas S et al (2016) Revalorization of sunflower stalks as novel sources of cellulose nanofibrils and nanocrystals and their effect on wheat gluten bionanocomposite properties. Carbohydr Polym 149:357–368CrossRefGoogle Scholar
  38. 38.
    Shezad O, Khan S, Khan T, Park JK (2010) Physicochemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy. Carbohydr Polym 82:173–180CrossRefGoogle Scholar
  39. 39.
    Herrick FW, Casebier RL, Hamilton JK, Sandberg KR. Microfibrillated cellulose: morphology and accessibility. CONF-8205234-vol. 2 edn: ITT Rayonier Inc., Shelton, WAGoogle Scholar
  40. 40.
    Turbak AF, Snyder FW, Sandberg KR. Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. CONF-8205234-vol. 2 edn: ITT Rayonier Inc., Shelton, WAGoogle Scholar
  41. 41.
    Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441CrossRefGoogle Scholar
  42. 42.
    Saito T, Nishiyama Y, Putaux J-L, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691CrossRefGoogle Scholar
  43. 43.
    Boldizar A, Klason C, Kubat J, Näslund P, Saha P (1987) Prehydrolyzed cellulose as reinforcing filler for thermoplastics. Int J Polym Mater 11:229–262CrossRefGoogle Scholar
  44. 44.
    Missoum K, Martoïa F, Belgacem MN, Bras J (2013) Effect of chemically modified nanofibrillated cellulose addition on the properties of fiber-based materials. Ind Crop Prod 48:98–105CrossRefGoogle Scholar
  45. 45.
    Ranby BG (1949) Aqueous colloidal solutions of cellulose micelles. MUNKSGAARD INT PUBL LTD 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK. Acta Chem Scand 3:649–650CrossRefGoogle Scholar
  46. 46.
    Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRefGoogle Scholar
  47. 47.
    Luzi F, Fortunati E, Puglia D, Lavorgna M, Santulli C, Kenny JM et al (2014) Optimized extraction of cellulose nanocrystals from pristine and carded hemp fibers. Ind Crop Prod 56:175–186CrossRefGoogle Scholar
  48. 48.
    Šturcová A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061CrossRefGoogle Scholar
  49. 49.
    Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37:7683–7687CrossRefGoogle Scholar
  50. 50.
    Neto WPF, Mariano M, da Silva ISV, Silvério HA, Putaux J-L, Otaguro H et al (2016) Mechanical properties of natural rubber nanocomposites reinforced with high aspect ratio cellulose nanocrystals isolated from soy hulls. Carbohydr Polym 153:143–152CrossRefGoogle Scholar
  51. 51.
    Luzi F, Fortunati E, Giovanale G, Mazzaglia A, Torre L, Balestra GM (2017) Cellulose nanocrystals from Actinidia deliciosa pruning residues combined with carvacrol in PVA_CH films with antioxidant/antimicrobial properties for packaging applications. Int J Biol Macromol 104:43–55CrossRefGoogle Scholar
  52. 52.
    Dong S, Cho HJ, Lee YW, Roman M (2014) Synthesis and cellular uptake of folic acid-conjugated cellulose nanocrystals for cancer targeting. Biomacromolecules 15:1560–1567CrossRefGoogle Scholar
  53. 53.
    Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466CrossRefGoogle Scholar
  54. 54.
    Jackson JK, Letchford K, Wasserman BZ, Ye L, Hamad WY, Burt HM (2011) The use of nanocrystalline cellulose for the binding and controlled release of drugs. Int J Nanomedicine 6:321Google Scholar
  55. 55.
    Brown AJ (1886) XLIII. – On an acetic ferment which forms cellulose. J Chem Soc Trans 49:432–439CrossRefGoogle Scholar
  56. 56.
    Brown AJ (1886) XIX. – The chemical action of pure cultivations of bacterium aceti. J Chem Soc Trans 49:172–187CrossRefGoogle Scholar
  57. 57.
    Jeong SI, Lee SE, Yang H, Jin Y-H, Park C-S, Park YS (2010) Toxicologic evaluation of bacterial synthesized cellulose in endothelial cells and animals. Mol Cell Toxicol 6:370–377CrossRefGoogle Scholar
  58. 58.
    Kim D-Y, Nishiyama Y, Kuga S (2002) Surface acetylation of bacterial cellulose. Cellulose 9:361–367CrossRefGoogle Scholar
  59. 59.
    Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765CrossRefGoogle Scholar
  60. 60.
    Shi Z, Zhang Y, Phillips GO, Yang G (2014) Utilization of bacterial cellulose in food. Food Hydrocoll 35:539–545CrossRefGoogle Scholar
  61. 61.
    Czaja W, Krystynowicz A, Bielecki S, Brown RM (2006) Microbial cellulose – the natural power to heal wounds. Biomaterials 27:145–151CrossRefGoogle Scholar
  62. 62.
    Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M et al (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431CrossRefGoogle Scholar
  63. 63.
    Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12CrossRefGoogle Scholar
  64. 64.
    Scherner M, Reutter S, Klemm D, Sterner-Kock A, Guschlbauer M, Richter T et al (2014) In vivo application of tissue-engineered blood vessels of bacterial cellulose as small arterial substitutes: proof of concept? J Surg Res 189:340–347CrossRefGoogle Scholar
  65. 65.
    Xu F, Sun J-X, Sun R, Fowler P, Baird MS (2006) Comparative study of organosolv lignins from wheat straw. Ind Crop Prod 23:180–193CrossRefGoogle Scholar
  66. 66.
    Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2:1072–1092CrossRefGoogle Scholar
  67. 67.
    Yang W, Kenny JM, Puglia D (2015) Structure and properties of biodegradable wheat gluten bionanocomposites containing lignin nanoparticles. Ind Crop Prod 74:348–356CrossRefGoogle Scholar
  68. 68.
    Yang W, Dominici F, Fortunati E, Kenny JM, Puglia D (2015) Effect of lignin nanoparticles and masterbatch procedures on the final properties of glycidyl methacrylate-g-poly (lactic acid) films before and after accelerated UV weathering. Ind Crop Prod 77:833–844CrossRefGoogle Scholar
  69. 69.
    Frangville C, Rutkevičius M, Richter AP, Velev OD, Stoyanov SD, Paunov VN (2012) Fabrication of environmentally biodegradable lignin nanoparticles. Chem Phys Chem 13:4235–4243CrossRefGoogle Scholar
  70. 70.
    Gilca IA, Ghitescu RE, Puitel AC, Popa VI (2014) Preparation of lignin nanoparticles by chemical modification. Iran Polym J 23:355–363CrossRefGoogle Scholar
  71. 71.
    Gupta AK, Mohanty S, Nayak SK (2014) Synthesis, characterization and application of lignin nanoparticles (LNPs). Mater Focus 3:444–454CrossRefGoogle Scholar
  72. 72.
    Lievonen M, Valle-Delgado JJ, Mattinen M-L, Hult E-L, Lintinen K, Kostiainen MA et al (2016) A simple process for lignin nanoparticle preparation. Green Chem 18:1416–1422CrossRefGoogle Scholar
  73. 73.
    Ge Y, Wei Q, Li Z (2014) Preparation and evaluation of the free radical scavenging activities of nanoscale lignin biomaterials. Bioresources 9:6699–6706Google Scholar
  74. 74.
    Domenek S, Louaifi A, Guinault A, Baumberger S (2013) Potential of lignins as antioxidant additive in active biodegradable packaging materials. J Polym Environ 21:692–701CrossRefGoogle Scholar
  75. 75.
    Yang W, Owczarek JS, Fortunati E, Kozanecki M, Mazzaglia A, Balestra GM et al (2016) Antioxidant and antibacterial lignin nanoparticles in polyvinyl alcohol/chitosan films for active packaging. Ind Crop Prod 94:800–811CrossRefGoogle Scholar
  76. 76.
    Yang W, Fortunati E, Dominici F, Giovanale G, Mazzaglia A, Balestra GM et al (2016) Effect of cellulose and lignin on disintegration, antimicrobial and antioxidant properties of PLA active films. Int J Biol Macromol 89:360–368CrossRefGoogle Scholar
  77. 77.
    Malinconico M (2017) Soil degradable bioplastics for a sustainable modern agriculture. Springer, BerlinCrossRefGoogle Scholar
  78. 78.
    Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRefGoogle Scholar
  79. 79.
    Cortesi R, Quattrucci A, Esposito E, Mazzaglia A, Balestra GM (2017) Natural antimicrobials in spray-dried microparticles based on cellulose derivatives as potential eco-compatible agrochemicals. J Plant Dis Protec 124:269–278CrossRefGoogle Scholar
  80. 80.
    Fortunati E, Benincasa P, Balestra GM, Luzi F, Mazzaglia A, Del Buono D et al (2016) Revalorization of barley straw and husk as precursors for cellulose nanocrystals extraction and their effect on PVA_CH nanocomposites. Ind Crop Prod 92:201–217CrossRefGoogle Scholar
  81. 81.
    Yang W, Fortunati E, Dominici F, Giovanale G, Mazzaglia A, Balestra GM et al (2016) Synergic effect of cellulose and lignin nanostructures in PLA based systems for food antibacterial packaging. Eur Polym J 79:1–12CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Elena Fortunati
    • 1
    • 2
    Email author
  • Deepak Verma
    • 3
  • F. Luzi
    • 2
  • A. Mazzaglia
    • 4
    • 5
  • L. Torre
    • 2
  • G. M. Balestra
    • 4
    • 5
  1. 1.Department of Civil EngineeringUniversity of PerugiaTerniItaly
  2. 2.Civil and Environmental Engineering Department, Materials Engineering CenterUniversity of PerugiaTerniItaly
  3. 3.Department of Mechanical EngineeringGraphic Era Hill UniversityDehradunIndia
  4. 4.Department of Agricultural and Forestry Science (DAFNE)University of TusciaViterboItaly
  5. 5.Phytoparasites Diagnostics (Phy.Dia.) srlViterboItaly

Personalised recommendations